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70th Anniversary Conference on ‘Vitamins in early development and healthy aging:
impact on infectious and chronic disease’

Symposium 3: Vitamin D and immune function: from pregnancy
to adolescence

Vitamin D and immune function: an overview

Martin Hewison
UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center,

David Geffen School of Medicine at UCLA, 615 Charles E. Young, Los Angeles, CA 90095, USA

Immunomodulatory actions of vitamin D have been recognised for over a quarter of a century,
but it is only in the last few years that the significance of this to normal human physiology has
become apparent. Two key factors have underpinned this revised perspective. Firstly, there are
increasing data linking vitamin insufficiency with prevalent immune disorders. Improved
awareness of low circulating levels of precursor 25-hydroxyvitamin D in populations across the
globe has prompted epidemiological investigations of health problems associated with vitamin
D insufficiency. Prominent among these are autoimmune diseases such as multiple sclerosis,
type 1 diabetes and Crohn’s disease, but more recent studies indicate that infections such as
tuberculosis may also be linked to low 25-hydroxyvitamin D levels. The second factor
expanding the link between vitamin D and the immune system is our improved knowledge of
the mechanisms that facilitate this association. It is now clear that cells from the immune
system contain all the machinery needed to convert 25-hydroxyvitamin D to active 1,25-
dihydroxyvitamin D, and for subsequent responses to 1,25-dihydroxyvitamin D. Mechanisms
such as this are important for promoting antimicrobial responses to pathogens in macrophages,
and for regulating the maturation of antigen-presenting dendritic cells. The latter may be a key
pathway by which vitamin D controls T-lymphocyte (T-cell) function. However, T-cells also
exhibit direct responses to 1,25-dihydroxyvitamin D, notably the development of suppressor
regulatory T-cells. Collectively these observations suggest that vitamin D is a key factor link-
ing innate and adaptive immunity, and both of these functions may be compromised under
conditions of vitamin D insufficiency.

Vitamin D: Innate immunity: Antibacterial: Adaptive immunity

In 2008, Time magazine listed the ‘benefits of vitamin D’
as one of its top 10 medical breakthroughs for the previous
year. Popular recognition such as this reflects the sea
change in vitamin D physiology that has taken place over
the last 5 years. Two pivotal concepts are central to our
new perspective on vitamin D. The first stems from data
suggesting that sub-optimal vitamin D status or vitamin D
insufficiency is a prevalent health problem across the

globe(1). For many years, vitamin D status was broadly
defined by whether or not the patient in question presented
with rachitic bone disease (osteomalacia in adults). Using
this guideline, serum levels of 25-hydroxyvitamin D
(25OHD) <8 ng/ml (20 nM) were considered to represent
vitamin D deficiency, with higher concentrations being
viewed as ‘normal’. Based on these parameters the normal
range for vitamin D status in adults was 8–30 ng/ml
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(20–75 nM). However, more recent studies have shown that
classical physiological targets for vitamin D, circulat-
ing levels of parathyroid hormone (PTH)(2), and intestinal
Ca uptake(3), continue to show correlation with serum
25OHD at levels as high as 30 ng/ml (75 nM). It has
therefore been concluded that optimal serum 25OHD
status is much higher than previously thought, with target
concentrations of 30–32 ng/ml (75–80 nM) suggested as
optimal(4). As a consequence of this new perspective on
adequate vitamin D levels, it has been suggested that sub-
optimal vitamin D status, vitamin D insufficiency, is much
more common than previously thought(5,6).
The second research development that has redefined our

perspective on vitamin D concerns the physiological
impact of vitamin D insufficiency. Given the classical
actions of vitamin D on Ca homoeostasis and bone metab-
olism, it is likely that vitamin D insufficiency will exert
some effects on the skeleton, although these may not be
identical to the rachitic bone disease observed with classi-
cal vitamin D deficiency(1). However, recent studies have
focused on the potential impact of impaired vitamin D
status with respect to so-called ‘non-classical’ effects of
vitamin D. These include anticancer(7) and cardiovascular
actions(8), but prominent reports have also explored the
association between vitamin D and the immune sys-
tem(9,10). The current review will focus specifically on the
link between vitamin D and the immune system, with
specific reference to the mechanisms by which variations
in vitamin D status may play a pivotal role in defining
specific types of immune response. The review will also
describe the key health implications associated with vita-
min D and human immunity, and the potential benefits this
may offer when considering supplemental or therapeutic
use of vitamin D.

