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Abstract

Vitamin D plays a key role in the modulation of the immune system, mediated through
the intracellular vitamin D receptor (VDR). Exercise has been shown to influence the
activity and availability of the VDR. The aim of this study was to investigate the effect
of age on basal immune cell (T-lymphocyte) VDR expression and the subsequent effect
of acute aerobic exercise to modulate VDR expression in peripheral T cells. Thirty-five
men were included in the study (mean + SD: age 44 + 17 years and body mass index
25.7 + 3.1 kg/m?), separated into three age groups: 18-30 (n = 12), 31-45 (n = 11)
and 60-75 years (n = 12). Participants completed two trials [control (CON) and aerobic
exercise (AE)], with blood samples collected pre- and postexercise (0, 1 and 3 h). Peri-
pheral blood T cells were isolated and analysed for VDR expression by flow cyto-
metry. The results show that advanced age is associated with lower VDR expression
in T cells (882 + 274, 796 + 243 and 594 + 174 geomean in the 18-30, 31-45 and
60-75 year age groups, respectively). Acute AE was successful at acutely increasing
VDR expression in T cells, irrespective of age. Advanced age corresponds to a lower
T-cell VDR expression, which might be responsible for age-associated development
of chronic conditions and autoimmunity. Exercise was successful in increasing VDR
expression in T cells irrespective of age and independent of exercise-induced T-cell

mobilization.
KEYWORDS

ageing, exercise, vitamin D, vitamin D receptor

of vitamin D, specifically its role in the immune system. Although 25-

hydroxyvitamin D5 [25(0OH)D3] is used as the biomarker for vitamin D

Several tissues and cell types have been identified in the literature as
vitamin D active (Wang et al., 2012). Vitamin D3 is an important
secosteroid hormone derived from direct sunlight exposure
[ultraviolet (UV) B radiation] and dietary sources (Holick & Chen,
2008). It is classically regarded as a key regulator in bone health,
playing a role in calcium and phosphate homeostasis. However, there

is increasing evidence of the non-calcaemic and extraskeletal roles

status, it is the biologically active form of vitamin D, 1,25(0OH), D3, and
the vitamin D receptor (VDR) that provide the functional platform for
vitamin D metabolism (Haussler et al., 1998). There is a nuclear intake
of 1,25(0OH), D3 by T lymphocytes (Veldman et al., 2000), accompanied
by a significant expression of the VDR in activated cells but not in
isolated resting human T cells (Baeke et al., 2010; Provvedini et al.,
1983). The binding of 1,25(0OH),D5 to the VDR in immune cells leads
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to the secretion of the antimicrobial peptide cathlicidin, which plays an
important role in innate immune defences (Hewison, 2012). Moreover,
T cells may require expression of the VDR in order to regulate the
T-cell effector response (Kongsbak et al., 2013). Therefore, vitamin D
has an important role in modulating immune health and function.

A dysregulated immune system accompanies advancing age,
thereby increasing susceptibility to infectious diseases and auto-
immune conditions, and thus ill health (Yamshchikov et al., 2009). This
dysregulated status of the immune system is referred to as immuno-
senescence, with older adults reported to display a greater number of
senescent T cells than younger counterparts (Simpson et al., 2007).
Senescent T cells are associated with altered receptor expression
(Mo et al., 2003). Although there are few data on the effects of age on
baseline expression of VDR, Bischoff-Ferrari et al. (2004) reported that
VDR protein expression decreases in human skeletal muscle tissue
as age advances (Bischoff-Ferrari et al., 2004), which is in contrast to
a study by Coleman et al. (2016) reporting no association between
mMRNA expression of VDR in T cells and age (Coleman et al., 2016). The
disagreement between studies might be attributable to tissue-specific
expression or the age of the population pools (24-91 vs. >50 years,
respectively). Therefore, the aim of the present study was to compare
baseline T-cell VDR expression in young and older adults.

