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ABSTRACT
Muscle weakness has been recognized as a hallmark feature of vitamin D deficiency for many years. Until recently, the direct biomo-
lecular effects of vitamin D on skeletal muscle have been unclear. Although in the past, some reservations have been raised regarding
the expression of the vitamin D receptor in muscle tissue, this special issue review article outlines the clear evidence from preclinical
studies for not only the expression of the receptor inmuscle but also the roles of vitamin D activity in muscle development, mass, and
strength. Additionally, muscle may also serve as a dynamic storage site for vitamin D, and play a central role in the maintenance of
circulating 25-hydroxy vitamin D levels during periods of low sun exposure. © 2021 The Authors. JBMR Plus published by Wiley Peri-
odicals LLC on behalf of American Society for Bone and Mineral Research.
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Introduction

By the 1970s it had become clear that the vitamin D status of
populations was largely determined by exposure to solar

UVB light driving photochemical synthesis in the skin rather than
by dietary intake. Vitamin D is produced in the skin when UV
photons convert 7-dehydrocholesterol through a two-step pro-
cess into vitamin D3. This is followed by 25-hydroxylation in the
liver and 1α-hydroxylation in the kidney (predominantly) to form
the metabolically active 1,25-dihydroxyvitamin D3 (1,25(OH)2D3).
The principal role of vitamin D in the body is to signal the absorp-
tion of calcium and phosphate from the gut. Calcium absorption
across the intestinal absorptive cells, the enterocytes, occurs
both via active transport, facilitated by 1,25(OH)2D3, and via para-
cellular diffusion through tight junctions.(1) It is well established
that the genomic actions of 1,25(OH)2D3 in the enterocytes result
in the influx of calcium through the apical calcium channel
known as the transient receptor potential vanilloid type
6 (TRPV6), followed by translocation through the cell by calbin-
din and finally, release across the plasma membrane via the cal-
cium adenosine triphosphatase (ATPase) pump. The passive

diffusion of calcium is less reliable and has traditionally been
considered a function of the electrochemical gradient across
the lumen. Increasingly, however, evidence also suggests that
1,25(OH)2D3 plays a role in improving the ion permeability of
the tight junctions, and thus this passive diffusion of calcium as
well.(2,3) Vitamin D likewise improves phosphate absorption.(1)

Vitamin D also increases renal calcium reabsorption resulting in
a net increase in serum calcium levels. Overall, vitamin D is nec-
essary for the maintenance of mineral homeostasis and is vital
for the health of the musculoskeletal system.(4)

The role of vitamin D in bone health has been well established
for many years, although it has more recently come to light that
there may also be a strong link between vitamin D and skeletal
muscle health that lies outside of the circulating levels of phos-
phate and calcium.(5–7) There are still many questions regarding
the direct actions of 1,25(OH)2D3 in muscle. Severe vitamin D
deficiency results in muscle weakness and vitamin D status is a
predictor of muscle strength and performance in older
adults,(8) but whether these observations are linked to the
knock-on effects on circulating calcium and phosphate levels
alone or whether vitamin D directly modulates these parameters
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of muscle is still hotly debated.(9) This review focuses on the cur-
rent literature that indicates an independent role for vitamin D in
the maintenance of skeletal muscle quality, the central role of
the vitamin D receptor (VDR) in muscle function as well as a sum-
mary of new research that posits the muscle as an important
storage site for vitamin D and its binding protein, VDBP, to aid
in the maintenance of circulating levels during winter. The vari-
ous functions of vitamin D in skeletal muscle cells have been
summarized in Fig. 1.

VDR Expression in Skeletal Muscle

Following the discovery of VDR in 1974,(10) our knowledge of its
structural composition, biological activity, and ligand interac-
tions have expanded considerably.(11) The late Anthony
W. Norman shed immense light on the complexity of the VDR,
defining its protein composition through X-ray crystallography
and expounding key conformational changes that determine
genomic versus rapid effects of VDR on cellular activity.(12) An
appreciation of structure–function interactions of VDR, and its
activity as an orphan nuclear receptor, in addition to estab-
lished effects through ligand binding (1,25D-VDR-retinoid X

receptor [RXR]), provide strong mechanistic bases for vitamin
D’s expanding nonclassical effects beyond bone and mineral
homeostasis.(12)