Vitamin D physiology: classical and
non-classical actions

Human subjects obtain most of their vitamin D through the
action of sunlight on skin, with 7-dehydrocholesterol being
converted photolytically to parental vitamin D in the epi-
dermis. The vitamin D produced in the skin then undergoes
sequential metabolic conversions. Firstly, in the liver to form
25OHD the main circulating form of vitamin D. The pre-
dominant enzyme involved in this 25-hydroxylation reaction
has yet to be definitively identified but is likely to be the
cytochrome P450, CYP2R1(11). Activation of 25OHD to
the hormonal form of vitamin D, 1,25-dihydroxyvitamin D
(1,25(OH)2D) is then catalysed by the enzyme 25OHD-1a-
hydroxylase (CYP27B1), which is located primarily in the
proximal tubules of the kidney(11,12). In classical vitamin D
physiology, the 1,25(OH)2D produced by the kidneys acts in
an endocrine fashion to help regulate mineral homoeostasis
and bone metabolism (Fig. 1). Under conditions of low
extracellular Ca, Ca-sensing receptors on parathyroid cells
signal to increase the secretion of PTH by the parathyroid
glands. The resulting rise in serum PTH up-regulates
transcription of CYP27B1 in the proximal tubules leading
to increased synthesis of active 1,25(OH)2D. This activity
is very sensitively regulated via two key mechanisms. The

first involves fibroblast growth factor 23, which is
closely involved in the regulation of phosphate/Ca meta-
bolism(13–15). Fibroblast growth factor 23 acts mainly as a
phosphaturic factor by inhibiting the expression of sodium-
phosphate co-transporters in proximal tubular cells(16),
but it also suppresses production of 1,25(OH)2D in the kid-
neys by inhibiting expression of CYP27B1, while stimulat-
ing the catabolic enzyme vitamin D-24 hydroxylase
(CYP24A1)(17). The latter is unique in the steroidogenic
world in that it appears to function primarily as a ‘feedback’
control enzyme, limiting the tissue production of active
1,25(OH)2D

(18).
After synthesis in the kidney, 1,25(OH)2D is released

into the general circulation and can then act on peripheral
tissues. Target cell responses to 1,25(OH)2D are dependent
on expression of the intracellular vitamin D receptor
(VDR), a member of the nuclear receptor superfamily(19).
When bound to 1,25(OH)2D the VDR acts as a transcrip-
tion factor by targeting vitamin D response element
(VDRE) DNA motifs within gene promoters(20). The most
well-recognised targets for VDR-mediated regulation of
transcription include genes associated with Ca and phos-
phate uptake in the gastrointestinal tract, and those in-
volved in the regulation of bone turnover in the
skeleton(19,20). VDR-mediated responses also provide
another level of feedback control for the vitamin D system,
with serum 1,25(OH)2D acting to negatively regulate the
production of PTH by the parathyroid glands(20). In addi-
tion to these classical actions, it has become increasingly
clear that the same 1,25(OH)2D–VDR complex can act to
regulate expression of target genes not immediately
involved in mineral homoeostasis and bone metabolism.
Prominent ‘non-classical’ responses to 1,25(OH)2D include
anti-proliferative/anticancer effects(7,21), as well as effects
on hypertension(17,22,23) and immunomodulation(10,24,25). A
central feature of many of these non-classical actions of
vitamin D is that, unlike effects on the skeleton, gut or
parathyroids glands, the synthesis of active 1,25(OH)2D
appears to occur in a cell-specific manner, with CYP27B1
being expressed by many extra-renal tissues.

Extra-renal synthesis of 1,25-dihydroxyvitamin D

Extra-renal synthesis of 1,25(OH)2D was initially identi-
fied in studies of patients with the granulomatous disease
sarcoidosis, where macrophages from disease-affected
tissues were shown to act as an extra-renal source of
CYP27B1(26). In this instance, the localised production of
1,25(OH)2D in peripheral tissues affected is sufficient to
spill-over into the general circulation and, in some instan-
ces, promotes dysregulation of Ca homoeostasis(27). Sub-
sequent studies have shown that macrophage synthesis of
1,25(OH)2D is common to granulomatous diseases in
general, as well as several types of tumour involving sig-
nificant macrophage infiltration(28). However, expression
of CYP27B1 has also been reported for other extra-renal
tissues in the absence of any disease(29).

Historically, the placenta was one of the first extra-renal
tissues shown to be capable of synthesising 1,25(OH)2D,
with activation of 25OHD being detectable in both
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maternal decidua and fetal trophoblast(30,31). Since then
studies of the spatio-temporal organisation of placental
CYP27B1 across gestation, has shown that the enzyme is
induced early in pregnancy in both decidua and tropho-
blastic cells but then declines in the third trimester of
pregnancy(32,33). Expression of the VDR is also induced
in parallel with CYP27B1, consistent with a localised
function vitamin D in the placenta, with 1,25(OH)2D syn-
thesised by decidual or trophoblastic cells acting in an
autocrine or paracrine fashion(33). This mechanism is
therefore similar to that conventionally described for
expression of CYP27B1 and VDR within cells from the
immune system(10). The importance of decidual/tropho-
blast expression of CYP27B1 as an extra-renal feature of
the vitamin D system during pregnancy is emphasised
by studies of the CYP27B1 knockout mouse. In this
animal model, the CYP27B1 gene is replaced with a
b-galactosidase reporter construct linked to the endogenous
gene promoter for CYP27B1. As a result, transcription of
CYP27B1 can be visualised in tissues from the knockout
mouse simply by staining for b-galactosidase activity(34).
Using this approach, it was possible to confirm expression

of CYP27B1 in classical sites of 1,25(OH)2D production,
such as the kidney, but transcription of the enzyme was
also strongly detected in the placenta(34).

