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A B S T R A C T   

The design, fabrication, and application of edible nanoemulsions for the encapsulation and delivery of bioactive 
agents has been a highly active research field over the past decade or so. In particular, they have been widely 
used for the encapsulation and delivery of hydrophobic bioactive substances, such as hydrophobic drugs, lipids, 
vitamins, and phytochemicals. A great deal of progress has been made in creating stable edible nanoemulsions 
that can increase the stability and efficacy of these bioactive agents. This article highlights some of the most 
important recent advances within this area, including increasing the water-dispersibility of bioactives, protecting 
bioactives from chemical degradation during storage, increasing the bioavailability of bioactives after ingestion, 
and targeting the release of bioactives within the gastrointestinal tract. Moreover, it highlights progress that is 
being made in creating plant-based edible nanoemulsions. Finally, the potential toxicity of edible nanoemulsions 
is considered.   

1. Introduction 

Nanoemulsions are a type of colloidal dispersion that consists of 
small droplets of one fluid dispersed in another immiscible fluid [1,2]. 
Typically, the two fluids are oil and water, but other immiscible liquids 
can also be emulsified. There are two common types of nanoemulsions 
that can be distinguished from each other by their structural organiza-
tion: oil-in-water (O/W) and water-in-oil (W/O) types (Fig. 1). O/W 
nanoemulsions consist of small oil droplets dispersed within water, 
whereas W/O nanoemulsions consists of small water droplets dispersed 
in oil. Nanoemulsions with more complicated structures are also 
possible, such as W/O/W or O/W/O (Fig. 1), but these are less common. 
Currently, O/W nanoemulsions are the most widely used for encapsu-
lation and delivery purposes and so they will be the main focus of this 
article. 

A frequent source of confusion in this area is the difference between 
emulsions, nanoemulsions, and microemulsions [3]. Indeed, many of the 
papers published in this area employ incorrect terminology when 
referring to the colloidal systems they are working with. It is therefore 
important to clearly distinguish between these systems. Nanoemulsions 
and emulsions are both thermodynamically unstable because the free 
energy of the separate oil and water phases is lower than that of the 

emulsified system. This is because of the positive free energy (ΔG) 
required to increase the surface area (ΔA) between the oil and water 
phases: ΔG = γΔA, where γ is the interfacial tension [3]. From a ther-
modynamic perspective, nanoemulsions are therefore less stable than 
emulsions because they have a higher surface area, i.e., there is a greater 
driving force for them to separate. However, from a kinetic perspective, 
nanoemulsions are usually much more stable than emulsions because 
their smaller droplet size reduces the tendency for gravitational sepa-
ration (creaming/sedimentation) or droplet aggregation (coalescence/ 
flocculation) to occur, i.e., there is a higher kinetic energy barrier be-
tween the emulsified and non-emulsified states (Fig. 2). The only dif-
ference between nanoemulsions and emulsions is the droplet size. 
Typically, nanoemulsions are considered to have mean droplet di-
ameters below 200 nm, whereas emulsions have them above this value 
[4]. Even so, there is currently no single definition that is widely used. 
Researchers often use different mean diameters as the demarcation point 
between nanoemulsions and emulsions, such as 100, 200, 500, or even 
1000 nm. Moreover, it is not clear what mean droplet diameter to use, e. 
g., the number- (d10), surface- (d32), volume- (d43), or intensity- (dZ) 
weighted average [1]. It should be noted that there are no dramatic 
changes in the properties of these colloidal systems when the particle 
size moves from above to below these critical cut-off points, but it would 
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be useful to have a more consistent definition. To be consistent with 
government regulations on nanoparticles, such as those of the European 
Union, nanoemulsions should have number-weighted mean diameters 
below 100 nm. In this article, a looser definition will be employed so as 
to include systems with mean diameters below about 500 nm, since a 
large majority of the published studies on nanoemulsions fall into this 
size range. 

Nanoemulsions are often confused with microemulsions in the 
literature, but they are distinct types of colloidal dispersion, despite 
having some similarities. Unlike nanoemulsions, microemulsions are 
thermodynamically stable systems, i.e., the separated components 
(usually oil, water and surfactant) have a higher free energy than the 
colloidal dispersion [3]. Consequently, microemulsions should form 
spontaneously when their constituents are brought together. In practice, 
some external energy (such as mixing and/or warming) is required to 
overcome kinetic energy barriers between the separated and micro-
emulsified states. Once formed, microemulsions should remain stable 
indefinitely, provided their composition and the environmental condi-
tions are not altered, and there is no chemical degradation or microbial 

contamination. The reason that microemulsions are thermodynamically 
stable, despite having a large specific surface area, is because the 
interfacial tension is very low when the surfactant monolayer adopts it’s 
optimum curvature [3]. As a result, entropy of mixing dominates the 
overall free energy difference between the separated and micro-
emulsified states. Like nanoemulsions, microemulsions are dispersions 
of small emulsifier-coated oil droplets in water, which can be used to 
encapsulate hydrophobic bioactives. Microemulsions are often optically 
transparent and resistant to gravitational separation because of their 
very small particle size, which is similar to nanoemulsions that contain 
very small droplets. 