The VDR is present in invertebrates, fish, birds, and mammals,
with a wide repertoire of expression in different organs and tis-
sues. Until recently, however, the presence of VDR in skeletal
muscle was unclear. There had been conflicting reports on VDR
detection by Western blot and immunohistochemistry in murine
and adult human muscle.(13–15) Using a specific VDR antibody,
VDR was found to be present at low levels(16) or absent.(15,17) Rel-
ative to classical sites of VDR activity, such as the duodenum, its
expression in muscle is substantially lower. Low baseline levels,
however, do not preclude a biological role for VDR in muscle.
Transcription factors may exert genomic effects even at low
levels of expression, dependent on their binding affinity to
DNA.(18)

Approaches that examine systems-wide VDR distribution,
such as the use of a luciferase-expressing VDR transgene in a
murine model,(19) miss the relatively low level of expression in
skeletal muscle. Protein detection methods may also not be sen-
sitive enough to detect low baseline levels of VDR, and induction
by key physiologic stimuli may be necessary for detection. In
support of this, priming VDR by treatment with its ligand

Fig 1. (a) Active 1,25(OH)2D3 diffuses across the muscle cell membrane and binds the intracellular VDR. This ligand-receptor complex then drives either
(b) rapid, nongenomic effects on intracellular calcium signaling pathways; or (c) transcriptional activity of genes involved in the differentiation ofmyocytes
into mature contractile myotubes, maintenance of skeletal muscle quality, and protection from muscle atrophy. (d) Circulating 25(OH)D3 diffuses across
the muscle cell membrane, while (e) VDBP requires endocytosis via megalin activity at the cell surface. (f ) VDBP attaches to a binding site on intracellular
actin filaments and binds the 25(OH)D3, aiding in themaintenance of circulating levels of this metabolite duringwinter. VDBP= vitamin D binding protein;
VDR = vitamin D receptor.

JBMR Plus (WOA)n 2 of 7 GIRGIS AND BRENNAN-SPERANZA



increased expression levels in older human subjects.(20,21) In
another study, muscle injury relating to severe knee osteoarthri-
tis (OA) was associated with higher VDR levels in quadriceps,(22)

although the VDR was clearly detected in muscles from both
OA and control subjects.

VDR expression within muscle is also time-dependent and
modulated throughout muscle development and aging. In vitro,
muscle precursor cells display substantially greater levels of VDR
compared to fully differentiated myotubes and whole muscle
fibers.(16,17) This is consistent with the early expression of VDR
in the mesoderm, the embryonic tissue that gives rise to the
musculoskeletal system.(23) Mice show similar age-dependent
changes in muscle VDR with significantly higher levels in new-
bornmice compared to 3-week-oldmice and adult mice.(16) Mus-
cle injury in adult mice leads to a recapitulation of embryonic
myogenesis, and VDR is increased under these circum-
stances.(24,25) Interestingly, VDR is specifically expressed in satel-
lite cells, muscle stem cells, and in vitro; 1,25(OH)D3 modulates
myogenic cell differentiation in these primordial cells.(26) There-
fore, VDR’s predominant expression in muscle within primordial
cells, newborn mice, and regenerating muscle fibers supports a
pleiotropic role of vitamin D in muscle development and repair.

In summary, a number of experimental and biological issues
have confounded the clear demonstration of VDR in muscle.
These include wide differences in muscle models used, nonspe-
cificity of VDR antibodies, and protein detection methods that
are insufficiently sensitive to detect low baseline levels of biolog-
ically active VDR, although most of these obstacles have now
been overcome. Muscle VDRmay also sequester within a specific
cell population, such as satellite cells, and thus evade detection
by methods examining whole tissue (satellite cells comprise
�5% cells in adult muscle).(27) The weight of evidence indicates
that VDR is indeed expressed in muscle but at very low baseline
levels in adults, and that injury upregulates its expression. VDR in
muscle predominates in precursor cells and in developing and
regeneratingmuscle fibers. Thus, its activity in this tissue appears
related to muscle development and pleiotropy.

Vitamin D and Muscle Cells: In Vitro Models

In vitro studies using isolated myotubes and cultured muscle cell
lines are one way of testing whether vitamin D and its metabo-
lites have direct effects in muscle, bypassing the modulation of
circulating calcium and phosphate mineral levels and the subse-
quent effects these changes may elicit in muscle. Various studies
have investigated the direct effects of vitamin D using cell cul-
ture models, the majority of which have analyzed myotube for-
mation and size,(9,26,28–31) the expression of proteins involved
in muscle formation and function, insulin sensitivity,(32–35) glu-
cose(35) and lipid uptake and metabolism,(36,37) as well as mito-
chondrial activity.(36)