Emerging data are now suggestive that acute exercise can be an
efficient stimulus to upregulate 25(OH)D5 concentrations in a human
population (Sun et al., 2017) and upregulate intramuscular VDR and
related enzyme expression in rats (Makanae et al., 2015). Long-
term exercise might also promote vitamin D metabolism through the
upregulation of intracellular VDR, albeit in skeletal muscle tissue (Aly
et al, 2016; Bass et al.,, 2020). It is well established that immune
cells, specifically T cells, are highly responsive to exercise, with rapid
transient lymphocytosis (Gleeson & Bishop, 2005) and activation of
specific signalling cascades within T cells (Siedlik et al., 2017). Given
that activated T cells are reported to express higher levels of VDR,
particularly CD87 T cells, although CD4* T cells also present relatively
less but significantly high concentrations of VDR (Veldman et al., 2000),
it could be hypothesized that exercise might act as a stimulus and
activate and upregulate VDR expression by circulating T cells. To our
knowledge, the effects of exercise on T-cell VDR expression have not
yet been investigated in a human population.

The aims of this study were threefold: (1) investigate the influence of
age on T-cell VDR expression; (2) to assess the effect of a single bout of
aerobic exercise on VDR expression in peripheral blood T cells; and (3)
toinvestigate whether any impact of exercise on T-cell VDR expression

is age dependent.

2 | METHODS

2.1 | Ethical approval
Ethical approval of the study and its procedures was granted by
the School of Applied Sciences Research Ethics and Governance

Committee at Edinburgh Napier University. The study conformed to

New Findings

* What is the central question of this study?
Does exercise affect vitamin D receptor expression
in T lymphocytes in young, middle-aged and older
adults?

* What is the main finding and its importance?

Moderate-intensity cycling exercise increases

vitamin D receptor expression in vitamin D-
deficient men, independent of age, presenting a
strategy to combat the prevalence of vitamin D

deficiency.

the standards set by the Declaration of Helsinki, except for registration
in a database. Written informed consent was obtained from all
participants before their participation in the study.

2.2 | Participants

Thirty-five recreationally active men, with an average age of 44
(24-75) years, were included in the study (mean + SD: body mass
82.5 + 11.4 kg, height 1.79 + 0.08 m and body mass index 25.7 +
3.1 kg/m?). Participants were included if they were aged 18-45 or
60-75 years, recreationally active according to the moderate-to-
vigorous physical activity (MVPA) guidelines provided by the American
College of Sports Medicine (ACSM, 2013), defined as >150 min of
moderate activity per week or 75 min of vigorous activity per week.
Participants were excluded if they were using tanning beds, undergoing
UV light therapy, were taking vitamin D supplements (>10 ug/day),
were currently unwell, had any cardiometabolic condition or were
taking any medications that could affect the study measures (i.e.,
calcium or any drugs that could affect bone and mineral metabolism).
If participants reported they had been on a holiday outside of the UK
to a sunny destination, they were not enrolled into the study for a
minimum of 2 months after the holiday, in order to avoid any influence
of increased UV exposure on vitamin D status and metabolism (Weiss
etal, 2016).

2.3 | Baseline anthropometric measurements

Height and body mass were measured via a stadiometer and scales,
respectively, and body mass index was calculated. Blood pressure (BP)
was measured on the participant’s non-dominant arm using a digital
automatic BP monitor (Avant 2120, Nonin, Plymouth, Minnesota, USA)
whilst the participant was in the supine position after a 5 min rest. The
BP was measured three times and an average of the second and third

readings for systolic and diastolic BP reported.
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2.4 | Quantification of peak oxygen uptake

Peak oxygen uptake was determined using an incremental step-
protocol exercise test on an electromagnetically braked cycle
ergometer (Corival CPET, Lode, Netherlands). After a 5 min warm-up
at 80 W, the intensity was increased by 30 W every 2 min until
volitional exhaustion, immediately followed by a 5 min cool-down at
50 W. Expired air and heart rate (HR) were measured continuously
throughout the test via an online breath-by-breath gas analysis system
(Metalyzer 3B, Cortex, Germany) and a HR monitor (RS400, Polar,
Finland), respectively. The participant’s peak oxygen uptake was
identified as the highest oxygen uptake over a 30 s period during the
test.

2.5 | Experimental protocol

Experimental procedures were completed in the months October-May
to avoid the months that are associated with elevated UV exposure via
the sun. The study was conducted at a latitude of 55.95° N (Edinburgh,
Scotland, UK) with all participants included in the study residing in
Edinburgh and the adjacent constituents.

