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ABSTRACT
◥

Clinical studies backed by research in animal models
suggest that vitamin D may protect against the develop-
ment of breast cancer, implicating vitamin D as a prom-
ising candidate for breast cancer prevention. However,
despite clear preclinical evidence showing protective roles
for vitamin D, broadly targeted clinical trials of vitamin D
supplementation have yielded conflicting findings, high-
lighting the complexity of translating preclinical data to
efficacy in humans. While vitamin D supplementation
targeted to high-risk populations is a strategy anticipated
to increase prevention efficacy, a complimentary approach
is to target transient, developmental windows of elevated
breast cancer risk. Postpartum mammary gland involu-
tion represents a developmental window of increased

breast cancer promotion that may be poised for vitamin
D supplementation. Targeting the window of involution
with short-term vitamin D intervention may offer a
simple, cost-effective approach for the prevention of
breast cancers that develop postpartum. In this review,
we highlight epidemiologic and preclinical studies linking
vitamin D deficiency with breast cancer development.
We discuss the underlying mechanisms through which
vitamin D deficiency contributes to cancer development,
with an emphasis on the anti-inflammatory activity of
vitamin D. We also discuss current evidence for vitamin D
as an immunotherapeutic agent and the potential for
vitamin D as a preventative strategy for young woman’s
breast cancer.

Introduction
Breast cancer is the most commonly diagnosed cancer in

young women worldwide and this diagnosis carries a high
morbidity and mortality burden (1). Young women are more
likely to present with poor prognostic disease and have worse
clinical outcomes compared with older women (2). Since the
early 1990s, advances in treatment strategies have led to a
decline in breast cancer mortality for young women (3, 4).
However, breast cancer incidence in young women continues
to rise globally (3), with a steady 1%–2% increase per year in the
United States, leading to an overall 35% increase over the last
four decades (1). Similar trends in incidence are observed
worldwide (3). With approximately 26,000 early-onset breast
cancer cases, defined here as ≤45 years of age, diagnosed each

year in the United States alone (5), there are ongoing efforts to
identify risk factors for early-onset disease, identify high risk
populations, and develop new preventative therapies (6).
The anticancer nature of vitamin D and the potential for

vitamin D as a breast cancer preventative agent has attracted
considerable interest. Vitamin D is the biologically inactive
precursor to the steroid hormone calcitriol (1,25-dihydroxy-
vitamin D; 1,25(OH)2D), a hormone that has been shown to
exert anticancer effects in various tissues, including the
breast. In women, there is substantial evidence supporting
a protective role for vitamin D against breast cancer develop-
ment (7–9), with causal links identified in rodents (10–17).
While these and other studies provide a compelling argument
for further investigation of vitamin D supplementation as a
simple, nontoxic, and cost-effective approach to protect
against breast cancer, whether vitamin D might be particu-
larly efficacious against young women’s breast cancer has yet
to be explored.
Here, we review how downregulation of vitamin D signaling

can contribute to breast cancer development and progression.
We discuss the underlying biological mechanisms through
which vitaminDdeficiency contributes to cancer development,
with an emphasis on the anti-inflammatory activity of vitamin
D, and highlight the current clinical evidence for the use of
vitamin D as an immunotherapeutic agent. We also discuss
physiology unique to younger women, pregnancy, lactation,
and weaning-induced breast involution, which exacerbate
vitaminD deficiency, as well as present opportunities for future
research to develop preventative strategies for young women’s
breast cancer.
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Overview of Vitamin D
The metabolism of vitamin D is a tightly regulated process

(summarized in Fig. 1), which is consistent with its known
role as a key transcription factor that regulates varied and
complex developmental and physiologic responses (18). The
actions of vitamin D are mediated through the binding of its
active form 1,25(OH)2D to the vitamin D receptor (VDR), a
transcription factor belonging to the steroid hormone recep-
tor superfamily. Binding of 1,25(OH)2D to VDR stimulates
heterodimerization with the retinoid X receptor (RXR). The
VDR-RXR heterodimer subsequently binds vitamin D-
responsive DNA elements and regulates expression of VDR
target genes (19).
Vitamin D is primarily obtained through exposure to

sunlight, where ultraviolet-B in the skin converts 7-dehy-
drocholesterol to vitamin D. Additional sources of vitamin D
can be obtained through dietary intake; however, few foods
naturally contain significant amounts of this hormone (20).
Vitamin D is metabolized to its active 1,25(OH)2D hormonal
form through two hydroxylation steps. The first hydroxyl-
ation step occurs in the liver, where CYP2R1 catalyzes the
conversion of vitamin D to 25-hydroxyvitamin D (25(OH)
D). This form of vitamin D is the form of the hormone found
circulating in blood and is used clinically to monitor vitamin
D status (21). The second hydroxylation step occurs in the
kidneys, where 25(OH)D is hydroxylated by CYP27B1 to
yield the active hormone 1,25(OH)2D. In addition to homeo-
static control of active hormone synthesis, inactivation of
vitamin D metabolites is tightly regulated by the catalytic
enzyme CYP24A1. This tight regulation of vitamin D metab-
olism reflects the importance of maintaining vitamin D
concentrations within an appropriate range for optimal
function. While there is some controversy surrounding
optimal 25(OH)D concentrations (22), current clinical
guidelines recommended that serum concentrations should
be maintained within the range of 30 nmol/L–50 nmol/L for
optimal health (23). Patients with serum concentrations
of 25(OH)D below 30 nmol/L are defined as vitamin D
deficient (22, 23).
Much of what is known about the physiology of vitamin D

