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Rates of SARS‑CoV‑2 transmission 
and vaccination impact the fate 
of vaccine‑resistant strains
Simon A. Rella1, Yuliya A. Kulikova2, Emmanouil T. Dermitzakis3* & Fyodor A. Kondrashov1*

Vaccines are thought to be the best available solution for controlling the ongoing SARS‑CoV‑2 
pandemic. However, the emergence of vaccine‑resistant strains may come too rapidly for current 
vaccine developments to alleviate the health, economic and social consequences of the pandemic. 
To quantify and characterize the risk of such a scenario, we created a SIR‑derived model with initial 
stochastic dynamics of the vaccine‑resistant strain to study the probability of its emergence and 
establishment. Using parameters realistically resembling SARS‑CoV‑2 transmission, we model a 
wave‑like pattern of the pandemic and consider the impact of the rate of vaccination and the strength 
of non‑pharmaceutical intervention measures on the probability of emergence of a resistant strain. 
As expected, we found that a fast rate of vaccination decreases the probability of emergence of a 
resistant strain. Counterintuitively, when a relaxation of non‑pharmaceutical interventions happened 
at a time when most individuals of the population have already been vaccinated the probability 
of emergence of a resistant strain was greatly increased. Consequently, we show that a period of 
transmission reduction close to the end of the vaccination campaign can substantially reduce the 
probability of resistant strain establishment. Our results suggest that policymakers and individuals 
should consider maintaining non‑pharmaceutical interventions and transmission‑reducing behaviours 
throughout the entire vaccination period.

Vaccines are among the most effective public health measures against infectious  disease1. Their track record 
brings hope that SARS-CoV-2 may soon be under  control2 as a consequence of a plethora of vaccine develop-
ment  efforts3–8. A potential cause of concern is the low rate of vaccine production and  administration9 coupled 
with reports of new strains with higher transmission  rates10–12 and even with potential for some degree of vaccine 
 resistance13–16. A number of models considered the dynamics of the spread of a vaccine-resistant strain in the 
 population17–20. However, to our knowledge, the interplay of the population vaccination rate with the stochastic 
dynamics of emergence of a resistant strain has been  discussed21, but not formally modeled. Specifically, a con-
cern is whether a combination of vaccination and transmission rates can create positive selection pressure on the 
emergence and establishment of resistant  strains22,23. To address this issue, we implemented a model to simulate 
the probability of emergence of a resistant strain as a function of vaccination rates and changes in the rate of 
virus transmission, resembling those caused by non-pharmaceutical interventions and behavioural changes. We 
then performed a number of simulations based on realistic parameters to study the likelihood and pattern of the 
emergence of a resistant strain. Finally, we considered possible countermeasures to reduce the probability of the 
establishment of the resistant strain in the population.

Results
We implemented a modification of a SIR  model18,24 that included additional states to study the interplay of the 
rate of vaccination, rate of transmission and the likelihood of emergence of resistant strains (Fig. 1a). In addition 
to other states, individuals could be vaccinated (V), infected by the resistant strain (Ir), or simultaneously be 
vaccinated and infected with the resistant strain (Ir

V). The model was run to simulate a population of 10,000,000 
individuals over 3 years with the vaccination starting after the first year. In the model, the susceptible individuals 
(S) are infected by the wildtype, or the original, strain at a rate of β and infected individuals recover at a rate of 
γ or die at a rate of δ. At each time step, a fraction θ of all non-infected individuals is vaccinated and with some 
fixed probability p, an infected individual becomes infected with a resistant strain. Conversely, any individual 
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infected with the resistant strain can revert back to the wildtype strain population with the same probability, p. 
Immunity acquired after infection decayed at a rate of μ. Overall, our model included eight character states and 
six transition parameters between them (Fig. 1a, Table 1).