The capacity for efficient synthesis of 1,25(OH)2D is
further enhanced by studies showing that the vitamin D
catabolic enzyme CYP24A1 is poorly expressed in the
placenta during early stages of gestation(33). The explana-
tion for this appears to be that CYP24A1 gene is highly
methylated in the placenta, resulting in tissue-specific
silencing of its transcription(35). This effect appears to be
very selective, and suggests that the placenta is one of the
few tissues in which feedback regulation of 1,25(OH)2D is
absent(35). The net effect of enhanced expression of
CYP27B1 in proximity to low or absent CYP24A1 activity
is likely to be enhance concentrations of 1,25(OH)2D in the
placenta. It is possible that these elevated levels of
1,25(OH)2D will be sufficient to spill-over into the fetal or
maternal circulation. This may provide a mechanism for
the increased serum levels of 1,25(OH)2D that are charac-
teristic of pregnant women(36). However, current studies
suggest that placental CYP27B1 activity also plays a
pivotal role in mediating localised responses to vitamin D.

CYP27B1

25OHD

1,25(OH)2D 

Vitamin D

Parathyroids
regulation
PTH 
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Fig. 1. (Colour online) Renal and extra-renal metabolism of vitamin D. Schematic

representation showing key pathways associated with the metabolism and action of vitamin D

in normal renal physiology and in extra-renal tissues. The vitamin D-activating enzyme

25-hydroxyvitamin D (25OHD)-1a-hydroxylase (CYP27B1) is expressed in the kidney proximal

tubules. Renal CYP27B1 is induced by parathyroid hormone (PTH), and converts 25OHD to

1,25-dihydroxyvitamin D (1,25(OH)2D). The latter is released into the blood stream and also

induces renal vitamin D-24-hydroxylase (CYP24A1) activity, leading to feedback synthesis

of the less active metabolites, 1,24,25-trihydroxyvitamin D (1,24,25(OH)3D) and 24,25-

dihydroxyvitamin D (24,25(OH)2D). Raised serum 1,25(OH)2D acts on distal target organs to:

suppress synthesis of PTH by the parathyroid glands; modulate bone-forming osteoblasts (OB)

and bone-resorbing osteoclasts (OC) in the skeleton; enhance phosphate and Ca uptake in the

intestine. 1,25(OH)2D also stimulates expression of fibroblast growth factor 23 (FGF23), which

suppresses renal CYP27B1 activity. Documented extra-renal sites for expression of CYP27B1

are shown, along with putative actions of locally synthesised 1,25(OH)2D within these tissues.
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In particular, it has been suggested that expression of
CYP27B1 in the placenta is crucial to antibacterial and
anti-inflammatory responses at the fetal–maternal inter-
face(33).
The placenta provides an excellent example of the

potential importance of extra-renal 1,25(OH)2D production
to normal physiology. However, expression of VDR and
CYP27B1 has been reported for many other tissues that
can be broadly termed ‘barrier sites’(37,38), indicating that
localised responses to vitamin D may be a key feature of
these tissues (see Fig. 1). These include the skin, lungs and
colon where the function of localised synthesised
1,25(OH)2D does not appear to be directly linked to
classical vitamin D endocrinology. Instead, attention has
turned to the possible impact of CYP27B1 and VDR com-
ponents of ‘non-classical’ responses to vitamin D. As illu-
strated in Fig. 1, this includes anti-proliferative/
anticancer effects(39,40), as well as potential actions on the
regulation of blood pressure(41). In addition, much recent
attention has focused on the proposed role of vitamin D as an
immunomodulatory factor and this is outlined in further
detail in the following sections.

Vitamin D and innate antibacterial immunity

It is now more than a quarter of a century since a study
was published showing that 1,25(OH)2D potently
suppressed proliferation of the infectious pathogen
Mycobacterium tuberculosis (M. tuberculosis) in human
monocytes(42). At the time, the physiological significance
of this was unclear. It was known that patients with
tuberculosis (TB) often presented with over-production of
1,25(OH)2D

(43,44) in a similar fashion to that described
earlier for sarcoidosis. However, this was not initially
linked to the ability of monocyte CYP27B1 activity to
support intracrine killing of M. tuberculosis. Rather it was
assumed that therapeutic administration of 1,25(OH)2D or
synthetic non-calcaemic analogues of 1,25(OH)2D would
provide the most effective conduit for translational use of
vitamin D in patients with TB. Surprisingly, it was not
until 2006 that this issue was resolved in a series of
studies documenting the induction of CYP27B1 in human
monocytes treated with immunogens corresponding to
M. tuberculosis. Data by Liu et al. showed for the first time
that localised synthesis of 1,25(OH)2D by monocytes was
an integral part of the normal innate immune function of
these cells. Gene array analyses showed that macrophage
expression of CYP27B1 and VDR was induced following
activation of Toll-like receptor (TLR) 2/1, a pathogen
recognition receptor for Gram-positive bacteria and M.
tuberculosis(45). These observations were consistent with
a localised, intracrine system for vitamin D responses in
M. tuberculosis-challenged monocytes, and this was con-
firmed by subsequent studies in which TLR2/1-
activated cells were treated with 25OHD. Under these
conditions, the resulting locally synthesised 1,25(OH)2D
acted to modulate expression of VDR target genes such as
CYP24A1. However, intracrine synthesis of 1,25(OH)2D
also induced expression of the gene for cathelicidin
(LL-37), which encodes a protein known to be involved in