This review article focuses on the most recent advances in the 
application of nanoemulsions as delivery systems for bioactive compo-
nents. In particular, it focuses on the formulation of nanoemulsions from 
plant-based ingredients, since this is a major thrust in many industries at 
present, as well as recent advances in understanding the gastrointestinal 
fate of nanoemulsions, particularly their digestibility and bioavail-
ability, using both in vitro and in vivo methods. In addition, recent ap-
plications of nanoemulsions to encapsulate and deliver a variety of 
hydrophobic bioactive substances are highlighted, including omega-3 
fatty acids, antimicrobials, vitamins, nutraceuticals, and cannabinoids. 
Finally, approaches for extending the functionality of nanoemulsions are 
highlighted, including interfacial engineering, droplet clustering, lipid 
phase solidification, and microgel encapsulation technologies. 

2. Advantages of nanoemulsions 

Nanoemulsions have a number of potential advantages over emul-
sions and microemulsions for the encapsulation and delivery of hydro-
phobic bioactives. 

2.1. Nanoemulsions versus emulsions 

The main advantages of nanoemulsions over emulsions are related to 
the smaller size of the oil droplets in the nanoemulsions [1,3]. When the 
mean droplet diameter is below about 50 nm, it is possible to create 
nanoemulsions that are optically transparent, which is beneficial for 
some applications, such as fortified waters, fruit juices, or soft drinks. It 
should be noted, however, that it is often challenging to create nano-
emulsions containing droplets that are this small. Typically, high 

Oil-in-water Water-in-oil Water-in-oil-in-water

Fig. 1. Nanoemulsions may be of the oil-in-water or water-in-oil type, but more 
complex types are also possible, such as the water-in-oil-in-water type. 

�G

�G*

Separated Phases

Microemulsion
Thermodynamically 

Stable

Thermodynamically 
Unstable

Separated Phases

Nanoemulsion
Thermodynamically 

Unstable

Thermodynamically 
Stable

�G*

Nanoemulsion Formation Microemulsion Formation

Fig. 2. Schematic diagram of the free energy of microemulsion and nanoemulsion systems compared to the phase separated state. Microemulsions have a lower free 
energy than the phase separated state, whereas nanoemulsions have a higher free energy. The two states are separated by an activation energy ΔG*. 
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concentrations of synthetic surfactants are required. When the droplet 
diameter is below about 200 nm, nanoemulsions are highly resistant to 
gravitational separation (usually creaming), which is useful for devel-
oping fluid formulations that are expected to have an extended shelf-life. 
Finally, the smaller size of the oil droplets in nanoemulsions means that 
they are digested more rapidly and fully in the gastrointestinal tract, 
which can increase the bioavailability of encapsulated hydrophobic 
bioactives. 

2.2. Nanoemulsions versus microemulsions 

A major advantage of nanoemulsions over microemulsions is that 
they can be formulated from a much wider range of ingredients, such as 
emulsifiers and oils [1,3]. In particular, nanoemulsions can be created 
from natural emulsifiers, including proteins, polysaccharides, phos-
pholipids, biosurfactants, and saponins [5–8]. This is becoming 
increasingly important as more and more consumers are adopting 
commercial products that have cleaner labels, which means that in-
dustry is trying to replace synthetic ingredients with natural ones. In 
contrast, high concentrations of synthetic surfactants are usually 
required to prepare microemulsions, which is undesirable for cost, taste, 
toxicity, and labeling reasons. Another important advantage is that 
nanoemulsions typically have a higher loading capacity than micro-
emulsions, i.e., they can incorporate more hydrophobic bioactives per 
unit mass of delivery system [9]. This is mainly because microemulsions 
only have a relatively small hydrophobic domain inside them that can 
accommodate bioactives. 

3. Formulation and fabrication of nanoemulsions 

In general, there are two main approaches for producing nano-
emulsions, which have been described in detail elsewhere [10–12]: low- 
energy and high-energy fabrication methods. Typically, low-energy 
methods are based on the spontaneous formation of tiny oil droplets 
when the composition or temperature of a system containing oil, water, 
and surfactant is changed in a specific way. This category of methods 
includes spontaneous emulsification, phase inversion temperature, and 
emulsion inversion methods. In contrast, high-energy methods are based 
on applying intense mechanical forces to a mixture of oil, water, and 
surfactant, which causes the oil phase to breakup into tiny surfactant- 
coated oil droplets that are dispersed within water. This category of 
methods includes microfluidization, sonication, and high-pressure ho-
mogenization. A considerable number of recent research efforts have 
focused on identifying the optimum compositions and operating con-
ditions required to produce nanoemulsions using these methods. 