Most of the cell studies have employed similar methods that
include incubating either isolatedmouse or human skeletal myo-
blasts or commonly used immortalized mouse or rat myoblast
cell lines with active 1,25(OH)2D3. The results of these studies
demonstrate positive effects on myoblast differentiation, fusion
and myotube formation,(9,26,28–30) reduced proliferation of early
myoblasts in preparation for fusion,(29–31) and improved myo-
tube maintenance and size.(28)

Two broad mechanisms are responsible for these pleiotropic
effects including: (i) posttranslational modification of signaling
molecules involved in inhibition of myoblast proliferation, Rb,

JNK, Raf-1, and CREB(9,29,38); and (ii) genomic regulation of myo-
genic regulatory factors (MRF) responsible for muscle differenti-
ation.(9,29) Knockdown studies have confirmed VDR as requisite
to the effects of 1,25(OH)D3 on MRF expression.(39)

In vitro studies also report a vitamin D–protective effect
against muscle atrophy via the downregulation of muscle atro-
phy F-box (MAFbx/Atrogin 1) and muscle RING finger 1 (MuRF1)
proteins as well as inhibition of ubiquitin ligases involved in
catabolism and muscle atrophy.(32)

Corroborative findings in studies on human myocytes were
reported with VDR-mediated modulation of age-related path-
ways including ubiquitin ligases, inflammatory markers tumor
necrosis factor α (TNF-α) and interleukin 6 (IL6), and
phosphatidylinositol-30-kinase (PI3K)/protein kinase B (AKT) sig-
naling.(21,40) Mitochondrial genemodulation and increasedmito-
chondrial volume and oxygen consumption in muscle cells
treated with 1,25(OH)D3 were demonstrated.(41) Thus, vitamin
D may reduce oxygen free radicals in aging muscle and mitigate
the effects of mitochondrial dysfunction, thereby counteracting
sarcopenia.

Studies also report increases in intracellular calcium move-
ment in muscle in response to vitamin D.(6) In cell models, 1,25
(OH)2D3 exposure leads to the rapid movement of calcium from
the sarcoplasmic reticulum into cytosol,(42) followed by more
sustained calcium flux from the extracellular compartment via
activation of store-operated calcium entry (SOCE) and L-type
voltage-dependent channels.(6) Intricate intracellular signaling
mechanisms for these effects have been elucidated, including
the activation of the protein kinase C pathway(42) and increases
in intracellular cyclic AMP (cAMP).(43) Interestingly, one study
reported the expression of CYP27B1, suggesting local muscle
metabolism of 25(OH)D3 into 1,25(OH)2D3.

(31)

Thus, a body of in vitro work provides proof of concept that
vitamin Dmodulates myogenesis, through the inhibition of myo-
blast proliferation, promotion of myocyte differentiation and
myotube formation, and by exerting anabolic effect on myotube
size.(9,28,29,38,44) Vitamin D alsomodulates the response tomuscle
injury and inflammation, with effects on intracellular calcium
handling.

Insights on Vitamin D’s Role in Muscle From
Animal Models

A number of different animal models have shed light on key
aspects of vitamin D physiology and skeletal muscle.

The classical model, namely the whole-body vitamin D recep-
tor knockout (VDRKO) mouse model has provided key insights in
the pleiotropic effects of vitamin D,(38,45) but the systemic defects
in this model, and aberrant calcium/mineral signaling, confound
the elucidation of tissue specific effects of the VDR. More
recently, two muscle-specific knockout mouse models have
been generated.(46,47) In the first model, myosin light chain 1
(MLC1f ) was the promoter gene used to ablate VDR in themuscle
of these mice. MLC1f is expressed in embryonic life, making this
model appropriate to assess effects on muscle differentiation.
Changes in muscle morphology and insulin sensitivity were
noted, with a reduction in type II muscle fiber diameter and over-
expression of forkhead Box O1 (FOXO1) protein resulting in glu-
cose intolerance.(46) In the second model, significant reductions
in lean mass, voluntary physical function, and grip strength in
muscle-specific VDRKO mice, underpinned by key morphologic
changes in muscle fibers, were demonstrated.(47) The presence
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of central nucleoli in muscle fibers of knockout mice suggested
an underlying defect in muscle repair in the absence of VDR.