promoting intracellular killing of bacteria(46,47). Earlier
studies indicated that transcription of LL-37 is stimulated
in a direct fashion by the 1,25(OH)2D–VDR complex(48)

acting via a specific VDRE within the LL-37 gene pro-
moter(49). Interestingly, this VDRE appears to be specific
for primates, and vitamin D does not appear to induce
expression of LL-37 in other lower mammals such as
mice(49,50).

The most notable observation from studies of the intra-
crine induction of monocyte LL-37 is that this response led
to enhanced bacterial killing simply by increasing levels of
the precursor form of vitamin D, 25OHD. Consequently,
it was proposed that simple variations in vitamin D status
could enhance or impair monocyte innate immune
responses to infection. This was illustrated by studies
showing that monocytes cultured in medium supplemented
with serum from vitamin D-insufficient donors produced
lower levels of LL-37 following TLR2/1 activation when
compared with cells cultured in serum from vitamin D-
sufficient donors(45). In a similar fashion, serum from
vitamin D insufficient subjects supported higher levels of
TLR2/1-induced LL-37 following in vivo supplementation
with vitamin D(51). The overall conclusion from these
observations was that vitamin D is an important component
of antibacterial activity in monocytes. As such, decreased
availability of serum 25OHD due to vitamin D insuffi-
ciency has the potential to cause impaired innate immune
response to infection.

Since these initial studies, the intracrine model for vita-
min D-mediated antibacterial function in monocytes has
been expanded to include other mechanisms that further
facilitate the immune activity of vitamin D (see Fig. 2).
For example, it is now clear that LL-37 is not the only
antibacterial target for vitamin D in monocytes. The gene
promoter for another antibacterial protein b-defensin 2
(DEFB4) is known to contain VDRE in a similar fashion to
LL-37(48), but initially did not appear to be stimulated by
1,25(OH)2D

(45). However, more recent data have demon-
strated 1,25(OH)2D–VDR induction of DEFB4 in con-
junction with activation of another transcription factor,
NF-kB. Induction of NF-kB following treatment of mono-
cytes with cytokines such as IL-1b(52) or as a consequence
of signalling via the intracellular pathogen recognition
receptor non-obese diabetic 2 (NOD2)(53), have been
shown to enhance 1,25(OH)2D-mediated induction of
DEFB4. Vitamin D has also been shown to promote the
environment in which monocytes carry out bacterial kill-
ing. Monocytes treated with 1,25(OH)2D show increased
levels of autophagy, an intracellular mechanism known to
be essential for the general cytoplasmic homoeostasis in
eukaryotes(54). Autophagy and formation of associated
autophagosomes are also known to be important as a
mechanism for intracellular isolation of pathogens and
their subsequent eradication by antibacterial proteins(55).
Vitamin D-mediated induction of autophagosomes in
monocytes is associated with enhanced capacity for intra-
cellular killing of M. tuberculosis, but appears to be
mediated indirectly via increased transcription of LL-
37(56). Subsequent studies have shown that, consistent with
the initial studies of intracrine M. tuberculosis induction of
LL-37, TLR2/1-mediated induction of autophagy appears
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to involve induction of 25OHD metabolism via
CYP27B1(57), suggesting that this mechanism will also be
highly influenced by changes in vitamin D status.
Induction of antibacterial activity by vitamin D metab-

olites is not restricted to monocytes and macrophages.
Vitamin D-mediated induction of LL-37 has been reported
for a variety of cell types including bronchial epithelial
cells(58), myeloid cell lines(49), decidual(59) and tropho-
blastic cells of the placenta(60). However, this response is
not universal(61), and in those cells that do show induction
of LL-37 by vitamin D, the precise mechanism may be
different to that shown in Fig. 2. For example, human
keratinocytes have relatively low expression of TLR2 and
are therefore less sensitive to ligands for this pathogen
recognition receptor(62). In this setting, other tissue-specific
factors such as transforming growth factor-b can act to
compensate. Transforming growth factor-b potently stimu-
lates CYP27B1 expression in keratinocytes, leading to
increased levels of 1,25(OH)2D in the skin. This, in turn,
stimulates TLR expression, leading to enhanced sensitivity
to TLR2 ligands leading ultimately to further elevation of
epidermal CYP27B1 and enhanced vitamin D-mediated
production of antimicrobial LL-37(62). Because trans-
forming growth factor-b is released in the skin following
epidermal wounding, it has been suggested that vitamin

D-induced LL-37 may provide a mechanism for the pre-
vention of infection following wounding. Another recently
reported mechanism that appears to enhance vitamin
D-mediated antibacterial activity is signalling via the
intracellular pathogen-recognition receptor NOD2.
Expression of NOD2 is potently induced by 1,25(OH)2D in
a variety of cell types, enhancing cell sensitivity to the
NOD2 ligand muramyl dipeptide, a product of Gram-
positive and Gram-negative bacteria(63). NOD2 activates
NF-kB, and this has been shown to potentiate vitamin
D-mediated transcription of LL-37 and DEFB4(63). Similar
NF-kB-potentiation of vitamin D-induced DEFB4 has also
been described for IL-1b, suggesting that cytokines from
other parts of the normal immune system may act to fine
tune innate antibacterial responses to vitamin D.