is elucidated from studies in the bone, due to a primary
function of vitamin D in calcium and phosphate homeosta-
sis (20, 24). Importantly, this primary bone function of
vitamin D may yield insight into breast cancer risk in young
women; a topic discussed later in this review. For bone
health, vitamin D maintains optimal circulating concentra-
tions of calcium and phosphate by acting directly on intes-
tinal cells to modulate absorption (25). Vitamin D also
facilitates transcellular calcium and phosphate absorption
by stimulating expression of calcium-binding proteins,
including calbindin-D9k (26, 27), calcium ion channels
including TRPV5/6 (26, 27), and the sodium-dependent
phosphate cotransporter NaPi-IIb (28, 29). Vitamin D
also promotes calcium and phosphate absorption through
passive paracellular transport mechanisms, by modulating

expressionof cell-junctionproteins, including claudins (26, 30),
cadherins (26), and aquaporins (26). The precise coordination
of multiple tiers of vitamin-D regulation assures mineral
homeostasis and highlights the importance of vitamin D in
bone health. However, there is also strong evidence for vitamin
D signaling beyond bone homeostasis.
The vitamin D receptor, VDR, is expressed in most tissues

throughout the body, including immune, nervous, muscle,
reproductive, and glandular tissue (31). This widespread
expression profile broadly implicates vitamin D signaling in
the maintenance of cell and tissue health. Indeed, impaired
vitamin D signaling is implicated in the development and
progression of various diseases, including inflammation
and autoimmune disorders (32), chronic kidney disease (33),
cardiovascular disease (34), hypertension (35), obesity (36),
diabetes mellitus (37), as well as various types of cancer (38).
Together, these studies reflect the numerous biologic func-
tions of vitamin D, including mineral homeostasis, immune
regulation, and epithelial cell proliferation, differentiation,
and apoptosis. Importantly, many of these vitamin D func-
tions interface with the hallmarks of cancer (39).

Vitamin D Signaling in Breast Cancer
In the field of breast cancer, there is considerable evidence

supporting a protective role for vitamin D. In women,
increased circulating concentrations of vitamin D correlate
with a decreased risk of breast cancer development (7–9);
observations that have been recapitulated in rodent mod-
els (10–17). Moreover, expression of the VDR, through which
vitamin D exerts its effects, is observed in approximately
80%–90% of invasive human breast tumors, and is implicated
as a biomarker for good patient prognosis. Specifically, VDR
expression in breast cancer samples positively associates with
favorable tumor characteristics, such as smaller size, lower
grade, lower proliferation, and steroid hormone receptor
positivity (40–42). Furthermore, increased expression of
VDR in breast tumors correlates with reduced disease recur-
rence, metastatic incidence, and mortality (41, 43). Preclinical
studies using VDR-knockout mice corroborate these findings,
where loss of VDR expression results in shorter time to tumor
development, and increased tumor incidence and bur-
den (44, 45). Interestingly, loss of only one copy of VDR is
sufficient to increase tumorigenicity in mice, suggesting that
partial reduction in VDR signaling is sufficient to promote
tumor growth (46).
Vitamin D has been suggested to protect against breast

cancer development through multiple potentially related
mechanisms. Numerous studies provide evidence that vitamin
Dhas potent antiproliferative effects in the breast. Treatment of
breast cancer cell lines with physiologically relevant doses of
vitamin D reduces cell proliferation in vitro (16, 17, 47–51) and
in vivo (13, 16, 52, 53); effects observed in both hormone
receptor–dependent and -independent breast cancer cell lines.
Vitamin D inhibits cell proliferation by inducing cell-cycle
arrest in the G1 phase, downregulating expression of cyclins
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and cyclin-dependent kinases (CDK), upregulating expression
of CDK inhibitors, and stimulating hypophosphorylation of
the retinoblastoma protein (54–56).
In parallel with its antiproliferative activity, vitamin D also

has proapoptotic effects. Treatment of breast cancer cell lines
with physiologically relevant doses of vitamin D induces cell
apoptosis in vitro (49–51) and in vivo (53). Moreover, vitamin
D promotes cell differentiation and reduces the stem cell
potential of breast cancer cells in vitro (57–59)—actions that
are associated with downstream proapoptotic effects. These
findings are supported by studies using carcinogen-induced
and transgenic mouse models of breast cancer, which report