Participants visited the laboratory on two occasions separated by
>7 days (the average span between visits was 9 days), to complete
the two randomly ordered trials: control (CON) or an aerobic exercise
protocol (AE). Randomization was performed by an online generator
that creates random permutations of treatments for situations where
participants (n = 36) were to receive all the ‘treatments’ (trials: CON
and AE) in a random order (SEED number 22520). Participants were
asked to abstain from consuming caffeine and alcohol and engaging
in strenuous exercise in the 24 h before each trial. Participants were
asked to maintain their normal diet and activity throughout the study.

For each visit, participants arrived at the laboratory between 07.30
and 08.30 h in a fasted state (10 h fast). Participants were seated on a
laboratory bed, and a cannula (22-gauge BD VenflonTM Pro Safety V.
Cannula, BD Biosciences, USA) was inserted into an antecubital vein
of the forearm, with a baseline blood sample taken. Participants then
either performed the 60 min AE protocol or remained seated for 60 min
(CON trial), with HR monitored throughout (RS400, Polar). Blood
samples were collected immediately after, 1 and 3 h postcessation of
the AE/CON rest period, with the participant remaining seated and
rested for the duration.

The AE protocol consisted of 60 min of continuous cycling on an
electronically braked cycle ergometer (Corival CPET, Lode) at 55% of
peak oxygen uptake, to correspond to an intensity below the estimated
lactate threshold in non-elite men (Joyner & Coyle, 2008). Participants

were instructed to maintain a pedalling rate between 70 and 80 r.p.m.

2.6 | Measurement of 25(0OH)D; concentration

Serum 25(OH)D3 concentration was determined by high-pressure

liquid chromatography-tandem mass spectrometry (LC-MS/MS) in

duplicate on a single day in one laboratory. Before injection into the
mass spectrometer (Shimadzu Nexera X2 LC Binary Pump Model),
25(0OH)D3; and deuterated internal standard (QMX Laboratories Ltd,
UK) were extracted from serum samples via protein precipitation
sample preparation. The internal standard (25-hydroxyvtamin Ds-
[d3]) was added to serum samples at a concentration of 400 pg/ul,
then 300 ul of acetonitrile was added to 100 ul of spiked serum
samples and vortexed. Solutions were incubated on ice for 30 min
before centrifugation at 3000 g for 15 min. The supernatant was
removed via drying under a stream of nitrogen, and dried extracts
were reconstituted in the mobile phase (15% 5 mM ammonium acetate
+ 0.1% acetic acid:85% methanol) before injection (5 ul) into an LC-
MS/MS in the multiple reaction mode at a flow rate of 500 ul/min.
The retention time of the injected sample in the column was 2.01 min.
The intra-assay coefficients of variation (CV) for the LC-MS/MS assay
was 3.04%. At the lower concentration, the method demonstrated
%CV of 4.19 at a 25(0OH)D3; concentration of 4.7 pg/ul, with a high
concentration of 986.7 pg/ul demonstrating a %CV of 0.70. Overall, the
assay had an accuracy of 98.94%.

Vitamin D status was categorized according to Institute of
Medicine (IOM) definition (Ross et al., 2011): severe deficiency [serum
25(0OH)D3; < 12 ng/ml], deficiency [serum 25(OH)D3 between 12 and
20 ng/ml], insufficiency [serum 25(OH)D3 between 20 and 30 ng/ml]
or sufficiency [serum 25(OH)D5 > 30 ng/ml].

2.7 | Measurement of VDR expression

Flow cytometry analysis of CD3%, CD4" and CD8" T cells to
determine VDR expression was performed as previously reported
(Bendix et al., 2015). Peripheral blood mononuclear cells were isolated
from whole blood using density gradient media centrifugation (Ficoll-
Paque, Amersham Biosciences, Uppsala, Sweden). Non-permeabilized
and permeabilized peripheral blood mononuclear cells were stained
for VDR to analyse both cell surface and internalized VDR expression
and analysed via a flow cytometer (BD FACSCelestaTM, San Jose, CA,
USA).