One of the main areas of focus in recent research has been on creating 
nanoemulsions entirely from natural food ingredients, rather than syn-
thetic ones, due to increasing consumer demands for clean label prod-
ucts [5,8]. In particular, there has been great interest in using plant- 
based (rather than animal-based) natural ingredients, such as oils, 
phospholipids, proteins, polysaccharides, biosurfactants, or saponins 
isolated from plant materials [5,8]. It has proved very difficult to 
formulate nanoemulsions using low-energy methods from natural 
emulsifiers because they do not have the required solubility character-
istics and phase behavior [13,14]. High-energy methods are much more 
suitable for this purpose since they can create nanoemulsions from a 
wide range of different kinds of emulsifiers and oils [5,8]. Typically, 
plant-based emulsifiers have to be highly water-soluble, surface active, 
have rapid adsorption kinetics, and be present at a high enough con-
centration to cover all the oil droplet surfaces formed during homoge-
nization. A number of plant-based emulsifiers have these characteristics, 
including many phospholipids, proteins, polysaccharides, bio-
surfactants, and saponins. 

A few examples of plant-based nanoemulsions prepared using high- 
energy methods are given here. Sonication has been used to prepare 
nanoemulsions from a number of different plant-based emulsifiers, 

including soy proteins, rice proteins, peanut proteins [15], soy protein/ 
phospholipid mixtures [16], pea proteins [17,18], soy lecithin, tea sa-
ponins [19], and quillaja saponins [19]. Similarly, microfluidization has 
been used to prepare nanoemulsions from various kinds of plant-based 
emulsifiers, including soy proteins [20], soy protein-tea polyphenol 
complexes [21], soy protein-dextrin conjugates [22], sesame proteins 
[23], lentil proteins [24,25], pea proteins [26,27], pea protein-tannic 
acid complexes [28], gum arabic [29], soy lecithin [30,31], sunflower 
lecithin [32], quillaja saponin [33], and tea saponin [34]. The stability 
and functionality of these nanoemulsions is highly dependent on the 
nature of the plant-based emulsifier used to formulate them. In some 
cases, the functional performance of protein-coated oil droplets in 
nanoemulsions can often be improved by adding charged poly-
saccharides that adsorb to the droplet surfaces and form a protective 
coating [25]. Taken together, these studies indicate that nanoemulsions 
can be successfully formulated from plant-based ingredients, at least 
using high-energy homogenization methods, which may be important 
for many applications in the modern food industry. 

4. Factors affecting bioavailability 

One of the most important applications of nanoemulsions within the 
food industry has been to increase the bioavailability of beneficial 
bioactive substances, such as oil-soluble vitamins and phytochemicals 
[12,35]. For this reason, it is important to understand the major factors 
that impact the overall bioavailability (BA) of bioactive substances after 
they have been ingested [36]. The bioavailability can be taken to be the 
proportion on an ingested substance that reaches the site of action 
within the body in a biologically active form, which can be simplistically 
expressed by the following Eq. [37]: 

BA(t) = B*(t)×A*(t)×D*(t)×M*(t)×E*(t) (1) 

The bioavailability depends on numerous events that occur within 
the human GIT and body [38], which are shown schematically in Fig. 3 
[4]. In this expression, B*(t), A*(t), D*(t), M*(t), and E*(t) represent the 
bioaccessibility, absorption, distribution, metabolism, and excretion of 
the bioactive substance over time (t) [36]. The bioaccessibility is the 
fraction of the substance inside the GIT fluids that is in a form that can be 
absorbed. For hydrophobic substances, this is usually the fraction that is 
solubilized within the mixed micelle phase, which is comprised of mi-
celles and vesicles. The absorption is the fraction of the bioaccessible 
substance in the gut that passes through the epithelium cells and enters 
the body. Absorption may occur through a variety of passive or active 
transport mechanisms. Typically, more hydrophilic substances pass 
through the epithelium layer and enter the portal vein, where they then 
move to the liver before entering the systemic circulation. In contrast, 
more hydrophobic substances are packaged into lipoproteins within the 
epithelium cells, which are then travel through the lymphatic system, 
before reaching the systemic circulation, thereby avoiding first pass 
metabolism. The distribution reflects the fraction of the bioactive sub-
stance located at the intended site of action, which takes into account 
the fact that the absorbed substance is distributed around the human 
body to various tissues and organs. In practice, the concentration of the 
substance in the systemic circulation (bloodstream), rather than in 
specific tissues, is often used to represent the effective concentration. 
The metabolism is the fraction of a substance remaining within a bio-
logically active form at the site of action, taking into account any 
chemical or metabolic changes that have occurred inside the gut and 
body. Finally, the excretion is the fraction of substance remaining at the 
site of action after any of the normal excretion processes operating in the 
body, such as expulsion through the urine, feces, breath, or sweat, have 
occurred. In practice, the overall bioavailability of a substance may be 
mainly determined by one or more of these processes. The concentration 
of a bioactive substance at a particular site in the body varies over time 
after ingestion of a food because all of the processes mentioned are time 
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dependent. The resulting pharmacokinetic profile of an ingested 
component determines its bioactivity (Fig. 4). 