A model overexpressing VDR in the tibialis anterior muscle of
Wistar rats was recently developed.(48) Significant increases in
muscle fiber size were reported with upregulation of key geno-
mic pathways on RNA-Seq relating to extracellular matrix (ECM)
remodeling, satellite cell activity, and markers of proliferation.(48)

In addition, humans were found to upregulate VDR mRNA in
skeletal muscle following hypertrophy-inducing exercise, sug-
gesting a central role in muscle conditioning to exercise and
recovery.(48)

Animal models of vitamin D deficiency have also been devel-
oped. Vitamin D–deficient mice had reduced locomotor ability
and by 5 weeks on a diet lacking vitamin D, mice had signifi-
cantly lower neuromuscular innervation in the tibialis anterior
muscle compared to calcium and vitamin D–replete animals.(49)

Muscle atrophy was accentuated by vitamin D deficiency in aged
mice with an increase in muscle protein catabolism via activation
of TGF-β, FOXO, and the ubiquitin-proteasome system.(45,50) Con-
versely, vitamin D supplementation improved muscle recovery
following freeze-crush injury or high-intensity exercise.(51,52)

These effects were explained by vitamin D–mediated reductions
in oxidative stress and inflammation, together with an effect on
stress-related proteins (ERK1/2, p38, and MAPK).(51,53)

Murine models of energy dysmetabolism have also been used
to investigate the role of vitamin D inmuscle health; the prospec-
tive muscle atrophy, increased lipid accumulation within skeletal
muscle, and overall reduced muscle structure and function ren-
der these models useful for studying muscle maintenance, func-
tion, and form. Overall, these investigations report that vitamin D
treatment in animals fed high-fat and high-sugar diets, diabetic
rodent models, and sedentary fatty rats preserved skeletal mus-
cle form and function by: increasing myoblast determination
protein 1 (MyoD) expression(54); suppressing the expression of
catabolic proteins atrogin-1 and MuRF1(54); upregulating the
expression of protein fibronectin-type III domain-containing
5 (FNDC5) and irisin—genes involved in the conversion of white
adipocytes into brown adipocytes and increasing energy expen-
diture(55); and the downregulation of the lipogenic activation
pathway that includes sterol regulatory element binding
protein-1c (SREBP1c) and SREBP cleavage activating protein
(SCAP).(56)

Despite these positive findings, one study reported that dos-
ing mice with extremely high levels of vitamin D in a single bolus
treatment resulted in reduced contraction force and reduced
recovery periods following fatigue exercises,(57) supporting data
from humans in which comparable single high doses increase
the risk of falls and fractures.(58)

These animal studies have laid the foundation for further
examination of vitamin D effects in human muscle tissue. A cor-
relation between VDR protein and interleukin-6 (IL6) expression
in human muscle suggests integrated effects in the inflamma-
tory response to muscle damage.(59) Vitamin D supplementation
modulated cytokine levels following exercise, including IL-10,
IL-13, and reduced inflammatory mediators TNF-α and interferon
γ (IFN-γ).(60,61) PCR array analysis in healthy human subjects
identified 24 skeletal muscle genes associated with pathways
involving muscle contraction, myogenesis, cell stress, and muscle
repair that correlate with serum 25(OH)D3 status.

(62)

In summary, vitamin D modulates muscle morphology and
pleoitropy with effects on muscle size, repair, and aging. Effects
on oxidative stress, inflammatory cytokines, and muscle protein
turnover via the ubiquitin-proteasome have been reported in

both rodent and human studies. Vitamin D supplementation
may reverse these effects, and further research is needed on
the potential anti-aging, anabolic, and reparative effects of vita-
min D on skeletal muscle.

Muscle as a Storage Site for Vitamin D

Other recent research has asked not what vitamin D can do for
muscle but what muscle can do for vitamin D. At somewhere
between 50 to 100 days,(63,64) 25(OH)D3 has an unusually long
half-life for a steroid hormone, particularly a seco-steroid with a
broken carbon ring, whereas the half-life of 1,25(OH)2D3 is more
similar to other steroid hormones, at only a few days.(65) The half-
life of the vitamin D binding protein (VDBP), which transports
both the endocrine metabolite and its parent molecule, is also
only a few days.(66) These characteristics of 1,25(OH)2D3, along-
side the well-known dependence on UVB exposure, and thus
seasonal variation for the synthesis of vitamin D, make a reason-
able argument for an extravascular storage site for vitamin D
within the body.(67) Given the lipophilic nature of free vitamin
D and that it is purportedly sequestered in the fat mass of obese
patients, it is unlikely that the vitamin D in adipose can be mobi-
lized and released as required into the circulation.

In cell culture, radiolabeled 25(OH)D3 is taken up into mature
myotubes but not mature adipocytes.(68) The levels in liver are
very low,(69) and in rats, radioactively labeled vitamin D was
found mostly as 25(OH)D3 in the skeletal muscle of newborn
pups when it had been administered to the pregnant
mothers.(69) Therefore, muscle appears to be a newly recognized
site of accessible 25(OH)D storage.