The rate of transmission in the course of a pandemic is typically  cyclical34–36 due to government 
 interventions36,37, behavioural  changes38–40, and  environmental41,42 and other  factors43,44. Generally, the number 
of infected individuals is wave-like, guided by periods of high rate of transmission, followed by periods of a 
low rate of  transmission31,34,35,45. We thus varied β, the rate of virus transmission to reflect this cyclical behavior 
(Fig. 1b,c). A high rate of transmission (βh = 0.18, equivalent to the effective reproduction number of Rh = 2.52) 
was alternated with a low rate (βl = 0.055 or Rl = 0.77), which broadly reflected the observed rates of trans-
mission in various countries affected by the SARS-CoV-19 pandemic with and without lockdown measures, 

Figure 1.  The states, transition parameters and dynamics. (a) States are shown in circles and transition 
parameters in squares. The transition parameter, μ, is the rate at which individuals lose natural immunity and 
p, is the probability that an individual infected with the wildtype strain transmits a resistant strain, so it is not a 
deterministic parameter. Example dynamics of the number of individuals infected with the wildtype (blue) and 
resistant strains (red) for p =  10–6, θ0 = 1/365 and Fh = 15,000. The period of vaccination is highlighted (green). 
Under the same parameters the resistant strain may emerge and go extinct, (b), or become established, (c).
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 respectively31–33. The low rate of transmission was triggered in the model when the number of individuals infected 
with any strain reached a high threshold Fh = (Iwt + Ir + Ir

V). We considered two modes of transition from a low 
rate of transmission back to a high rate, when the number of infected individuals reached a low threshold Fl at 
a constant value of Fl = (Iwt + Ir + Ir

V) = 1000, which was used to generate the main figures, and at a relative value 
of Fl = Fh/8, which are available as “Supplementary materials S1”. The explored values of Fh and Fl were selected 
such that the number of infection waves during the first year of the model roughly coincided with the number 
of waves of SARS-CoV-2 infection observed in most countries during the first year of the pandemic.

SIR-like models frequently consider only deterministic  dynamics18. However, the emergence of a new strain 
is an inherently stochastic process under extensive influence of genetic  drift46,47. Therefore, we incorporated 
a stochastic stage into our model to allow for genetic drift in the early phases of population dynamics of the 
resistant strains. The growth rate of the number of individuals infected with the wildtype strain at time t was 
determined deterministically by (β*S/N − γ − δ)Iwt. By contrast, when the frequency of the resistant strain in the 
population is low, the number of transmissions of the resistant strain was drawn from a Poisson distribution 
with a mean of (βIr(S + V)/N)dt48. However, when the frequency of the resistant strain is greater than 1000 
individuals (0.01% of the population), making it highly unlikely to disappear by stochastic forces, the dynamics 
are treated deterministically in the same manner as the wildtype strain.

We define three stages of vaccine-resistant strain propagation, including emergence, the appearance of the 
first individual with the infected strain, establishment, the time point when the number of infected individuals 
reached 1000, and extinction, when the number of resistant strain infected individuals returned to zero. The 
impact of three parameters on the resistant strain propagation were explored: the probability of the emergence 
of the resistant strain (p), the speed of vaccination (θ) and the initiation of periods of lower rate of transmission 
(Fh). All other parameters were constants and their values were chosen to be broadly reflecting a realistic set 
of parameters that approximate the available data for the SARS-CoV-2 pandemic, μ = 1/180, γ = 0.99*1/14 and 
δ = 0.01*1/14 (see Table 1).

Higher probability of the initial emergence of a resistant strain emerging in a single individual, p, had a 
 predictably49 positive effect on the probability of the establishment of the resistant strain (Figs. S1), but depended 
on the rate of vaccination (θ) and low transmission initiation (Fh) in a complex manner (Fig. 2, Figs. S1). The 
dependency was periodic and the probability of establishment of the resistant strain was different by a factor of 
two even for some similar values of θ and Fh (Fig. 2d,e).

The behaviour of the emergence, establishment and extinction of the resistant strain in the population bears 
striking resemblance to the population genetics problem addressing the survival of a beneficial allele in a growing 
 population50,51. To understand the stochastic dynamics of the resistant strain in the model, it is therefore instruc-
tive to consider the underlying mechanism in population genetics terms. Unless the rate of mutation is zero, or 
infinitesimally low, new variants will emerge in the population at a rate of p*Iwt. When the rates of transmission 
of the wildtype and the resistant strain are equal, the probability that the resistant strain will go extinct, 1 − Qt, 
can be approximated by

where s is the selection advantage of the resistant  strain46,52 and Rt
r = (S + V)β/N(γ + δ), or the rate of population 

growth. Therefore, even when there is no selective advantage of the resistant strain (s = 0) over the wildtype strain 
but the rate of transmission is high (Rt

r > 1), the likelihood that a new mutation is lost from the population is 
small (~ 10% for βh = 0.18, or R0 = 2.52). By contrast, when the rate of transmission is low (Rt

r < 1, which is the 
case during the low transmission periods in the model), the probability of extinction of the resistant strain by 

(1)1 − Qt = exp
[
−Qt+1(1 + s)Rr

t

]
,

Table 1.  Model parameters.