Based on the cell count, a suspension of 500,000 cells was added
to each tube and stained with 2 ul of mouse anti-human CD3 anti-
body fluorescein isothiocyanate (FITC, Clone SK7; BD Biosciences),
2 ul mouse anti-human CD4 antibody Brilliant Violet 786 (BV786,
Clone SK3; BD Biosciences), 2 ul mouse anti-human CD8 anti-
body phycoerythrin with the cyanide dye Cy5 (PE-Cy5; Clone RPA-
T8; BD Biosciences), 1 ul rat anti-VDR monoclonal antibody (Clone
9A7; ThermoFisher Scientific, Massachusetts, USA) and 1 ul of the
secondary antibody to conjugate with the VDR antibody [goat anti-rat
lg, polyclonal, phycoerythrin (PE); BD Biosciences] was added to the
cells and incubated at 4°C for 30 min. After incubation, 1 ml of PBS
was added to all tubes, and the cells were washed at 250g for 10 min
at 20°C. The cell pellet was resuspended in 500 ul PBS via vortexing,
and flow cytometry was performed within 1 h, acquiring 50,000 events

within the collect gate applied to the lymphocyte population.
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FIGURE 1 Flow cytometric quantification of CD3* T cells, CD3*CD4* T cells and CD3TCD8™ T cells. (a) CD3™ gating for identification of

T cells. (b) Identification of CD4* and CD8* T cells. (c) Histogram of changes in CD3TVDR™ T cells in response to a bout of aerobic exercise

For the permeabilized method, after the initial incubation with
the antibodies 250 ul of Fixation/Permeabilisation Solution (BD
Biosciences) was added and incubated for 20 min at 4°C. One millilitre
of Perm/Wash Buffer (10x; BD Biosciences) was added, and the cells
were washed at 250g for 10 min at 20°C.

For the flow cytometric gating strategy, the lymphocyte population
was gated (acquiring 50,000 events) using forward scatter and
side scatter. CD3* events were gated, followed by gating of CD4+
and CD8" populations, after which these cells were assessed for
expression of VDR. Representative flow cytometry plots are provided
in Figure 1.

The VDR expression is reported as the fold change, calculated

from the VDR geometric mean (geomean). The absolute number

of T cells was calculated and quantified using the lymphocyte

concentration obtained via haematological analysis (Sysmex
Automated Haematology Analyser, XS 1000i, Sysmex, Japan). All
haematological data were adjusted to account for any changes in

plasma volume from baseline (Dill & Costill, 1974).

2.8 | Statistical analysis

All statistical tests were performed using SPSS v.23.0 statistical
software (IBM Analytics, New York, USA). The physical characteristics,
performance measures and baseline vitamin D status were compared

between age groups by one-way ANOVA. To determine the effect of
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exercise on the number of cells and VDR expression, a three-factorial
repeated-measures ANOVA was used, with age as the between-
subjects factor and time (pre, 0, 1 and 3 h) and exercise condition (CON
and AE) as within-subject factors. The normality of the residuals in the
model was tested using the Shapiro-Wilk test and inspected visually,
with all residuals in the model normally distributed. The repeated-
measures ANOVA was time (pre, 0, 1 and 3 h), with the model applied
to each cell type: CD3*, CD4*+ and CD8* T cells. Where significant
differences were detected, Bonferroni post hoc tests were performed
to identify the location of the effect.

The Pearson correlation coefficient was used to analyse the
correlations between the change in the number of cells and the change
in VDR expression. Significance was accepted at P < 0.05. Values shown

are the mean + SD unless otherwise stated.

3 | RESULTS

3.1 | Participant characteristics

Thirty-five participants completed all trials. The participant
characteristics and baseline 25(0OH)D3; concentration according
to age group are presented in Table 1. There were no significant
differences between age groups for baseline characteristics except
for diastolic BP [F(2,32) = 7.447, P = 0.002], whereby subjects aged
31-45 years had a lower diastolic BP compared with subjects aged

60-75 years (P =0.001).