Although 25(OH)D3 can passage into and out of muscle cells
unaided, the binding protein, VDBP has been shown to depend
on the presence of megalin, a member of the low-density lipo-
protein receptor family.(70) VDBP was shown to bind to intracel-
lular skeletal muscle actin,(71) in the same manner as had been
reported in hepatocytes.(71) Thus, it is likely that vitamin D is
stored in muscle by actin-bound VDBP that is proteolyzed to
allow release of free 25(OH)D3 back into the circulation when
UVB exposure is low. Finally, uptake of 25(OH)D3 into muscle is
inhibited by parathyroid hormone (PTH) acting on PTH receptors
in the sarcolemma,(72) indicating the interplay between these
calciotropic hormones to maintain calcium homeostasis even
at the skeletal muscle. Because PTH is a major inducer of
CYP27B1 in the kidneys, it is conceivable that during low calcium
situations PTH directs 25(OH)D3 away from muscle storage to
promote renal conversion of the CYP27B1 substrate to 1,25
(OH)2D3. Thus, skeletal muscle represents an active storage site
for vitamin D, playing a novel role in the maintenance of physio-
logical circulating levels during periods of hibernation and low
UVB exposure.

Conclusion

In his 2006 review on the “already busy receptor,” the late
Anthony Norman described skeletal muscle as a new frontier in
VDR’s assignments beyond its genomic effects at classical
sites.(73) This special issue article in memory of this pioneer of
vitamin D research summarizes the current understanding of
its effects on skeletal muscle—in development, metabolism,
repair, and themodulation ofmuscle fiber size. A body of preclin-
ical research in support of these functions has been presented
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from in vitro cell models, animal models, and biomolecular stud-
ies on human muscle tissue (summarized in Fig. 1).

Morphologically, muscle mass, fiber size, and the reparative
response to muscle injury are altered by vitamin D.(25,45) Geno-
mic effects in muscle involve myogenic regulatory factors, trans-
forming growth factor β (TGF-β) signaling, myostatin, and the
ubiquitin-proteasome.(9,29,62) Vitamin D may also exert age-
related changes in skeletal muscle by altering oxidative stress,
atrophy signaling, and protein turnover.(45,50) Nongenomic
effects of vitamin D have been elucidated, including the rapid
activation of second messenger systems to modulate intramus-
cular calcium flux, vital for muscle contraction and
strength.(43,74,75) Skeletal muscle may also represent a dynamic
depot for vitamin D, regulating circulating levels and facilitating
the release of vitamin D during periods of low UVB exposure
such as hibernation.(70)

Until recently, VDR’s expression in skeletal muscle has been
controversial. Technical challenges, differences in muscle
models, and muscle cell-specific and age-specific differences in
VDR expression gave rise to this controversy. The body of evi-
dence now indicates that VDR is indeed expressed in muscle,
but at levels that may elude some detection methods. The
expression of VDR in muscle occurs primarily in primordial mus-
cle cells, such as satellite cells, and in regenerating muscle
fibers.(16,17) VDR’s predominant expression in these early muscle
cells indicates a mostly pleiotropic role in this tissue. At a func-
tional level, a direct action of VDR in muscle is supported by
the phenotype of murine models of muscle-specific knockout(47)

and overexpression of this protein.(48)

However, questions regarding the activity of vitamin D in
muscle remain. Although preclinical studies support a robust
role of vitamin D in this tissue, the clinical translation of these
effects to human subjects requires further assessment. Direct
changes in muscle function relating to vitamin D status have
not been a uniform finding in human studies. On a molecular
level, the presence of vitamin D response elements (VDRE)
have not been clearly demonstrated in genes purportedly reg-
ulated by vitamin D in muscle. Chromatin immunoprecipita-
tion (ChIP) studies are required to elucidate the specific VDR
binding sites across the genome (or cistrome) in skeletal mus-
cle and will establish a clearer picture of direct genomic activ-
ity. Nongenomic effects of vitamin D on calcium flux have been
reported by many in vitro studies but the extrapolation of
these findings to in vivo muscle physiology is not a fait accom-
pli. Future studies using intracellular calcium imaging are
needed to characterize real-time calcium flux in skeletal mus-
cle in vivo in response to vitamin D. The role of Vitamin D in
muscle repair also raises the possibility that vitamin D directly
regulates the response of satellite cells to injury, enhancing
regeneration. The ongoing development of animal models of
aberrant VDR signaling in muscle will help to clarify cell-
specific effects in this tissue.

Future strategies targeting vitamin D signaling in muscle and
modulating the VDR “metabolome” may also hold important
clues for future treatments ofmusculoskeletal disorders, congen-
ital myopathies, and sarcopenia.
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