Parameter Value Comments

Fixed parameters

Population size, N 10,000,000 individuals

Cut-off for stochastic mode, N* 1000

Cut-off for Gillespie algorithm, Nc 100

Recovery rate, γ 0.99*1/14 Average disease duration is 14  days25

Death rate, δ 0.01*1/14 Infection-fatality rate is 1%26–28

Loss of immunity rate, μ 1/180 On average in 180  days29,30

Share of non-vaccinated, h 0.01 1% of population

Saturation parameter, k 0.01

Transmission rate,β = {βl ,βh} {0.055, 0.18} R0 = {0.77, 2.52}31–33

∆t 1 day

Varying parameters

Bound for initiation of low transmission, Fh 2000–20,000 individuals

Bound for initiation of high transmission, Fl 1000 or Fh/8 individuals

Probability of emergence of resistant strain, p 1e − 8 to 1e − 5 Daily for every infected

Vaccination speed, θ0 0.001 to 0.015 0.1–1.5% daily
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genetic drift is  substantial46,47. The results of our model are consistent with  theory46,47, such that the resistant 
strain emerges during periods of high and low transmission rates, but goes extinct with higher probability dur-
ing periods of low transmission (Fig. 2f). Furthermore, under the parameters of our model the resistant strain 
becomes established only when the rate of transmission is high (Fig. 2f).

The complex influence of the speed of vaccination, θ, and initiation of low transmission period, Fh, on the 
dynamics of establishment of the resistant strain (Fig. 2d) is, therefore, likely driven by the overlap of the vacci-
nation period and the periodicity of the cycles of the number of infected individuals driven by the interaction of 
Fh and θ (Fig. 1b,c). The coincidence of a high number of vaccinated individuals and a high rate of transmission 
has two effects on the resistant strain. First, as mentioned previously, because the rate of transmission is high, the 
emerging resistant strain is not lost through genetic drift (see  also50,53). Second, a high number of vaccinations 
creates a selective advantage of the resistant strain over the wildtype  strain23. The effective reproductive number 
of the wildtype versus the resistant strains, Rt

wt/Rt
r, is (V + S)/S, which is the selective advantage 1 + s in Eq. (1). 

Thus, when V is large the resistant strain has a growth advantage over the wildtype strain, contributing to its 
establishment in the population towards the end of the vaccination campaign. Taken together, the highest prob-
ability for establishment of the resistant strain for a given p is reached when V, Iwt and β (and the corresponding 
Rt

r) are large (Fig. 2c, Eq. (1)).
Indeed, when p =  10–6, in those cases when the resistant strain becomes established, its initial time of emer-

gence frequently occurs at around the time when 60% of the population is vaccinated (Fig. 3). Therefore, we 
then tested the influence of a single intervention triggering at a single extraordinary period of low transmission 
centred around 60% of vaccinated individuals in the population (Fig. 3). We varied the duration of this inter-
vention, T, ranging from 1 week to 120 days and considered three rates of transmission, βl = 0.055 (R0 = 0.77), 

Figure 2.  Impact of the rate of vaccination, θ, and the initiation of low rate of transmission, Fh, on model 
dynamics. The cumulative death rate from the (a) wildtype and (b) resistant strains, (c) the number of wildtype-
strain infected individuals at tv60, the point in time when 60% of the population is vaccinated and (d) the 
probability of resistant strain establishment, for p =  10–6. (e) The probability of emergence of the resistant strain 
as a function of the probability of emergence, p shown for the parameter ranges of θ and Fh in the corresponding 
red and blue boxes from figure (d). (f) The average number of times of 8 ×  106 simulation runs during which 
a resistant strain emerges (black) or goes extinct (grey) during periods of low (βl) or high (βh) transmission 
for p =  10–6. (g) A resistant strain was never observed to establish during periods of low transmission (βl) for 
p =  10–6.
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0.03 (R0 = 0.42) and 0.01 (R0 = 0.14). Both parameters decrease the probability of establishment of the resistant 
strain with the length of the intervention having a relatively stronger effect (Fig. 3, Figs. S1, S1, S1, S1, S1, S1, S1).