Vitamin D, antigen presentation and innate immunity

Effective management of infection not only involves ade-
quate innate immune management of intracellular bacteria
but also requires appropriate adaptive or acquired immune
activity. At the interface between these two mechanisms
are antigen-presenting cells, which present bacterial anti-
gens to cells from the adaptive immune system such as

TLRTLR

25OHDDBP

CYP27B1

VDR

Pathogen (e.g. M. tuberculosis) 

1,25(OH)2D
Autophagosome

..…..

Bacterial
killing

LL37

DEFB4

Adaptive immunity

IL-15

+

IFNγ
+

CYP24A1

IL-4

+

Fig. 2. (Colour online) Vitamin D and monocyte antibacterial activity. Monocyte Toll-like

receptor (TLR2) signalling results in transcriptional induction of the vitamin D receptor (VDR)

and 1a-hydroxyase (CYP27B1). Circulating 25-hydroxyvitamin D (25OHD) bound to serum

vitamin D binding protein (DBP) enters monocytes and is converted to 1,25-dihydroxyvitamin

D (1,25(OH)2D) by mitochondrial CYP27B1. VDR-bound 1,25(OH)2D is then able to act as a

transcriptional factor, inducing expression of cathelicidin (LL-37) and b-defensin 2 (DEFB4)

(the latter in conjunction with NF-kB). 1,25(OH)2D-induced LL-37 promotes autophagy

(LC3 expression) and the formation of autophagosomes. Expression of CYP27B1 is also

stimulated by the cytokines IL-15 and interferon g (IFNg). Conversely, monocyte synthesis of

1,25(OH)2D is suppressed by IL-4, which acts to promote catabolic CYP24A1 activity.

1,25(OH)2D produced by monocytes may also act on other immune cells, notably those from

the adaptive immune system.
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T-lymphocytes (T-cells). Macrophages are able to fulfil
this function, but antigen presentation is more effectively
executed by dendritic cells (DC). It was recognised many
years ago that DC isolated from lymphoid tissue express
VDR(64), indicating that they were a likely target for vita-
min D-mediated immunoregulation. This was confirmed
by studies showing that treatment with 1,25(OH)2D sup-
pressed DC maturation and thereby promoted a tolerogenic
phenotype(65,66). This effect was more pronounced in
myeloid DC relative to plasmacytoid DC, despite both
subsets expressing similar levels of VDR(67). Under steady
state conditions myeloid DC are more active at priming
naive T-cell responses. By contrast plasmacytoid DC
exhibit more tolerogenic, immunosuppressive properties.
Consequently, 1,25(OH)2D appears to fulfil a more tol-
erogenic function by suppressing activity of myeloid DC,
while leaving the already tolerogenic plasmacytoid DC
unaffected.
DC share the same cell lineage as monocytes and

macrophages, and show the similar patterns of VDR and
CYP27B1 expression(68). Consequently, studies using
monocyte-derived DC showed that both 1,25(OH)2D and
25OHD are able to suppress the maturation and function of
these cells(68). Differentiation of DC towards a mature,
antigen-presenting phenotype, leads to increased expres-
sion of CYP27B1 but with a reciprocal suppression of
VDR levels(68). It therefore seems likely that any
1,25(OH)2D produced by mature DC will not act in an
intracrine fashion due to low VDR levels. Instead a para-
crine mechanism is more likely with VDR-rich immature
DC responding to 1,25(OH)2D produced by VDR-depleted
mature DC. This mechanism may be important because it
enables some DC to mature thereby facilitating activation
of normal immune responses, while preventing exaggera-
tion of this response and possible pathological effects. The
importance of vitamin D as a modulator of DC function is
supported by studies of VDR and CYP27B1 gene knockout
mice, in which these animals present with lymphatic
abnormalities consistent with increased numbers of mature
DC(69,70) and aberrant DC trafficking(71).