that vitamin D inhibits the growth and progression of mam-
mary tumors (12, 15, 48), and promotes tumor cell apoptosis to
stimulate tumor regression (17).
The enzymes involved in the anabolism and catabolism of

vitamin D, CYP27B1 and CYP24A1 respectively, have also
been implicated in breast cancer development and progression
(Fig. 1). CYP27B1 and CYP24A1 are expressed in all major cell
types within the mammary gland, suggesting that 1,25(OH)2D
levels are regulated locally within the mammary microenvi-
ronment. Thus, dysregulation in local vitamin D production
and degradation may contribute to breast cancer development.
In the context of cancer, decreased expression of the anabolic
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Figure 1.

Overview of the metabolism and function of vitamin D. Vitamin D is primarily obtained through exposure to sunlight, with additional sources of vitamin D obtained
throughdietary intake. VitaminD ismetabolized in the liver byCYP2R1 (also knownas 25-hydroxylase) into 25-hydroxyvitaminD (25(OH)D), the formof the hormone
found circulating in the blood. Hydroxylation of 25(OH)D is catalyzed primarily in the kidneys byCYP27B1 (also known as 1a-hydroxylase) to yield the active hormone
1,25(OH)2D. CYP24A1 catalyzes the degradation of 1,25(OH)2D into inactivemetabolites. Metabolism of vitamin D is self-regulated; 1,25(OH)2D inhibits expression of
CYP27B1 to prevent new synthesis of 1,25(OH)2D, while simultaneously inducing expression of CYP24A1 to promote 1,25(OH)2D degradation. Extrarenal sites of
vitamin D metabolism include the breast, where CYP24A1 and CYP27B1 are expressed by epithelial, stromal, and immune cells, which regulate 1,25(OH)2D
concentrations locally. The numerous biological functions of vitamin D, including mineral homeostasis, immune modulation, and mammary gland development and
remodeling, are illustrated. Dysregulation in these signaling pathways can drive disease progression and metastasis.

Vitamin D for Breast Cancer Prevention

AACRJournals.org Cancer Prev Res; 14(9) September 2021 OF3

Association for Cancer Research. 
on August 20, 2021. © 2021 Americancancerpreventionresearch.aacrjournals.org Downloaded from 

Published OnlineFirst July 9, 2021; DOI: 10.1158/1940-6207.CAPR-21-0114 

http://cancerpreventionresearch.aacrjournals.org/


enzymeCYP27B1, and thus reduced 1,25(OH)2D synthesis, are
observed in breast cancer tissue compared with adjacent
normal breast tissue (60). Conversely, increased expression of
the catabolic enzyme CYP24A1, coupled with increased inac-
tivation of 1,25(OH)2D, is observed in breast cancer samples,
compared with normal breast tissue (61, 62). Corroborating
data have been obtained from rodent models. In the PyMT-
MMTV mouse model of breast cancer, knockout of CYP27B1
in mammary epithelial cells inhibits local synthesis of 1,25
(OH)2D and results in accelerated mammary cancer develop-
ment and increased tumor burden (46). Conversely, inhibiting
degradation of 1,25(OH)2D through CYP24A1 knockout leads
to sustained levels of 1,25(OH)2D and suppression of tumor-
igenicity in xenograft models of breast cancer (63, 64)—obser-
vations consistent with an oncogenic role for CYP24A1 in
breast cancer (65). Combined, these human and preclinical
data show that reduced vitamin D signaling, through either
vitaminDdeficiency, reducedVDR expression, or the impaired
anabolism and catabolism of 1,25(OH)2D, is likely to promote
breast cancer development and progression.

Vitamin D in Breast Cancer
Progression and Metastasis
In addition to the potential of vitamin D as a chemopre-

ventative agent, preclinical data suggest a role for vitamin D in
the prevention of disease progression and metastasis. Vitamin
D modulates various aspects of the metastatic process, includ-
ing invasion, migration, and establishment at distant sites.
In vitro, vitamin D treatment reduces the invasiveness and
migration of breast cancer cells (13, 57, 66–68), through
increasing protein expression of E-cadherin (57, 67, 69) and
focal adhesions (50, 69), while simultaneously downregulating
N-cadherin (67, 69), P-cadherin (69), and matrix metallopro-
teinase (50, 68) expression. Corroborating data have been
obtained from rodent models. In xenograft models of breast
cancer, vitamin D deficiency (10, 52) and loss of VDR expres-
sion (13, 40) increase breast cancer metastasis, through pro-
motion of angiogenesis and vascularization (66). In the
MMTV-PyMT mouse model, dietary vitamin D deficiency
increases metastatic burden in the lung (10, 70), an effect likely
mediated through increased CXCL12/CXCR4 signaling within
the metastatic niche (70). Together, these observations suggest
that vitamin D deficiency may establish a proangiogenic envi-
ronment supportive of tumor cell dissemination, metastasis,
and establishment at the secondary site; and implicate vitamin
D as a potential therapeutic for the prevention and possible
management of advanced, metastatic disease.