Discussion
Our model suggests three specific risk factors that favour the emergence and establishment of a vaccine-resistant 
strain that are intuitively obvious: high probability of initial emergence of the resistant strain, high number of 
infected  individuals54 and low rate of  vaccination55. By contrast, a counterintuitive result of our analysis is that 
the highest risk of resistant strain establishment occurs when a large fraction of the population has already 
been vaccinated but the transmission is not controlled. Similar conclusions have been reached in a SIR model 
of the ongoing  pandemic56 and a model of pathogen escape from host  immunity57. Furthermore, empirical data 
consistent with this result has been reported for  influenza58. Indeed, it seems likely that when a large fraction 
of the population is vaccinated, especially the high-risk fraction of the population (aged individuals and those 
with specific underlying conditions) policy makers and individuals will be driven to return to pre-pandemic 
 guidelines59 and behaviours conducive to a high rate of virus  transmission60,61. However, the establishment of 
a resistant strain at that time may lead to serial rounds of resistant strain evolution with vaccine development 
playing catch up in the evolutionary arms race against novel strains.

Prior to discussion of the implications of our model we reflect on several properties of the assumptions and 
implementation of our model. In classical SIR-like deterministic models even a single individual infected with a 
vaccine resistant strain with reproduction number Rt > 1 will lead to automatic establishment of the strain in the 
population. In an analytical solution, a SIR-like model, even for Rt < 1 for the vaccine resistant strain, the number 
of infected individuals will tend to 0 but only as time tends to infinity. In actual populations, a single individual 
infected with a vaccine resistant strain still has a non-negligible chance not to infect anyone causing the variant 
to go extinct due to random stochastic  forces47. Therefore, the implementation of stochastic  dynamics62,63 of the 
vaccine resistant strain at low frequency in our model, considers the impact of random drift on its dynamics, 
which lies at the heart of extinction of rare strains.

We considered the dynamics of a single vaccine resistant strain, however, there may be different mutations that 
can lead to vaccine resistance. The emergence of different genotypes causing the same phenotype is analogous to a 
distinction in population genetics between alleles identical by state and by  descent64. In our model, the treatment 
of independent emergence of different mutations as a single entity does not influence the dynamics under the 
following two assumptions. First, that different mutations lead to exactly the same phenotype, which is vaccine 
resistance, and, second, that there is no recombination. However, the reported dynamics may be quantitatively 
different if either of the two assumptions do not hold.

We have not explored the parameter ranges of βh, βl, the high and low rates of transmission, respectively, 
and Fl the threshold between low and high rate of transmission. We selected the βh and βl, to represent the 
known transmission values at the start of the  pandemic31–33. However, evolving strains are reported to have a 
higher rate of  transmission10 leading to higher βh and, possibly, βl values than we used. An increase in the rate 
of transmission is not expected to qualitatively influence the reported dynamics, but would shift the probability 
density of establishment of a resistant strain (Fig. 3). Indeed, the peak probability at 60% vaccinated individu-
als roughly corresponds to the point at which for the given βh, Rt, the average number of transmissions for one 
infected individual, becomes less than 1. Because the reproduction number for the vaccine resistant strain, Rt, 
is equal to (S + V)β/N(γ + δ), the perk of the risk of establishment of the vaccine resistant strain would increase 
proportional to an increase of β. An increase in either Fh or Fl would lead to more individuals becoming infected 
and a proportionally higher rate of emergence of the vaccine related strain, but would not change the qualitative 

Figure 3.  Time of initial emergence of a resistant strain that has become established. Probability density that 
the resistant strain emerges as a function of time since the start of the simulation, t, rescaled by the time at 
which 60% of the individuals are vaccinated, tV60, averaged across simulations with θ (0.001 through 0.015), Fh 
(2000 through 20,000) and p =  10–6. Without any extraordinary periods of low transmission (blue line) the peak 
of the likelihood of emergence of a new strain is at t/tV60 = 1. The likelihood of emergence of a resistant strain can 
be reduced by an extraordinary period of low transmission centered at t/tV60 = 1 with a stronger reduction when 
such period is longer, T (colour-coded), or when the rate of transmission is more strongly reduced (a) βl = 0.055, 
(b) βl = 0.03, (c) βl = 0.01.
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behaviour of the model. Furthermore, an increase of Fl would lead to reversion to a high transmission rate with 
higher number of infected individuals, leading to shorter periods of low transmission and decreased probability 
of extinction of the vaccine resistant strains.