Vitamin D, innate immunity and human disease

Irrespective of recent developments in the intracrinology of
innate immunity, there is an historical precedence linking
vitamin D and infectious disease. In 1903, Niels Finsen
received the Nobel Prize for Medicine after he demon-
strated that he could cure Lupus Vulgaris (the epidermal
form of TB) with exposure to light from an electric arc
lamp. In a similar fashion, cod liver oil, a rich source of
dietary vitamin D was also used as a treatment for TB(72).
With this in mind, and the recent studies showing TLR2/1
activation of monocyte vitamin D metabolism, it is not
surprising that translation studies have explored further the
link between vitamin D and the disease TB. Epidemiology
has shown that vitamin D-insufficiency (serum 25OHD
<75 nM) is associated with increased incidence of
TB(73–76). Several clinical trials of vitamin supplementa-
tion have also been reported with varying success(76–78).
The most recent supplementation study using 4 · 2.5mg

vitamin D was successful in raising serum levels of
25OHD in TB patients, but showed no overall difference in
sputum conversion time between treatment and placebo
groups(79). However, the authors did show a significant
improvement in sputum conversion in a specific subset of
TB patients with a Taq1 single nucleotide polymorphism
within the VDR gene(79). Thus inherited factors may
influence responses to vitamin D supplementation and this
facet of vitamin D physiology. Another example of this is
provided by the gene for vitamin D binding protein (DBP),
the main serum carrier of vitamin D metabolites. Recent
studies by our group have shown that the ability of 25OHD
or 1,25(OH)2D to stimulate antibacterial activity in mono-
cytes is affected by serum levels of DBP and its binding
affinity for vitamin D metabolites(80). Both of these para-
meters are influenced by DBP genotype, notably the alleles
referred to as group-specific component (Gc)IF, Gc1S and
Gc2(81,82). Data from our studies suggest that there is
greater bioavailability of 25OHD or 1,25(OH)2D in the
presence of low affinity forms of DBP such as Gc1S and
Gc2(80). This observation supports the ‘free hormone
hypothesis’ in which steroid hormones are able to pas-
sively diffuse across cell membranes when they are not
bound to carrier proteins. However, it is important to
recognise that the opposite scenario, binding of 25OHD
to DBP, is important for classical vitamin D endocrinol-
ogy. DBP-bound 25OHD is recovered from glomerular
filtrates via an endocytic mechanism involving the mem-
brane receptor megalin prior to its conversion to
1,25(OH)2D in the proximal tubules(83).

The link between vitamin D and infection is unlikely
to be restricted to TB. Serum levels of 25OHD have
been shown to correlate with circulating levels of LL-37
and increased risk of critical illness in patients with sep-
sis(84). Low vitamin D status has also been linked to
increased infection and mortality in chronic kidney dis-
ease(85), and seasonal variations of infections such as
influenza, the latter highlighting a potential role for vita-
min D in counteracting infection in the upper respiratory
tract(86). However, it is also important to recognise that
the innate immune regulatory effects of vitamin D may
not be restricted to infectious disease. For example,
vitamin D-deficient mice show suppressed colonic expres-
sion of angiogenin-4, an antimicrobial protein produced
primarily in Paneth cells which acts to minimise tissue
invasion by enteric bacteria(87). In view of the fact that
aberrant innate immune response to enteric bacteria has
been postulated to initiate tissue inflammation in some
types of inflammatory bowel disease (IBD)(88), it is possi-
ble to speculate a role for vitamin D in protecting against
this disease via the induction of angiogenin-4 antibacterial
responses to enteric bacteria within the gastrointestinal
tract. Finally, vitamin D may also play a role in promoting
innate immune responses to non-living material. Studies
using monocytes obtained from patients with Alzheimer’s
disease have shown that these cells are less able to pha-
gocytose and degrade b-amyloid protein(89). Treatment
with 1,25(OH)2D potently enhanced monocyte phago-
cytosis and degradation of b-amyloid, suggesting a role
for vitamin D-mediated immunity in this neurological
disorder.
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Although much of the recent interest in non-classical
vitamin D action has stemmed from studies of monocyte
antibacterial activity, it is clear that there are many
other links between vitamin D and the immune system.
For example, immune responses to pathogens such as
M. tuberculosis are not restricted simply to TLR2/1-
induced expression of LL-37 or DEFB4, but instead in-
volve other facets of immunity. Promoter–reporter analysis
of the transcriptional regulation of CYP27B1 suggests that
TLR-mediated induction of the enzyme involves JAK-
STAT (Janus kinase-signal transducer and activator of
transcription), mitogen-activated protein kinase and NF-kB
pathways, but these signalling pathway also synergise with
cytokine-mediated induction of CYP27B1(90,91). In parti-
cular, recent studies have shown that cytokines from dif-
ferent T-cell subsets exert very specific effects on innate
immune responses to vitamin D. Interferon g , a cytokine
produced by type 1 T-helper (Th1) cells potently enhances
TLR2/1-induced expression of CYP27B1 and associated
bacterial killing(92). By contrast IL-4 a cytokine produced
by type 2 T-helper (Th2) cells acts to attenuate TLR2/1-
activated bacterial killing. However, in this instance, the
action of IL-4 was not due to effects on CYP27B1, but
instead involved enhanced CYP24A1 activity(92). In view
of this divergence between effects of Th1 and Th2 cyto-
kines on monocyte 25OHD metabolism, it is interesting to
speculate that vitamin D may play a key role at the
boundary between the innate and adaptive immune sys-
tems. What is certainly clear is the independent of its
innate immune activity vitamin D can act as a potent reg-
ulator of the adaptive immune system as well(93).
One of the initial observations linking vitamin D with