Anti-inflammatory Actions of
Vitamin D within the Tumor
Microenvironment
In addition to direct antiproliferative, proapoptotic effects on

tumor cells, another important mechanism through which

vitamin D may exert its anticancer properties is by influencing
the immune microenvironment. It is well established that
vitamin D plays important roles in regulating inflammation
and immune response in various tissues. The VDR is expressed
by most cells of the immune system, including macro-
phages (71, 72), T cells (71, 73), B cells (73), dendritic cells (74),
neutrophils (75), and natural killer cells (76). Furthermore,
immune cells express CYP27B1 and CYP24A1, thus can
regulate local metabolism of 1,25(OH)2D (72, 74). However,
while there is extensive research into the anti-inflammatory
effects of vitamin D in various disease models, including
inflammatory bowel disease (77), diet-induced obesity (36),
collagen-induced arthritis (78), and chemical-induced liver
toxicity (79); there is currently little information on the effects
of vitamin D on total or specific subpopulations of immune
cells within the normal breast microenvironment, or in the
context of breast cancer.
In cell culture, vitaminD stimulation influencesmacrophage

phenotype by shifting the polarization from the proinflamma-
tory M1 phenotype to the anti-inflammatory M2 pheno-
type (80). This phenotype shift is associated with reductions
in expression of several proinflammatory cytokines including
IL6 (80, 81), IL8 (82), IL12 (83), and TNFa (80–82), coupled
with increased expression of anti-inflammatory cytokines
IL10 (80) and IL1b (80, 84). Similarly, in cultured neutrophils,
vitamin D inhibits expression of TNFa, while enhancing
the production of IL8 and IL1b (84). Vitamin D also influences
T-cell polarization by shifting T-cell responses from a proin-
flammatory Th1 to an anti-inflammatory Th2 phenotype.
Specifically, vitamin D inhibits the expression of proinflam-
matory cytokines IL12 and IFNg (85–87) while promoting Th2
cell development and the production of anti-inflammatory
cytokines IL4, IL5, and IL13 (83, 85). In parallel, vitamin D
suppresses the differentiation of na€�ve T cells into proinflam-
matory Th17 cells (88), thus inhibiting IL17 production
(87, 88), while simultaneously promoting differentiation into
protumor FOXP3þ regulatory T cells (Treg; refs. 86, 87).
Vitamin D also influences T-cell response by impairing the
migration and maturation of dendritic cells, an action that
results in reduced antigen presentation capacity and reduced
activation of T cells (89, 90).
Together, these in vitro study observations suggest that

vitamin D exerts anti-inflammatory effects by reducing proin-
flammatory Th1, Th17, and M1 polarization, while promoting
anti-inflammatory Th2 and M2 polarization. Within the con-
text of normal tissue, the ability of vitaminD to suppress a Th1-
skewed inflammatory environment is consistent with cancer
prevention, where chronic inflammation associates with
increased cancer risk (91). However, in the context of existing
cancer, Th1 suppression and Th2 induction are associated with
loss of tumor cell immune surveillance andpoor prognosis (92).
While this yin yang nature of the immune system in cancer is
widely recognized (93), it adds significant complexity to under-
standing how best to incorporate an immunomodulatory agent
such as vitamin D into the breast cancer prevention setting.
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One limitation to our understanding of vitamin D as an
immune-modulatory agent is that current research has been
conducted primarily in vitro, using immune cell lines and
isolated human immune cells in the absence of tissue context
cues, including cancer. These reductionist models are
unable to capture the in vivo interactions that occur between
cancer cells and the immune microenvironment, which is an
important requirement for cancer prevention research.
Importantly, the use of in vivo models has shed consider-
able light into how anti-inflammatory agents, including
vitamin D, might remodel a protumor immune milieu
(i.e., Th2-skewed) into one of antitumor (Th1-skewed),
possibly reducing concerns that vitamin D supplementation
might promote existing cancers. A recent study using an
immunocompetent mouse model of breast cancer demon-
strated that vitamin D supplementation promoted infiltra-
tion of activated T cells (as measured by CD44 expression)
into the mammary tumor, and reduced the infiltration of
F4/80þCD11bþ macrophages in the peripheral tissue; an
immune profile consistent with active tumor cell immune
surveillance (94). Thus, in the context of a mouse model
with an intact immune system, the anti-inflammatory
activity of vitamin D appears linked to the suppression of
myeloid cells, which releases inhibition on cytotoxic T cells.
Of note, similar results are seen with nonsteroidal anti-
inflammatory agents (NSAID) in immunocompetent mice,
where ibuprofen promoted maturation of tumor-associated
myeloid cells, resulting in macrophage maturation, infiltra-
tion of cytotoxic T cells, and tumor suppression (95).
Additional context-dependent complexity has been