The results of our model provide several qualitative implications for the strategy forward in the months of 
vaccination. In our model, the probability of emergence of a resistant strain in one individual per day was in the 
range of  10–5 to  10–8 for a population of  107 individuals. For the entire human population of ~  1010 that prob-
ability would be  10–8 to  10–11, which does not seem improbably large. As of February 2021, ~  109 individuals have 
been infected by SARS-CoV-265 with an average 14 days of sickness per  individual25, so >  1010 number of total 
days of infected individuals. Furthermore, highly mutated strains may emerge as a result of long shedding in 
immunocompromised individuals, a rare but realistic  scenario66–68. Taken together, the emergence of a partially 
or fully vaccine-resistant strain and its eventual establishment appears inevitable. However, as vaccination needs 
to be ahead of the spread of such strains in similar ways to  influenza23, it is necessary to reduce the probability of 
establishment by a targeted effort to reduce the virus transmission rate towards the end of the vaccination period 
before the current vaccines become ineffective. Conversely, lack of non-pharmaceutical interventions at that 
time can increase the probability of establishment of vaccine-resistant strains. For example, plans to vaccinate 
individuals with a high risk of a fatal disease outcome followed by a drive to reach herd immunity while in uncon-
trolled transmission among the rest of the population is likely to greatly increase the probability that a resistant 
strain is established, annulling the initial vaccination effort. Another potential risk factor may be the reversion 
of vaccinated individuals to pre-pandemic behaviours that can drive the initial spread of the resistant strain.

One simple specific recommendation is to keep transmission low even when a large fraction of the population 
has been vaccinated by implementing acute non-pharmaceutical interventions (i.e. strict adherence to social 
distancing) for a reasonable period of time, to allow emergent lineages of resistant strains to go extinct through 
stochastic genetic drift. The implementation of non-pharmaceutical measures at a time of high vaccination can 
also help reduce infectivity when the efficacy of vaccines is not  perfect69. Additional factors that may make these 
measures even more effective are: (1) increased and widespread testing, (2) rigorous contact tracing, (3) high rate 
of viral sequencing of positive  cases58,70 and (4) travel restrictions. Finally, while our model formally considers 
only one homogenous population, our data also suggest that delays in vaccination in some countries relative to 
others will make the global emergence of a vaccine-resistant strain more likely. Without global coordination, 
vaccine resistant strains may be eliminated in some populations but could persist in others. Thus, a truly global 
vaccination effort may be necessary to reduce the chances of a global spread of a resistant strain.

Materials and methods
Our extension of the SIR Model features 8 distinct states. Susceptible, S, and recovered, R, individuals are vac-
cinated over time to become vaccinated, V, or recovered vaccinated, RV, respectively. Susceptible individuals 
can become infected with the wildtype, Iwt, or the resistant virus strain, Ir. While the vaccinated population is 
immune to the wildtype, it can be infected by the vaccine-resistant strain, in which case the state is represented 
by Ir

V. After a while any infected individual recovers or dies, D. Finally, we assume that the recovered popula-
tion retains natural immunity towards both strains, but becomes susceptible again with some small rate, μ. In 
our model, immunity against the wildtype strain gained through vaccination is not lost during the entire model 
period of 3 years, consistent with current  estimates71,72.

The total number of individuals, N, in the population remains constant at 10,000,000, which includes the 
diseased individuals. We do not introduce new individuals into the population because only a very small number 
of individuals die during the 3 years that we simulate.

For all of the eight states, for convenience we omit the time index, e.g. we write, for example, S instead of S(t). 
In the limit of large population sizes, the full dynamics without mutations can be described by the following set 
of differential equations. In these equations, ẋ = dx/dt where t is time.

(2)S + Iwt + Ir + IVr + R + RV + D + V = N

(3)Ṡ = µR − θ(t)S − β(t)(Iwt + Ir + IVr )S

(4)İwt = −(γ + δ)Iwt + β(t)SIwt

(5)İr = −(γ + δ)Ir + β(t)S(Ir + IVr )

(6)İVr = −(γ + δ)IVr + β(t)V(Ir + IVr )

(7)Ṙ = −µR − θ(t)R + γ (Iwt + Ir)

(8)ṘV = −µRV + θ(t)R + γ IVr

(9)Ḋ = δ(Iwt + Ir + IVr )
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Or, in the matrix format, Ẋ = P̂X, with X = (S, Iwt , Ir , I
V
r ,R,RV ,D,V)

T

The dynamics are influenced by the following constant parameters: the recovery rate, γ, the death rate, δ, and 
the rate at which natural immunity is lost, μ. Additionally we introduce a time dependent transmission rate β(t) 
and a function θ(t) , which controls the speed of vaccination.