A great deal of research on nanoemulsion-based delivery and 
excipient systems has focused on formulating them to increase the 
bioavailability of strongly hydrophobic substances, like oil-soluble vi-
tamins (A, D, E, and K), nutraceuticals, and long-chain triglycerides [9]. 
The rate limiting step for many of these hydrophobic substances is their 

bioaccessibility, which is the fraction taken up by the mixed micelles in 
the small intestine [36]: 

B* = 100×
c
cT

(2)  

here, cM and cT are the concentrations of the bioactive substance present 
in the mixed micelle phase and in the total digest, respectively. The 
mixed micelle phase contains a mixture of colloidal particles (such as 
micelles and vesicles) that are comprised of bile acids and phospholipids 
(secreted by the gut), as well as free fatty acids and monoacylglycerols 
(generated during digestion of the ingested lipid). Hydrophobic bio-
actives are solubilized within the hydrophobic interiors of the mixed 
micelles and then carried to the epithelium cells where they can be 
absorbed [39]. One of the advantages of using nanoemulsions to in-
crease the bioavailability of hydrophobic substances is that they are 
rapidly and completely digested in the small intestine, thereby releasing 
these substances. Moreover, they rapidly form mixed micelles that can 
solubilize the released hydrophobic substances. 

Studies have been carried out to elucidate the link between the 
composition and structure of nanoemulsions, the properties of the mixed 
micelles formed in the small intestine, and the bioaccessibility of 
bioactive substances [9]. These studies indicate that the hydrophobic 
domains inside the mixed micelles (micelles and vesicles) have to be 
sufficiently large to accommodate the bioactive substances [40,41]. 
Otherwise, they will remain in the aqueous phase and may crystallize or 
form a separate oily phase, which reduces their bioaccessibility. In 
general, the size, composition, and physical state of the lipid droplets in 
nanoemulsions has to be optimized to increase their bioaccessibility [9]. 

5. Advances in assessing gastrointestinal fate of nanoemulsions 

Knowledge about the potential gastrointestinal fate of nano-
emulsions has increased greatly over the past few years as a result of the 

BA(t) = B*(t) �A*(t) � D*(t) � M*(t) � E*(t)
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development and application of both in vitro and in vivo testing methods 
[42,43]. 

5.1. In vitro gastrointestinal studies 

Many researchers are now using simulated gastrointestinal models to 
understand how different nanoemulsion formulations might behave 
inside the human gut [24,44,45]. A number of simulated GIT models 
have been developed for this purpose, which vary in their sophistication, 
accuracy, and ease of use, which often makes comparison of results from 
different studies challenging [46,47]. For this reason, standardized 
models have recently been developed for this purpose. The most widely 
used of these models is the static in vitro digestion method developed by 
the INFOGEST international consortium [46,48]. This consortium in-
cludes an international network of scientists whose aim is to improve the 
healthiness of foods by understanding how they behave within the 
human gastrointestinal tract (www.cost-infogest.eu). As part of this 
work, a standardized in vitro GIT model was established to better 
simulate the events occurring inside the human gut, as well as to 
harmonize the results obtained from different research laboratories. The 
INFOGEST model is designed to simulate the mouth, stomach, and small 
intestine regions of the human GIT. It provides detailed instructions on 
the conditions that should be used in each region of the GIT, including 
incubation times, mechanical forces, temperatures, pH values, mineral 
compositions, enzyme activities, mucin levels, and bile salts concen-
trations. In addition, it gives instructions on how the data obtained 
should be collected, analyzed, and reported. The INFOGEST model is a 
“static” approach because the conditions used in each region of the GIT 
are fixed. The results of the INFOGEST model have been compared to 
those obtained in animal and human feeding studies, which has shown 
that there is a good qualitative in vitro – in vivo correlation in many cases 
[49,50]. As a result, the INFOGEST method is now widely used to 
rapidly test new formulations intended for oral ingestion, which is 
reducing the need for ethically challenging and costly animal and 
human studies. It should be noted, however, that a simple static diges-
tion model cannot accurately reflect the complexity and diversity of the 
human gut. This problem can partly be overcome by using more so-
phisticated “dynamic” in vitro digestion models, where the conditions in 
each gastrointestinal region are varied over time, e.g., by continuously 
pumping in acids, enzymes, or bile salts based on feedback loops 
[49,51,52]. For instance, dynamic in vitro digestion models have been 
used to study the bioavailability and bioactivity of curcumin encapsu-
lated within nanoemulsions [53], as well as the bioaccessibility of to-
copherols in nanoemulsions [54]. Although these dynamic models are 
better at simulating real GIT conditions, they are more laborious, costly, 
and time-consuming to carry out. Moreover, the results obtained from 
dynamic models are often more difficult to interpret. These factors have 
limited their more widespread application. 