the adaptive immune system was that T-cells and B-
lymphocytes (B-cells) express VDR(94,95), with these
levels increasing as T- or B-cells proliferate(96). As a
consequence, initial studies of the effects of vitamin D on
T-cells focused on the ability of 1,25(OH)2D to suppress
T-cell proliferation(96–98). However, subsequent studies
showed that vitamin D could also influence the phenotype
of T-cells, notably through inhibition of Th1 cells, a subset
of CD4 + effector T-cells closely associated with cellular
immune responses(99). In concert with this 1,25(OH)2D
was also shown to enhance cytokines associated with Th2

cells, a subset of CD4 + T-cells associated with humoral
immunity(100,101). It was therefore suggested that vitamin D
could help limit the tissue damage associated with exces-
sive Th1 cellular immune responses by switching T-cells to
a Th2 phenotype. Subsequent studies using VDR gene
knockout mice have questioned the validity of this
hypothesis in that these animals have reduced rather than
elevated levels of Th1 cells(102). Thus, although vitamin D
appears to promote a Th1 to Th2 shift in vitro, it seems
likely that its effects on T-cells in vivo are more complex.
More recent reports have shown that in addition to Th1
or Th2 cells, there is a third effector T-cell population
termed Th17 cells because of their capacity to synthesise
IL-17(103,104). Th17 cells are important for promoting
immune responses to some pathogens, but they have
also been linked to inflammatory tissue damage(105,106).
Treatment of T-cells in vitro with 1,25(OH)2D suppresses
Th17 development(107,108), and inhibits of IL-17 production
via a post-transcriptional mechanism(109). In a similar
fashion, in vivo mouse models of IBD have shown that
treatment with 1,25(OH)2D down-regulates expression of
IL-17(110). By contrast, loss of 1,25(OH)2D in vivo as a
result of CYP27B1 gene knockout leads to elevated levels
of IL-17(111).

The adaptive immune effects of vitamin D are not
restricted to effector T-cells, and also include actions on
suppressor or regulatory T-cells (Treg), a group of CD4 +

T-cells known to inhibit the proliferation of other CD4 + T-
cells. Treatment of naive CD4 + T-cells with 1,25(OH)2D
potently induces the development of Treg(112), and this
may exert beneficial effects in autoimmune disease and
host–graft rejection(113–115). Although, 1,25(OH)2D can
stimulate Treg development directly via VDR expression
by CD4 + T-cells(116,117), it may also act via effects on
antigen-presenting cells. Specifically, as outlined earlier,
the ability of 1,25(OH)2D to induce an immature DC
phenotype will promote tolerogenic Treg activity in CD4 +

T-cells(118–120). In view of the fact that DC express
CYP27B1 as well as VDR, this indirect mechanism for
inducing Treg is also likely to be stimulated by 25OHD,
providing a possible link between low serum vitamin D
status and impaired Treg activity(28). The overall conclu-
sion from the various studies of T-cell phenotype is that
vitamin D acts to maintain a balance between inflamma-
tory Th1/Th17 cells and immunosuppressive Th2/Treg
(Fig. 3).

In common with CD4 + effector T-cells, CD8 + cyto-
toxic T-cells express abundant VDR and are sensitive to
cytokine regulation by 1,25(OH)2D

(121), but when com-
pared with CD4 + T-cells they are relatively insensitive to
anti-proliferative responses(122,123). The physiological
relevance of 1,25(OH)2D responses in CD8 + T-cells
remains unclear. For example, 1,25(OH)2D can protect
against the mouse model of multiple sclerosis, experi-
mental autoimmune encephalomyelitis (124). However, this
effect does not appear to require the presence of CD8 +

cells despite the fact that these cells have been implicated
in multiple sclerosis and experimental autoimmune
encephalomyelitis disease pathophysiology(125). Effects of
vitamin D on CD8 + T-cells may be subset-specific. The
CD8 molecule on T-cells can be expressed as either an

Th1
Th17

Th2
Treg

Vitamin D sufficient

Th1
Th17

Th2
Treg

Vitamin D insufficient

Fig. 3. Vitamin D and T-cell function. Under conditions of vitamin D

sufficiency, synthesis of 1,25-dihydroxyvitamin D (1,25(OH)2D)

within the immune system acts to maintain a tolerogenic immune

response by favouring Th2 and Treg v. Th1 and Th17 cells. Con-

versely, vitamin D insufficiency will favour a more inflammatory

immune response involving Th1/Th17 cells rather than Th2/Treg.
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a–b heterodimer or as an a–a homodimer, and the latter
appear to be influenced by vitamin D. Studies using the
VDR gene knockout mouse have shown aberrant gut
migration of CD8 + a–a cells and this appears to be linked
to increased risk of IBD in these animals(126). This is
similar to the positive effect of 1,25(OH)2D on epidermal
T-cell homing(127), but contrasts its negative effects on
T-cell homing to lymph nodes(128).
Early studies demonstrated that 1,25(OH)2D could

also act on VDR-expressing B-cells to suppress cells pro-
liferation(129) and Ig production(130). More recent reports
confirmed these effects and also showed that 1,25(OH)2D
can also inhibit the differentiation of plasma cells and
class-switched memory cells(131), highlighting a potential
role for vitamin D in B-cell-related disorders such as sys-
temic lupus erythamtosus. Interestingly, this study also
demonstrated B-cell expression of CYP27B1, indicating
that B-cells may be capable of autocrine/intracrine
responses to vitamin D(131). This mechanism may be
common to lymphocytes in general as CYP27B1 expres-
sion has also been reported in T-cells(127).