observed between vitamin D and its antitumor activity in the
context of obesity. In contrast to healthy weight mice, vitamin
D treatment in obese mice resulted in increased tumor volume
and reduced immune cell infiltrate. Similar data have been
obtained from observational clinical studies. A recent random-
ized clinical trial of 25,254 participants reported that while
vitamin D supplementation associates with a significant reduc-
tion in advanced cancer incidence, when stratified by body
mass index (BMI), the protective effect of vitamin D only
persists for patients with a normal BMI (96). These observa-
tions introduce additional complexity into the use of vitaminD
as a preventative agent, as patients with high BMI also exhibit
increased rates of vitamin D deficiency (97).
In obesity, the tumor microenvironment is characterized by

an increased abundance of adipose tissue. Critically, adipocytes
express VDR, including those within the breast (98, 99). Adi-
pocytes play important roles in regulating inflammation and
immune response following vitaminD stimulation through the
modulation of inflammatory cytokine expression (100). Con-
sequently, the effects of vitamin D on the immune response in
the breast may be influenced by the abundance and/or met-
abolic state of adipocytes. Together, these studies demonstrate
how immune-modulatory agents, including vitamin D, can be
either pro- or antitumor depending on the local immune
milieu, and highlight the need for well characterized, immu-

nocompetentmodels to advance understanding of vitaminD as
a breast cancer preventive agent.

Vitamin D as a Therapeutic for the
Prevention of Breast Cancer
Despite strong preclinical evidence suggesting vitamin D

supplementation could offer protection against the develop-
ment of breast cancer, phase III randomized clinical trials with
primary outcomes assessing breast cancer biomarker end-
points or incidence have yet to be implemented. However,
some large-scale vitamin D trials with other disease endpoints
have had secondary analyses for breast cancer outcomes, and
report that vitamin D supplementation associates with an
approximate 18% reduction in breast cancer risk [HRs ¼
0.82 (0.70–0.97); 0.82 (0.68–0.99); refs. 101, 102]. However,
other large-scale studies report no association (103–107).
The most recent promising, yet indirect, evidence comes

from results of the VITaminD andOmegA-3 TriaL (VITAL), a
randomized clinical trial of 25,871 participants that measured
incidence of any cancer and cardiovascular disease as the
primary outcomes (108). Participants received either 2,000 IU
of vitaminD or placebo daily, for an average length of 5.3 years.
While results from VITAL reported that vitamin D supple-
mentation did not reduce total cancer incidence or mortality,
when data from the first year was omitted to account for tumor
latency, vitamin D supplementation was associated with a 21%
reduction in cancer-associated mortality [HR ¼ 0.79 (0.63–
0.99); ref. 109]. Unfortunately for breast cancer cases, similar
subanalyses omitting first year of data were not performed. In a
secondary analysis of VITAL, vitamin D supplementation was
shown to associate with a significant reduction in metastatic
cancer incidence [HR ¼ 0.83 (0.69–0.99)]; however, site-
specific case numbers for breast cancer were too small to be
analyzed (96).
Numerous meta-analyses have been conducted to address

the potential for vitamin D supplementation in breast cancer
prevention (110–112). Most recently, a meta-analysis of eight
randomized control trials of 72,275 participants compared
vitamin D supplementation versus placebo for the prevention
of breast cancer (111). Of the eight trials included in the meta-
analysis, study methods varied significantly, with dosages of
vitamin D supplementation ranging from 400 to 3704 IU/day
and mean follow-up periods ranging from 1 to 11.9 years.
Findings from the meta-analysis show that current evidence
does not support a protective role for vitamin D in the
prevention of breast cancer.
As described above, many vitamin D intervention studies

have been limited to small samples sizes with short follow-up
times and varied significantly in the dose, frequency, and
duration of vitamin D supplementation. These studies were
also limited by a lack of data surrounding the patient’s vitamin
D status at baseline, preventing analysis of outcomes in light of
initial and change in vitamin D status. As it is anticipated that
the protective effect of vitamin D supplementation may be
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influenced by whether the patient is vitamin D–deficient or
-sufficient at the time of study commencement, it is important
for future studies to stratify participants by baseline vitamin D
status. Furthermore, given the heterogeneity of breast cancer,
different breast cancer subtypes may be differentially respon-
sive to vitamin D treatment, which could further cloud any
potential protective effects of vitamin D. Consistent with this
possibility, a recent meta-analysis suggests that the protective
effect of vitamin D may be more pronounced for estrogen
receptor (ER)-negative breast tumors, compared with ERþ

tumors (113). Currently, data from large-scale randomized
trials assessing vitamin D supplementation on breast cancer
incidence are lacking, and there remains insufficient evidence
to make recommendations for incorporating vitamin D sup-
plementation as a general strategy to prevent breast cancer.