In vitro digestion models are particularly useful for providing insights 
into the changes in the structure and composition of nanoemulsions as 
they pass through the GIT, the rate and extent of macronutrient diges-
tion, and the bioaccessibility of encapsulated bioactive substances. They 
may also be used to provide information about the chemical or 
biochemical transformation of encapsulated components within the GIT 
(such as oxidation or hydrolysis). Occasionally, they have been extended 
to provide insights into the potential absorption of bioactives through 
the epithelium cells lining the small intestine. For instance, some re-
searchers have used dialysis bags to model the epithelium cells. The 
dialysis bags are placed in the small intestinal fluids to measure the 
concentration of the bioactive component that is released from the test 
sample and then transported through the pores [55]. A more sophisti-
cated approach is to take the contents of the digest produced after the 
small intestine phase, dilute it with an appropriate buffer, and then place 
it on a cell culture model of the epithelium cells, such as Caco 2 cells 
[56,57]. The amount of the bioactive substances transported into or 
through the model epithelium cells can then be determined, as well as 

their packaging into lipoproteins, such as chylomicrons [58]. In humans, 
hydrophobic bioactive substances are usually packaged into chylomi-
crons within the epithelium cells, which are small triacylglycerol-rich 
particles coated by phospholipids and proteins, and then carried 
through the lymphatic system to the bloodstream. It should be noted 
that many researchers simply place their formulated nanoemulsions on 
cell culture models, without carrying out a digestion step first, which 
may lead to unrealistic or misleading results. 

5.2. In vivo gastrointestinal studies 

A more accurate understanding of how nanoemulsions behave inside 
the human gut can often be obtained using animal feeding studies 
[59,60]. A nanoemulsion formulation is usually prepared and then 
orally administered to animals (usually rats or mice). Typically, this is 
done by oral gavage, which involves placing the nanoemulsion in a sy-
ringe and then injecting it directly into the animal’s stomach. The 
advantage of this method is that the amount of nanoemulsion admin-
istered to the animal can be carefully controlled. However, it is also 
possible to have the animal drink a liquid form of the nanoemulsion or to 
eat a powdered form, which may be produced by freeze or spray drying. 
The advantage of this approach is that it causes less discomfort to the 
animal, and the nanoemulsion passes through the mouth and esophagus, 
which could alter its properties. The gastrointestinal fate of the nano-
emulsion can then be monitored by sacrificing the animal and measuring 
the concentration, size, and properties of the oil droplets in different 
regions of the GIT. In addition, the concentration of the administered 
bioactive components can be measured in the bloodstream and specific 
organs (such as the liver, kidney, heart, adipose tissue, muscles, intes-
tinal tissue, brain, etc.) after a fixed time [59]. Ideally, measurements 
should be made over a range of times using different animals to obtain 
information about how the bioactives are absorbed by the body, and 
then distributed, metabolized, and excreted. In many studies, the con-
centration of the administered bioactive agent and/or its metabolites is 
simply measured in the bloodstream of the animal over time by peri-
odically taking blood samples [59]. Thus, the impact of nanoemulsion 
formulation (such as particle size, oil type, and emulsifier type) on the 
pharmacokinetics of the bioactive component can be established. 
Pharmacokinetic experiments can also be carried out using human 
feeding studies, provided the formulation is known to be safe and 
appropriate approval has been obtained [61]. However, few human 
studies have been reported in the literature on the gastrointestinal fate 
of ingested nanoemulsions. In one study, it was shown that nano-
emulsions improved the oral bioavailability of ω-3 fatty acids in humans 
after they were incorporated into yogurts, when compared to a bulk oil 
[61]. In another human feeding study, it was shown that emulsified cod 
liver oil had a significantly higher bioavailability than bulk cod liver oil 
[62]. 