3.2 | Circulating vitamin D and T-cell VDR
expression

As shown in Figure 2a, the serum 25(0OH)D3; concentration (in
nanograms per millilitre or nanomoles per litre) did not differ between

age groups [F(2,34) = 0.258, P = 0.774]; collectively, participants

TABLE 1 Participants physical and performance characteristics (n = 35)
18-30years

Characteristic All (n=35) (n=12)
Age (years) 44 (24-75) 27 (24-30)
Height (m) 179 + 008 181 + 0.06
Body mass (kg) 825 + 114 83.8 + 13.0
Body mass index (kg/m?) 257 + 3.1 25.6 + 3.9
Resting heart rate (beats/min) 59+ 9 58 + 11
Systolic blood pressure (mmHg) 122 + 11 124 + 10
Diastolic blood pressure (mmHg) 73+ 8 73+ 7
Maximal heart rate (beats/min) 175 + 19 189 + 10
Relative peak oxygen uptake (ml/kg=1/min) 38.0 + 8.2 421+ 79
Absolute peak power (W) 261 + 60 282 + 49

were all defined as vitamin D deficient (15.7 + 6.4 ng/ml). Age
was found to influence baseline VDR expression in circulating CD3*
[F(2,34) = 4.763, P = 0.015], CD4" [F(2,34) = 4.800, P = 0.014] and
CD8* [F(2,34) = 4.852, P = 0.014] T cells, as shown in Figure 2b.
Older adults displayed lower levels of the receptor compared with
their young counterparts (CD3*, P = 0.013; CD4+, P = 0.014; CD8*,
P = 0.012). There was no association between baseline 25(0OH)D3
concentration and CD3* T-cell VDR expression (n = 35, r = 0.046,
P=0.793).

3.3 | Physiological responses to the trials

There was a main effect of the trial on the mean HR [CON, 58 +
7 beats/min; AE, 136 + 14 beats/min; F(2,60) = 463.090, P < 0.001],
with a trial-by-age group interaction [F(4,60) = 4.169, P = 0.005],
whereby mean HR was higher in group aged 18-30 compared with 60-
75 years (P =0.017) for AE. Mean HR remained unchanged during the
1 hrest period in the CON trial.

3.4 | T-Cell VDR expression in response to aerobic
exercise

The T-cell VDR expression was expressed as the fold change, in order
to allow for comparison between trials and age groups relative to the
change, rather than absolute values, owing to differences in baseline
VDR expression between age groups (Figure 2b).

As shown in Figure 3, there was a significant main effect of time
on VDR expression in CD3*% [F(3,90) = 12.634, P < 0.001], CD4*
[F(3,90) = 8.230, P < 0.001] and CD8* T cells [F(3,90) = 7.456,
P < 0.001]. There was an interaction between time and the trial (CON
or AE) for CD3* [F(3,90) = 10.406, P < 0.001], CD4™* [F(3,90) = 5.475,
P = 0.001] and CD8* T cells [F(3,90) = 4.456, P = 0.006]. Post hoc
analysis showed that CD3*, CD4* and CD8" T-cell VDR expression

31-45years 60-75 years
(n=11) (n=12) d.f. F P-value
38(31-45)" 67 (60-75)"t 2,32 284.735 <0.001
1.77 + 0.09 1.79 + 0.09 2,32 0.753 0.479
80.9 + 11.0 82.7 + 10.8 2,32 0.180 0.836
258 + 2.5 259 + 2.9 2,32 0.030 0.970
58 +5 61+ 9 2,32 0.493 0.615
119 + 12 122 + 11 2,32 0.739 0.486
67 +5 78 + 87 2,32 7.447 0.002
178 + 8* 160 + 20*f 2,33 13.041 <0.001
414 + 72" 30.9 + 3.8+ 2,34 10.894 <0.001
293 + 617 212 + 34"+ 2,34 9.335 0.001

All data are presented as the mean + SD, except for age, which is presented as the mean (range). “Significant difference from 18-30 years (P < 0.05).
Significant difference from 31-45 years (P < 0.05).
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TSignificant difference from Pre (P < 0.05)

was significantly greater immediately after exercise (P < 0.001,
P = 0.001 and P = 0.005, respectively); however, CD3* and CD8*
expression declined at 1 h postexercise, whereas expression in CD4+
T cells remained elevated (P = 0.015). There was no significant inter-
action with age during either of the trials (P > 0.05).