Targeting Vitamin D to High-risk
Populations
While trials of vitamin D supplementation for breast cancer

prevention have been underwhelming, there is some evidence
that vitamin D supplementation targeted to higher risk popu-
lations may be a more effective approach for breast cancer
prevention. Observational studies suggest that the association
between vitamin D deficiency and increased breast cancer risk
is stronger in younger women, compared with older wom-
en (7, 114). A meta-analysis of 68 studies of 91,594 patients
identified an inverse relationship between vitamin D status and
breast cancer risk; women with high serum vitamin D con-
centrations were at a lower risk for developing breast cancer
[OR ¼ 0.65 (0.56–0.76)]. Critically, when these results were
analyzed by menopausal status, the protective effect of vitamin
D persisted only for premenopausal women [premenopausal
OR ¼ 0.67 (0.49–0.92); postmenopausal OR ¼ 0.97 (0.82–
1.14); ref. 7]. Consistent with these observations, vitamin D
deficiency during times of breast development is suggested to
be more influential on breast cancer risk compared with
vitamin D status later in life. A population-based case–
control study of 2,217 women reported that vitamin D defi-
ciency at the time of adolescent breast development was more
strongly associated with breast cancer risk, compared with
vitamin D status later in life (114).
However, not all studies have found a protective effect of

vitamin D against breast cancer for premenopausal wom-
en (115, 116). A population-based case–control study of
2,101 women reported that increased vitamin D serum con-
centrations were associated with an approximate 54% reduc-
tion in breast cancer risk for postmenopausal women [OR ¼
0.92 (0.89–0.96)], whereas no significant reduction in risk was
observed for premenopausal women [OR ¼ 0.97 (0.92–1.02);
ref. 115]. Consistent with this, a nested case–control study
of 100 pregnant and recently pregnant patients with breast
cancer reported no association between serum concentrations
of vitamin D and risk of breast cancer during pregnancy.
Critically, the authors instead reported that higher circulating

concentration of vitamin D during pregnancy were associated
with a 2- to 4-fold increased risk of developing breast cancer
within one year following delivery (116).
Clinical trials assessing the effect of vitamin D supplemen-

tation on breast cancer biomarker endpoints have yielded
similar indefinite results. A recent randomized control trial of
208 premenopausal women at high risk for breast cancer
assessed the effect of 20,000 IU/week vitamin D supplemen-
tation on mammographic breast density, a strong predictor of
breast cancer risk (117). This trial reported that vitamin D
supplementation did not reducemammographic breast density
at either 12 or 24months follow-up and concluded that there is
insufficient evidence to support the use of vitamin D for
reducing breast cancer risk (117). However, the majority of
women enrolled in this study were sufficient for vitaminD, and
subgroup analyses were not performed to assess whether the
protective effects of vitamin D were influenced by vitamin D
status at baseline. Furthermore, the potential protective effect
of vitamin D may not be mediated by changes in mammo-
graphic breast density andmay instead be a result of changes in
other breast cancer biomarkers.
An ongoing prospective clinical trial is anticipated to provide

additional data on the effect of vitamin D supplementation on
breast cancer biomarkers (118). In this trial, 300 premeno-
pausal women have been randomized to receive either 2,000 IU
of vitamin D or placebo daily for 12 months. The majority of
women enrolled were deficient for vitamin D at baseline (62%,
serum 25(OH)D < 30 nmol/L), which may permit subset
analyses on the effects of vitamin D supplementation on
biomarker expression in light of deficient or sufficient serum
25(OH)D at baseline. Primary outcomes will assess the change
in mammographic density at 12 months, with secondary out-
comes assessing changes in other breast cancer biomarkers,
including atypia, cell proliferation, and serum IGF-1. Results
from this trial are awaited.

Future Research Directions
Vitamin D as a potential preventative therapeutic for
postpartum breast cancer
While vitaminD supplementation targeted to premenopaus-

al women is a strategy anticipated to increase prevention
efficacy, a complimentary approach is to specifically target
transient, developmental windows of elevated breast cancer
risk. The window of weaning-induced breast involution repre-
sents a key developmental window that contributes to breast
cancer risk, andwhichmay be particularly poised for vitaminD
supplementation. In support of a prevention strategy targeted
to the postpartumwindow, studies consistently find a transient
increased risk for breast cancer following childbirth. The peak
incidence has been reported at 5 years postpartum (119), with a
long tail of increased risk persisting up to 15 years postpar-
tum (120). It has been proposed that postpartum breast cancers
account for approximately 50% of all young women’s breast
cancer cases (121,122). Furthermore, these cancers have worse
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prognosis compared with age-, stage-matched cases in nullip-
arous women. A breast cancer diagnosis within 5–10 years of a
recent pregnancy independently associates with a 2- to 3-fold
increased riskofdeath, forbothERþandER�disease (123,124).
Conversely, a breast cancer diagnosis during pregnancy is not
associated with poorer outcomes (125). Combined, these stud-
ies implicate the existence of a postpartum event that negatively
impacts breast cancer.
In women, the postpartum window coincides with