5.3. Selecting appropriate reference systems 

Bioaccessibility, bioavailability or pharmacokinetic studies of bio-
actives usually involve comparing the results obtained using different 
formulations (Fig. 5). It is important to select an appropriate reference 
sample to compare to the test sample, otherwise the results will be 
misleading. The gastrointestinal behavior of a hydrophobic bioactive 
encapsulated within a test nanoemulsion may be compared to various 
kinds of reference sample:  

• Bulk form: In this case, a solid bioactive may be used in a powdered 
bulk form [63] or a liquid bioactive may be used in a fluid bulk form 
[61,64]. The bulk sample is then simply mixed with simulated GIT 
fluids or administered to an animal. This format often has a relatively 
low bioaccessibility and bioavailability due to the large surface area 
and poor solubility in gastrointestinal fluids; 
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• Non-encapsulated dispersed form: In this case, a crystalline bioactive is 
suspended in an aqueous or oily dispersion in the form of small 
crystals [65]. Typically, this format also has a relatively low bio-
accessibility and bioavailability for the same reasons;  

• Dissolved form: In this case, a crystalline bioactive is dissolved in a 
suitable organic solvent (like DMSO) [66,67]. This format may not 
give an accurate comparison, since these organic solvents cannot be 
used in food applications;  

• Emulsion form: In this case, the bioactive is encapsulated within a 
conventional emulsion (d > 200 nm), but the size of the oil droplets 
used may vary considerably [68,69]. For this reason, it is often 
informative to use emulsions with different mean droplet diameters 
in the comparison (e.g., ≈500, 1000, 2000, 5000 and 10,000 nm). 
Typically, it is important that the composition of the emulsion is 
similar to that of the test nanoemulsion (e.g., oil and emulsifier type) 
to make reliable comparisons.  

• Nanoemulsion form: In this case, the bioactive is encapsulated in 
another nanoemulsion (d < 200 nm) with a different composition or 
structure. For instance, nanoemulsions with different mean droplet 
diameters, emulsifier types, or oil phase compositions could be 
compared to the test nanoemulsion [69–72].  

• Alternative delivery system form: The purpose of some studies is to 
compare the efficacy of a test nanoemulsion formulation with one or 
more other colloidal delivery systems, such as biopolymer nano-
particles, nanoliposomes, nanocrystals, or microgels [73–75]. 

It is always important to select an appropriate reference formulation 
when establishing the efficacy of a test nanoemulsion-based delivery 
system for a specific bioactive component. It is also important to ensure 
that the concentration of the bioactive is similar in the reference sample 
as in test nanoemulsion. 

6. Applications 

6.1. Healthy lipids: Omega-3 fatty acids and conjugated linoleic acids 

Nanoemulsions have been used to encapsulate flaxseed oil, which is 
rich in alpha-linoleic acids, an important source of plant-based omega-3 
fatty acids in the diet [76]. The researchers showed that stable nano-
emulsions could be formed using a combination of whey protein and 
sodium alginate to stabilize them. The whey protein acted as an emul-
sifier that adsorbed to lipid droplet surfaces, while the sodium alginate 
formed a protective polysaccharide coating around the protein- 

stabilized lipid droplets. In an in vivo feeding study using broiler 
chickens, the authors showed that the level of omega-3 fatty acids in the 
flesh of the chickens was appreciably higher when emulsified flaxseed 
oil was used rather than bulk flaxseed oil. This result can be attributed to 
the faster and more extensive digestion of the small oil droplets within 
the gastrointestinal tracts of the birds. In this example, nanoemulsions 
may be used as effective delivery systems to increase the healthy lipid 
profile of meat products. 

An in vivo animal study has been used to study the efficacy of 
nanoemulsions at delivering a bioactive oil rich in tocopherols: kenaf 
(Hibiscus cannabinus L.) seed oil [77]. These systems were stabilized 
using complexes of β-cyclodextrin, sodium caseinate and Tween 20. The 
researchers compared the pharmacokinetic profiles of nanoemulsions, 
emulsions, and bulk oil after oral administration to adult female Spra-
gue–Dawley rats. In general, the level of tocopherols detected in the 
animal’s bloodstream increased more rapidly in the following order: 
nanoemulsions > emulsions > bulk oil. After 180 min, the bioavail-
ability of the tocopherols in the blood was 1.4- and 1.7-fold higher in the 
nanoemulsions than in the emulsions and bulk oil, respectively. This 
result can again be attributed to the faster and more extensive digestion 
of the lipid phase as its surface area increases (particle size decreases). 
These results were consistent with an earlier in vitro study by the same 
authors that showed the nanoemulsions were digested more rapidly and 
had a higher bioaccessibility than bulk oil [54]. Hence, their appeared to 
be a good in vitro-in vivo correlation, at least qualitatively, for this 
system. 

In another in vivo animal study using hypercholesterolemic Sprague- 
Dawley rats, the same authors examined the impact of delivery format 
(nanoemulsion, emulsion, or bulk oil) on the ability of kenaf seed oil to 
reduce cholesterol levels [78]. The nanoemulsion format was shown to 
exhibit the strongest cholesterol-lowering effects, as well as the stron-
gest weight control and reduced liver fat levels, which was mainly 
attributed to the higher bioavailability of the kenaf seed oil when it was 
encapsulated within small lipid droplets. 