3.5 | Relationship between change in number of
T cells and VDR expression

In order to determine whether the change in VDR expression observed
was independent of the exercise-induced transient rise and decline
in the number of cells in the circulation (Gleeson & Bishop, 2005), a
correlation analysis was conducted between the change in the number
of cells (Figure 4) and the change in VDR expression (geomean) from
each time point to the next (Table 2). There was no relationship
between the number of cells in the circulation and the expression of
the receptor in CD3* and CD4™* T cells during the AE trial. There was
a correlation for CD8* T cells from 1 to 3 h postexercise (P = 0.043),
whereby there was an increase in the number of cells but a decrease in
VDR expression.

4 | DISCUSSION

This is the first study to show that older adults display lower levels of
VDR in T-cells, and a single bout of aerobic exercise was successful
in stimulating increases in T-cell VDR expression. Despite there
being lower levels of VDR expression in T-cells of older compared
with younger adults, there was no age-induced difference in the
responsiveness of VDR expression to the exercise bout.

The data show that VDR expression increases in line with T-cell
elevations in circulation, which might be attributable to either selective
ingress of T-cells with high levels of VDR expression or upregulation
of VDR protein expression in T cells. However, after a simple analysis,
the data suggest that there is no link between the change in the
number of cells and expression of the receptor. Therefore, it could be
hypothesized that the cells themselves upregulate expression of VDR.
This does not rule out the potential that the observed increases in
VDR signal are a result of selective mobilization of T-cells with high
expression of the receptor in response to acute cardiovascular system
stress (Bosch et al., 2003).

In the present study, the data show that baseline serum 25(0H)D3
concentration is not related to VDR expression in circulating T-cells.
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TABLE 2 Correlations between the change (A) in the number of cells and the change in VDR expression in response to a single bout of aerobic

exercise (n = 35)

Cell type Time points ANumber of cells
CD3* Pre-Oh 545 + 629
Oh-1h —631 + 684
1h-3h 113 + 236
CD4+ Pre-Oh 158 + 308
Oh-1h -192 + 318
1h-3h 53 + 128
CD8* Pre-Oh 267 + 322
Oh-1h =302EE393
1h-3h 49 + 107

All data are presented as the mean + SD.

Our results are in agreement with previous findings of no relationship
between serum 25(0OH)D3 concentrations and mucosal VDR levels
in the intestine (Kinyamu et al., 1997) or VDR expression in skeletal
muscle tissue of young or elderly women (Bischoff-Ferrari et al., 2004).
The lack of association might be influenced by the relatively low serum
25(0OH)D3 concentrations observed in the majority of the participants:
mean of 15.7 + 6.4 ng/ml, classified as a vitamin D-deficient status
(Holick & Chen, 2008). Owing to the northern latitude of the UK, if
participants do not consume regular vitamin D supplements they are
likely to be defined as vitamin D insufficient. This was also included in
the eligibility criteria for the present study.

The data from the present investigation show that baseline VDR
expression in T-cells was significantly lower in older men (60-
75 years) compared with younger men (18-30 years). This finding is
in agreement with previous reports from Bischoff-Ferrari et al. (2004),
who observed older age to be associated with decreased VDR protein
expression. However, this contrasts with Coleman et al. (2016), who
reported no association between the expression and function of VDR
in immune cells with age. The disagreement might be attributable to
the different cell types (skeletal muscle cells compared with circulating
T cells) and/or the population investigated. Although human males
were included in the studies, the study by Coleman et al. (2016)
included adults >50 years of age, whereas in the present study a young
age group was compared with an older adult population. It has pre-
viously been reported that older adults display greater numbers of
senescent T-cells than younger counterparts (Simpson et al., 2007),
which is associated with altered receptor expression (Mo et al., 2003).
Therefore, the number of senescent cells present might influence the
downregulation in VDR expression observed with age.