weaning-induced breast involution. During involution, the
mammary gland is characterized by a unique microenviron-
ment that shares similarities with wound-healing, inflam-
mation, and desmoplasia (126–128). The inflammatory
microenvironment of the involuting gland has been
demonstrated to promote breast cancer progression and
tumor cell dissemination in rodent models (129–131), and
strongly associate with the high rate of metastases observ-
ed in postpartum patients with breast cancer (122, 124, 132).
Importantly, a recent study reports that the weaning-induced
mammary involution programs observed in rodents are
mirrored in the human breast (133). Specifically, in breast
tissue of recently lactating women, weaning associates with
transient epithelial cell death, immune cell infiltrate, and
stromal hallmarks of wound healing, including proinflam-
matory cyclooxygenase-2 (COX-2) expression (133). Impor-
tantly, these wound healing like tissue attributes are largely
resolved by 3 months post wean, potentially identifying
a very narrow window of therapeutic preventative interven-
tion. These human data, combined with preclinical rodent
studies, support the hypothesis that breast cancer risk
might be mitigated by anti-inflammatory strategies, such as
vitamin D, when targeted to the post-wean window of
breast involution.

Pregnancy, lactation, and weaning as unique windows of
vitamin D deficiency
There are heightened demands for vitamin D during a

reproductive cycle that emphasize vitamin D deficiency in
the postpartum period and implicate the window of breast
involution as a viable target for vitamin D supplementation.
Changes in the metabolism of vitamin D and calcium occur to
meet the increased demands during pregnancy and lactation.
During pregnancy, the unique demand for vitamin D is for
proper fetal skeletal growth. Renal production of 1,25(OH)2D
increases 2-fold during pregnancy to promote intestinal
absorption of calcium and returns to prepregnancy levels
following parturition (134, 135). The unique demand for
vitamin D in the postpartum period occurs during lactation,
where the increased metabolic demand of milk production
requires calcium. During lactation, the demand for calcium is
met primarily by the increased resorption of calcium from the
bone. This effect likely occurs via vitamin D–dependent
mechanisms (136, 137) and is mediated by the secretion of
parathyroid hormone-related protein from the lactating
breast (138, 139).

It is also possible that reductions in vitamin D synthesis
occur during postlactational involution, further depleting vita-
min D levels during this critical window of increased breast
cancer risk. In rats and mice, it has recently been reported
that the normal liver undergoes weaning-induced involution.
Similar to the mammary gland, weaning-induced liver invo-
lution is characterized by epithelial cell death (i.e., hepatocytes),
stromal remodeling, and immune cell influx (132). Critically,
the rodent involuting liver also exhibits metabolic signatures
of protein catabolism and oxidative stress. In postpartum
women, indirect evidence of liver involution comes from a
recent study, which demonstrates that liver size increases
with pregnancy, before returning to normal size post wean
(140). As the liver is a primary site of vitamin D synthesis, it
is possible that during weaning-induced involution the liver is
compromised in its ability to hydroxylase vitamin D. Albeit
an untested hypothesis, this could result in reduced circu-
lating concentrations of 25(OH)D during involution—a
hallmark of vitamin D deficiency.
The importance of vitamin D in breast health across a

reproductive cycle is further exemplified by the observation
that key vitamin D genes, VDR, CYP24A1, and CYP27B1,
are expressed in all major cell types in the breast (42, 61,
62, 72, 74, 99) and that their expression is dynamically regu-
lated in themammary gland throughout a pregnancy, lactation,
and wean reproductive cycle (Fig. 2; refs. 126, 141). Expression
of VDR is upregulated during pregnancy, with increased
expression persisting throughout lactation (142). Expression
of VDR remains high during early involution, where it reg-
ulates apoptosis and glandular remodeling, before returning
to low levels in the nonpregnant, quiescent breast (Fig. 2;
refs. 98, 141–143;). Of note, expression of CYP24A1 and
CYP27B1 peak during lactation and early involution,
before returning to low levels in the quiescent breast (Fig. 2;
refs. 126, 141, 142, 144).
In sum, the increased demand for vitamin D during preg-

nancy and lactation, in combination with potentially reduced
vitaminD synthesis within the involuting liver, is anticipated to
enhance vitamin D deficiency for postpartum women. Indeed,
vitamin D deficiency is exceptionally common among post-
partum women (145–148). Recent meta-analyses report that
18%–97% of pregnant and recently pregnant women are
deficient for vitamin D, depending on the country and pop-
ulation studied (145, 146). In the United States, vitamin D
deficiency is observed in up to 72% of pregnant and recently
pregnant women (147, 148).
We speculate that the accumulated vitamin D deficiency of