Time dependent transmission rate. Pandemics often proceed in a  wave-like  pattern31,34,35,45, so we 
introduce a parameter β(t) , which switches between high and low transmission rates. The model begins with 
a period of a high rate of transmission, βh/N . A low transmission rate, βl/N , is initiated when the fraction of 
individuals infected with any strain, I = (Iwt + Ir + IVr ) , reaches the value of Fh. Transition from a period of low 
to high infection rate occurs at Fl = 1000 or Fl = Fh/8.

Vaccination. Vaccination is modelled as almost always a linear function with saturation. The deviation from 
linearity occurs towards the end of the vaccination period. At that time, there may be fewer individuals that can 
be vaccinated than the number of individuals vaccinated at any time point, or S + R − h < θ . This state can 
persist for longer than one point in time because in our model infected individuals are vaccinated only once they 
recover. h denotes the number of individuals in the population that are never vaccinated. A maximum of N − h 
individuals can be vaccinated at the end of the vaccination program. The constant k controls the saturation of 
the vaccination speed once the number of susceptible individuals is significantly depleted. The state dependent 
vaccination speed θ(t) is given as:

where θ0 can take different values and h and k are chosen to be small (see Table 1).

Integration method. The deterministic differential equations Eq. (11) were numerically solved using an 
Euler Forward Integration Scheme, with time step Δt, measured in days.

Resistant strain. Each day and for every individual infected with the wildtype strain, Iwt, there is a small 
probability p, that a vaccine-resistant strain emerges in that individual. Then this individual switches from state 
Iwt to state Ir. Conversely, any individual infected with the resistant strain, Ir can revert back to the wildtype strain, 
Iwt, with the same probability p. Each time step the number of individuals that transition between being infected 
with different strains is drawn from a Poisson distribution with mean ΔtpIwt, for transition to the resistant strain, 
or ΔtpIr, for reversion to the wildtype strain. The sum of Poisson distributed random variables is itself a Poisson 
distributed random variable with the mean corresponding to the sum of the means.

Stochastic and deterministic regimes. The population dynamics of a rare variant is an inherently sto-
chastic  process46,47. We can formally treat the spread of a disease in our model as a stochastic birth–death process. 
In the following we illustrate this with the number of wildtype infections Iwt as an example. In each infinitesimally 
small time step dt, there is a probability βSIwtdt , that the wildtype population Iwt grows by 1, Iwt → Iwt + 1, Iw 
while the susceptible population is decreased, S → S − 1 . Similarly, with probability (γ + δ)Iwtdt, Iwt is reduced 
by 1, Iwt → Iwt − 1 , while the number of recovered or dead grows by 1. We carefully model small populations, 
Iwt < N∗ , with N∗ representing a small number of individuals, using a stochastic Tau-Leaping  Algorithm73. We 
choose a fixed time step size τ, that is equal to the time step of the Euler Integrator Δt. For very small Iwt Tau 
Leaping Algorithm can produce a negative  population73. This stems from the fact, that the number of events K 
that occur in time τ is drawn from a Poisson Distribution, that always assigns a non-zero probability for any 
K > Iwt . We reduce the chances of such a scenario, by solving the exact SSA Gillespie Algorithm when Iwt is 
below a critical size Nc48.

For large Iwt, larger than some N*, this stochastic process can be approximated with the limiting differential 
Eq. (4) and an Euler Integration Scheme. Once Iwt ≥ N∗ , we consider that the resistant strain of the virus is 
established in the population and we continue modelling it using the deterministic  equation18.