In a human feeding study, it was shown that administering an ω-3- 
rich algal oil in a nanoemulsion form improved its bioavailability 
compared to a bulk oil form [61]. The authors incorporated the different 
forms of algal oil into a model yogurt product and used a randomized 
crossover design (11 participants) to study the pharmacokinetics. Their 
results showed that the blood levels of ω-3 fatty acids were significantly 
higher for the nanoemulsion than for the bulk oil, which indicated that 
nanoemulsions could be used to enhance the bioavailability of these 
healthy lipids. In another human feeding study, a randomized crossover 
design (47 participants) showed that ω-3-rich cod liver oil had a 
significantly higher oral bioavailability when administered in an emul-
sified form than in a bulk form [62]. 

6.2. Antimicrobials 

There has been great interest in the utilization of oil-in-water 
nanoemulsions to encapsulate natural antimicrobials, particularly 
essential oils, over the past few years [79–81]. Essential oils are hy-
drophobic liquids that can be isolated from many kinds of plants, which 
often contain a variety of different antimicrobial constituents [82]. This 
is probably because these substances are secreted by plants to protect 
them from a variety of predators, such as microbes, insects, or herbi-
vores. The key molecular mechanisms responsible for the antimicrobial 
action of essential oils are believed to be disruption of the microbial cell 
walls and interference with key biochemical pathways [82]. Due to the 
increasing interest from consumers in clean-label foods, the food in-
dustry has been trying to identify effective alternatives to synthetic 
antimicrobial agents. Essential oils are hydrophobic liquids that are 
largely insoluble in water. Consequently, for many applications, they 
need to be converted into colloidal dispersions containing essential oil- 
rich colloidal particles dispersed in water. Oil-in-water nanoemulsions 
are particularly suitable for this purpose since they can easily be 

Oily 
Dispersion

Aqueous
DispersionSolution Bulk

Liquid
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Solid

Nanoemulsion Emulsion Alternative
Delivery System

Fig. 5. The efficacy of a bioactive component encapsulated in a test nano-
emulsion can be compared to various kinds of reference system, which will 
effect the nature of the results obtained. 
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formulated using food grade ingredients using existing production 
technologies. Typically, essential oil nanoemulsions are fabricated from 
an essential oil, a ripening inhibitor, an emulsifier, and water, but other 
components may sometimes be incorporated. For instance, other kinds 
of antimicrobial phytochemicals can also be included in the oil droplets. 
In this section, a brief overview of recent research on the development of 
antimicrobial nanoemulsions is given. 

Many of studies have shown that a ripening inhibitor is essential for 
formulating antimicrobial nanoemulsions from essential oils [83,84]. A 
ripening inhibitor is a strongly hydrophobic oil that has a very low 
water-solubility, such as a medium- or long-chain triglyceride oil (such 
as MCT, corn, or sunflower oils). It is typically mixed with the oil phase 
prior to homogenization. The presence of the ripening inhibitor slows 
down droplet growth due to Ostwald ripening through an entropy of 
mixing effect. A major trend in this area has been the formulation of all- 
natural antimicrobial nanoemulsions [5]. In this case, natural emulsi-
fiers (such as saponins, proteins, or phospholipids) are used to replace 
the synthetic ones that are typically used (such as Tweens and Spans). As 
an example, antimicrobial thymol-nanoemulsions have been formulated 
using a mixture of lecithin and gelatin as emulsifiers to stabilize them 
[85]. Similarly, antimicrobial thyme oil-nanoemulsions have been 
formulated using sodium caseinate as an emulsifier [86]. Other studies 
have shown that antimicrobial essential oil nanoemulsions can be sta-
bilized by soy lecithin [87,88], quillaja saponins [88–90], and bovine 
serum albumin [88] These studies indicate that it is possible to create 
clean-label antimicrobial nanoemulsions that are efficacious and should 
be better for the environment and human health. 

Another area where there have been considerable advances in recent 
years is the application of antimicrobial nanoemulsions to real food 
products. For instance, research has shown that hexanal-nanoemulsions 
were effective at inactivating both spoilage and pathogenic organisms in 
apple juice, without altering their desirable organoleptic properties 
[91]. Similarly, cinnamon oil nanoemulsions have been shown to be 
effective at inhibiting spoilage and pathogenic organisms (Listeria 
monocytogenes and Salmonella spp.) on melons [92]. Research has 
shown that carvacrol nanoemulsions can be used to inhibit microbial 
growth (Salmonella enterica Enteritidis and Escherichia coli O157:H7) in 
contaminated mung bean and alfalfa seeds [93,94], broccoli and radish 
seeds [94,95]. Geraniol and carvacrol loaded nanoemulsions have been 
used as antimicrobial treatments for meat products, where they were 
shown to increase the shelf life of fresh goat meat [96]. In these exam-
ples, it is important that the antimicrobial nanoemulsions do not 
adversely affect the desirable organoleptic properties of the foods, such 
as their appearance, mouthfeel, or flavor profile. Thus, it is important to 
select an essential oil that is compatible with the food that the nano-
emulsion is applied to. 