pregnancy, lactation, and involution that is prevalent post wean
may exaggerate the tumor promotional attributes specific to the
involuting breast and increase breast cancer risk in some
postpartum women. Restoring vitamin D to optimal levels
during pregnancy, lactation, and involution may offer a new
therapeutic approach for the management of postpartum
breast cancer. Support for transiently targeting weaning-
inducedmammary gland involution with prevention strategies
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comes from rodent studies, which demonstrate that short-term
administration of NSAIDs targeted only to the window of
weaning-induced mammary gland involution significantly
reduces postpartum mammary cancer incidence and slows
disease progression (95, 130).
While both vitamin D and NSAIDs show potential as

preventative agents, neither agent completely abrogates tumor

growth in animal models. The combination of vitamin D with
NSAIDs may be a more efficacious approach to reduce post-
partum breast cancer incidence in at-risk women. Indeed,
preliminary in vitro studies in multiple cancer cell lines dem-
onstrate that cotreatment with vitamin D and NSAIDs syner-
gistically inhibit tumor proliferation, compared with treatment
with either agent alone (149, 150). Together, these observations
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Figure 2.

Change in vitamin D receptor (VDR),
CYP27B1, and CYP24A1 mRNA
expression in the murine mammary
gland during pregnancy, lactation,
and involution. Gene expression of
VDR (A), and the enzymes involved
in the anabolism (CYP27B1) (B) and
catabolism (CYP24A1) (C) of vitamin
D throughout the reproductive
cycle. Gene expression data were
obtained from previously published
microarray data. Data obtained from
Rudolph and colleagues (2003; 141)
andStein and colleagues (2004; 126)
are normalized to gene expression
at day 1 of pregnancy (P1); data
obtained from Clarkson and collea-
gues (2004; 144) are normalized to
gene expression in virgin mice (V).
All data are presented as mean �
SEM. V, virgin; P, pregnancy; L,
lactation; Inv, involution.
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justify further investigation into whether vitamin D interven-
tion, possibly in combination with other immune-modulatory
agents such as NSAIDs, may offer protection against the
development of postpartum breast cancer.
Establishing a clinical trial to assess the cancer preventa-

tive potential of vitamin D in postpartum women presents
unique challenges. Significant problems with clinical trials to
date stem from the variable doses, frequencies, and durations
of vitamin D supplementation, as well as the targeting of
relatively undefined populations with respect to breast can-
cer risk. For postpartum women, determination of the
optimal dosages of vitamin D supplementation for cancer
prevention presents challenges, as data on the ideal range of
25(OH)D concentrations required for pregnant and recently
pregnant women are unclear (22). Additional complexity in
dose determination is introduced by data from observational
studies, which suggest that a U-shaped relationship exists
between serum 25(OH)D and cancer incidence, where both
lowest and highest 25(OH)D concentrations associate with
increased cancer risk (151). Additional limitations with the
clinical trials to date lie in their small sample sizes, short
follow-up times, and lack of data on vitamin D status at
baseline. To address these limitations, future trials in post-
partum women must measure serum 25(OH)D at baseline,
and be significantly powered with sufficient follow-up time
to analyze results by vitamin D–deficient and -sufficient
subgroups. Finally, the incidence of young women’s breast
cancer is relatively low, with approximately 1 in 65 women
developing breast cancer by age 40 (1, 5). Thus, in a PPBC
prevention trial, the use of cancer incidence as the trial
endpoint is likely not feasible and surrogate endpoints would
be required. In sum, while there is strong rationale to
warrant a clinical trial to assess the cancer preventative
potential of vitamin D for postpartum women, development
of such a clinical trial requires additional preclinical model
data, as well as unique considerations for successful imple-
mentation and analyses before such a trial would be
compelling.

Conclusion
There is strong evidence that downregulation of vitamin D

signaling contributes to the development and progression of
breast cancer. Epidemiologic studies have linked vitamin D
deficiency with an increased risk of breast cancer development;
observations that are well supported by research in animal
models. However, while the potential for vitamin D as a breast
cancer preventative agent is well backed by preclinical data,
clinical trials of vitamin D supplementation have produced
modest and/or conflicting results. Vitamin D supplementation
during transient, developmental windows of elevated risk may
instead offer a more effective approach for the prevention of
breast cancer. Postlactational involution represents a key
developmental window that may be poised for vitamin D
supplementation. The unique demands for vitamin D during
pregnancy and lactation emphasize vitamin D deficiency dur-
ing the postpartum period, which in the background of the
proinflammatory microenvironment of the involuting gland
may enhance the tumor promotional attributes of involution.
Attenuation of the inflammatory microenvironment of the
vitamin D–deficient involuting breast with short-term vitamin
D supplementation may offer protection against the develop-
ment of postpartum breast cancer. Further research into the
protective role of vitamin D against postpartum breast cancer
development and progression is warranted.
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