Previous studies have demonstrated that a single bout of exercise
can acutely increase the serum 25(0OH)D3 concentration in humans
(Sun et al., 2017) and intramuscular VDR expression in male rats
(Makanae et al., 2015). In the study by Makanae et al. (2015),
resistance-based exercise appeared to increase VDR expression,
whereas the present study is the first to demonstrate that acute
aerobic exercise can upregulate VDR expression in peripheral blood

AVDR expression

(Geomean) Correlation P-value
300 + 332 —-0.145 0.406

—155 + 289 -0.029 0.871

—113 + 240 0.331 0.052
229 + 284 0.558 0.558
—96 + 285 -0.061 0.728

—104 + 230 0.114 0.515
229 + 358 -0.212 0.221
—74 + 311 —0.025 0.884

—135 + 273 0.344 0.043

T-cells in a human male population. Interestingly, Sun et al. (2017)
observed an exercise-induced increase in systemic vitamin D levels,
which could influence the availability of downstream metabolites,
hence expression of VDR in a demand-and-supply response. However,
this requires mechanistic investigations to determine the full impact of
exercise on vitamin D metabolism.

In the present study, we observed an initial rise in lymphocyte
count in response to an acute bout of aerobic exercise, followed
by an immediate decline postexercise in the recovery phase, which
is a well-established and reported response (Nieman et al., 1991;
Simpson et al., 2007). The increase in peripheral blood lymphocytes
with acute exercise is attributed to increases in cardiac output and
concomitant haemodynamic shear forces that demarginate the peri-
pheral lymphocyte cell pools (Shephard, 2003) and/or cell mobilization
and redistribution from tissues into the circulation via §,-adrenergic
mechanisms (Murray et al., 1992). Interestingly, in the present study we
found no significant relationship between the change in the number of
cells in response to exercise and the increase in VDR expression. This
could suggest that the upregulation in VDR expression might not be
dependent on endothelial detachment and subsequent recirculation of
cells that express high levels of VDR, but anincrease in the VDR protein
within the cells. However, this does not rule out the possibility that the
observed increases in VDR signal via flow cytometry are a result of
selective mobilization of T-cells with high expression of VDR.

The VDR has a relatively short half-life of 1.7 h in untreated T-cells
and 2.9 h in T-cells treated with 25(0OH)D5 (Kongsbak et al., 2014).
The VDR is degraded in the cytosol and nucleus, with 1,25(0OH),D5
upregulating the VDR by increasing VDR mRNA expression and/or
stabilizing the VDR at the protein level by protecting it from
proteasomal degradation (Kongsbak et al., 2014). The acute increase
in VDR protein expression observed in the present study in response
to aerobic exercise might be short term owing to the short half-life of
the VDR. If the exercise bout increases intracellular VDR expression
with animmediate decline during the hour after the exercise, this might
suggest that the VDR begins to degrade upon cessation of the physical
demand. However, exploration of this potential mechanism is required.
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Finally, our study has some important limitations. The flow cyto-
metric analysis assay could have incorporated T-cell phenotyping (i.e.,
markers of memory, naive and senescent cells), in order to provide
some insight into whether the increase in VDR was attributable to
exercise or specific ingress of VDR-expressing cells. This would have
been valuable, given the aim of identifying the role of age in this
response to exercise. In addition, there was no control over diet during
participant involvement in the study, although the eligibility criteria did
ensure that participants did not consume vitamin D supplements and
thus were likely to be insufficient at baseline. Moreover, participants
were asked to maintain their habitual activity and diet. Further to
this, only men were included in the study owing to the impact that
sex-specific differences have on the hormone profile and thus might
have on vitamin D metabolism. This presents an avenue for future

investigations.

4.1 | Conclusion

In summary, we have demonstrated, for the first time, that older adults
display lower levels of VDR expression in T cells and that a single
bout of aerobic exercise acutely increases T-cell VDR expression in
vitamin D-deficient men independently of age. This was observed
immediately upon cessation of the exercise bout, with a subsequent
reduction in VDR expression, indicating that the response is transient.
These novel results suggest that exercise could be an efficient way
to increase systemic cellular VDR expression in a human population,
albeit only acutely. A decline in VDR expression in T cells with
advancing age presents an issue with regard to this cell development
and thus autoimmunity. Therefore, enhancing the VDR expression in
T cells might have a therapeutic effect, especially for older adults who
appear to be at risk of VDR deficiency.
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