Parallel evaluation of deterministic and stochastic variables. In our model we evaluate determin-
istic and the stochastic dynamics in parallel. While small populations of infected individuals are treated as sto-
chastic, other variables, such as the number of susceptible individuals, S, are evaluated within the deterministic 
regime. While the infection numbers of the wildtype or the emergent strain are in the stochastic regime (< N*), 

(10)V̇ = µRV + θ(t)S − β(t)V(Ir + I
V
r )

(11)P̂ =





−θ(t) −β(t)S −β(t)S −β(t)S µ 0 0 0

β(t)Iwt −(γ + δ) 0 0 0 0 0 0

β(t)Ir 0 −(γ + δ) −β(t)S 0 0 0 0

0 0 β(t)V −(γ + δ) 0 0 0 β(t)IVr
0 γ γ 0 −(µ + θ(t)) 0 0 0

0 0 0 γ θ(t) −µ 0 0

0 δ δ δ 0 0 0 0

θ(t) 0 −β(t)V −β(t)V 0 µ 0 0





(12)θ(t) =

(
1 −

h

S + R + Iwt + Ir

)(
θ0

S + R + k

)
,
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the corresponding terms that contain the wildtype infections Iwt or the emergent infections Ir and Ir
V are removed 

from the deterministic rate equations. When Iwt or Ir + Ir
V grow above the threshold value N*, the corresponding 

population of infected individuals is treated as deterministic.

Sources of errors. Finally, we discuss some sources of errors in our simulation: (1) depending on the time 
step Δt the Euler Integration Scheme is not exact. In most of our simulations, we choose a time step of 1 day, 
Δt = 1d. (2) Using the deterministic rate equations for the infection numbers in Eq. (11) is an approximation to 
the exact stochastic dynamics given by a birth–death model. The quality of this approximation is given by the 
threshold value N*, which was 1000 in our model. (3) When Iwt or Ir + Ir

V trespasses the threshold N* from above, 
the populations of infected individuals changes from being treated as a real number (the mean field average) to 
being treated as a natural number. We truncate the mean field average with a floor function and treat the remain-
der as part of the recovered population. (4) The Tau Leaping algorithm is an approximation to the exact SSA 
Gillespie Algorithm, that allows faster evaluation with a constant step size τ. Increasing the threshold value Nc 
increases the accuracy of the model (Fig. S1). (5) As discussed above, on rare occasions a population of infected 
individuals drops below 0 in one leap. If this happens we redraw from the same Poisson distribution. (6) Finally, 
while the time step of the deterministic model Δt and τ are chosen to be equal, for population sizes above Nc, the 
SSA algorithm acts on exponentially distributed waiting times τSSA between  reactions48. This introduces errors, if 
τSSA ≫ �t , because the interaction rates may change, while we wait for the next reaction to occur.

In order to determine a range of acceptable values of Nc, we ran our simulation for a period of T = 200 days, 
initially loading the system with Iwt = 200 wildtype carriers. For multiple values of Nc and no mutations, we com-
pared the results of disease survival with the analytical solution derived for the birth death process,

We pick Nc = 100 individuals, which gives us a reasonably small error.

Assumptions and choice of parameters. The model is run for a total time of 3 years, with vaccination 
starting 1 year into the model. We assume that the wildtype and emergent strains have the same infectivity (β is 
the same for both strains). We assume that infection by any one strain provides immunity to both, reflecting that 
many vaccines carry only the Spike protein of the SARS-CoV-2 virus and it may be easier to escape immunity 
provided by the vaccine than the immunity provided by infection. We also assume that the immune response 
provided by the vaccine is more permanent and that immunity provided by infection, is lost at rate μ, on average 
after 0.5  years2,71,72,74 after recovery. Both of these assumptions influence the model when the number of infected 
individuals becomes large, which is unlikely for realistic average rates of transmission across the simulated time.

We assume that susceptible and recovered individuals have an equal chance to be vaccinated, θ0. We also 
assume that the infection-recovery rate, γ, and infection-fatality rate, δ are the same for the wildtype and mutated 
strains.

We regulate the rates of transmission exogenously in the model, with the rate of transmission (β) switch-
ing between a high rate, βh and a low rate, βl, when the total number of individuals infected with either strain 
reaches a threshold parameter. These threshold parameters, Fh and Fl, simultaneously reflect the impact of all 
non-pharmaceutical interventions and behavioural changes of individuals. The ranges of these parameters were 
chosen to broadly reflect realistic parameters of a pandemic, including rates of infection and several waves of 
high infection in the first couple of years of the model.

We operate under the assumption that vaccine efficacy not only impacts disease manifestation but also blocks 
transmission at the same rate, which is a reasonable assumption based on previous vaccine performance but has 
not yet been demonstrated.

In Table 1 we present the choice of parameters for the model, the ones that were constant and those that were 
varied, including their boundaries.

Code availability
https:// github. com/ Simon- Re/ mut- vacc.
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