Vitamin D, adaptive immunity and human disease

Although the adaptive immune system is essential for
much of the innate immune activity outlined in previous
sections, it clear that vitamin D may also be linked to
diseases more closely associated with T- and B-cell func-
tion. In particular, increasing numbers of studies have
linked vitamin D insufficiency to increased risk or severity
of autoimmune disease(132,133). Low vitamin D status has
been linked to type 1 diabetes(134,135), and supplementation
with vitamin D has been reported to protect against
this disease(136). In a similar fashion, analysis of the
NOD mouse, an animal model for type 1 diabetes, has
shown increased disease severity under conditions of diet-
ary vitamin D restriction(137). Another strand of evidence
linking vitamin D with type 1 diabetes is provided by the
extensive genetic analyses that have investigated the phy-
siological impact of polymorphic variations in the genes
for various components of the vitamin D metabolic and
signalling system. Specific VDR gene haplotypes appear to
protect against diabetes(138), and polymorphisms in the
CYP27B1 gene have also been shown to affect diabetes
susceptibility(139).
Other autoimmune diseases linked to vitamin D insuffi-

ciency include multiple sclerosis (reviewed in(140)). Studies
of human multiple sclerosis patients are supported by
analysis of the experimental autoimmune encephalomyelitis
mouse of multiple sclerosis, which shows increased disease
severity under dietary vitamin D restriction(141). Thera-
peutic administration of 1,25(OH)2D to experimental
autoimmune encephalomyelitis mice has been shown to
protect against disease symptoms(142,143), with this effect
involving regulation of cytokine synthesis, notably IL-10
activity, and apoptosis of inflammatory cells(115). In a
similar fashion to type 1 diabetes and multiple
sclerosis, epidemiology suggests that patients with Crohn’s
disease, a form of IBD have decreased serum levels
of 25OHD(144–146). Likewise, studies using various

experimentally induced forms of IBD in mice indicate that
1,25(OH)2D plays a crucial role in the pathophysiology
of this disease(111,147–149). Crohn’s disease is considered
to be an autoimmune disease, with the disease aetiology
appearing to be due to aberrant colonic immune responses
to enteric bacteria. Intriguingly, current studies have
implicated aberrant innate immune handling of enteric
microbiota as an initiator of the adaptive immune damage
associated with Crohn’s disease(88). Consequently, it is
possible that the effects of vitamin D on IBD may involve
both the activation of innate immunity, together with the
suppression of adaptive immunity and associated inflam-
mation.

Conclusions

Although the interaction between vitamin D and the
immune system has been recognised for almost 30 years, it
is only in the last few years that the physiological rele-
vance of vitamin D-mediated immunity has become clear.
Studies using human cells and animal models have high-
lighted potent effects of vitamin D on both innate and
adaptive immune responses in a wide variety of tissues.
These observations support the overall hypothesis that
vitamin D may play a role in promoting elimination of
pathogens such as M. tuberculosis, while suppressing the
potentially damaging effects of prolonged inflammation.
As such, vitamin D has the potential to influence a wide
range of immune disorders, notably infectious and auto-
immune diseases. At a clinical level, associated studies
have expanded functional data to show that vitamin D
insufficiency is linked to several common immune health
problems.

Many challenges remain. For example, innate anti-
bacterial activity of vitamin D appears to be restricted to
primates, which express the promoter VDRE required for
vitamin D-mediated transcriptional regulation of anti-
bacterial proteins. This raises the question as to whether or
not vitamin D plays a role in innate immunity in mouse
models? Some mouse antimicrobial molecules such as
angiogenin-4 appear to be influenced by vitamin D(150), but
are there other targets? In contrast to the innate immune
system, most of the reported actions of vitamin D on
adaptive immunity are focused on suppressive actions.
However, recent studies suggest that vitamin D may also
be involved in directing T-cell activation(151). Although
this mechanism is considered to be controversial(152), it
underlines the exciting new developments that characterise
the current interest in vitamin D and the immune system.
Perhaps the most important challenge facing vitamin D
immunity research is the evolution of clinical studies from
observational association analyses to prospective clinical
trials. For many diseases, notably autoimmune diseases,
this is a huge logistical challenge and is complicated by
uncertainty over whether vitamin D can be used as therapy
for some diseases or whether it simply acts to protect
against the onset of disease.
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