Antimicrobial nanoemulsions have also been incorporated into 
edible coatings and packaging materials to increase the shelf life of foods 
[97,98]. In this case, the nanoemulsions are usually mixed with natural 
polymers prior to casting the coatings or films. The essential oils then 
slowly leach out of the coatings or films over time, which helps to 
inactivate or inhibit the growth of microbes, yeasts, or molds. The 
essential oils may diffuse through the films as individual molecules or 
inside oil droplets, depending on the pore size and interactions within 
the polymer network. As an example, thymol-, cinnamaldehyde-, and 
eugenol-based nanoemulsions have been incorporated into biodegrad-
able films formed from pullulan and their release properties have been 
studied [99]. Thymol oil-nanoemulsions have been loaded into gelatin 
films and demonstrated to exhibit good antimicrobial activity [85]. The 
thymol was gradually released from the gelatin films and was effective 
at inhibiting both Gram-positive and Gram-negative bacteria. Essential 
nanoemulsions containing cinnamaldehyde and garlic oil have been 
loaded into composite biopolymer films prepared using gelatin and 
chitosan, where they were shown to exhibit good antimicrobial prop-
erties against Pseudomonas aeruginosa [100]. Finally, Thymus daenensis 
oil-based nanoemulsions have been incorporated into hydroxypropyl 

methyl cellulose edible films and shown to exhibit good antimicrobial 
properties [101]. 

6.3. Vitamins 

Nanoemulsions have been used to encapsulate a number of different 
kinds of oil-soluble vitamins to improve their dispersibility, stability, 
bioavailability, and bioactivity. As an example, vitamin A (retinol) has 
been encapsulated in nanoemulsions formulated from different kinds of 
oils and emulsifiers [102]. The authors reported that the degradation of 
vitamin A during storage could be inhibited by selection of an appro-
priate combination of emulsifier and oil. 

The impact of encapsulating vitamin D3 (cholecalciferol) in nano-
emulsions on its in vitro and in vivo bioavailability have been assessed 
[103]. The in vitro experiments, which were carried out using a simu-
lated GIT model, showed that the vitamin D3 had a higher bio-
accessibility when encapsulated in nanoemulsions than in emulsions. 
The in vivo experiments, which involved oral administration of the 
samples to mice, showed that the serum 25(OH)D-3 levels increased by 
about 36% and 73% compared to the control for the emulsions and 
nanoemulsions respectively, again highlighting the ability of the nano-
emulsions to improve the oral bioavailability. These effects were 
attributed to the faster and more extensive digestion of the nano-
emulsions due to their higher surface areas. 

The efficiency of nanoemulsions at increasing the bioavailability of 
vitamin D2 (ergocalciferol) has also been examined using a combination 
of in vitro and in vivo studies [68]. The in vitro studies, which were 
performed using a simulated GIT model, indicated that the vitamin 
bioaccessibility increased with decreasing droplet size, which was 
linked to a faster rate of lipid digestion and micelle solubilization. 
Interestingly, the in vivo studies, which involved oral administration of 
the samples to rats indicated that vitamin absorption was higher for 
emulsions than nanoemulsions. The authors attributed this poor in vitro- 
in vivo correlation to a number of factors: a simulated GIT cannot closely 
mimic the complex nature of a real GIT; the level of vitamin in the 
bloodstream was only measured at a single time point after ingestion in 
the in vivo experiments (rather than measuring the full pharmacokinetic 
profile). 

In an in vitro bioactivity study, it was shown that Vitamin D-fortified 
nanoemulsions exhibited cytotoxicity to model human colorectal cancer 
cell lines HCT116 and HT29 [104]. The nanoemulsions in this study 
consisted of vitamin D-loaded oil droplets that were coated by a layer of 
pea protein, with pectin added as an extra stabilizer. The authors sug-
gested that the vitamin D was released from the oil droplets and inter-
fered with key biochemical pathways, leading to cell growth arrest and 
apoptosis. 

In another bioactivity study, the potential of nanoemulsions to in-
crease the anticancer effects of a vitamin E analog (α-tocopherol succi-
nate) was examined [105]. The authors showed that encapsulating the 
vitamin E analog in nanoemulsions increased its anticancer activity 
against a model human breast cancer cell line (MCF-7) and a human oral 
epithelial cancer cell line (KB), relative to the bulk form. In addition, an 
in vivo study where the samples were orally administered to rats showed 
that the nanoemulsion form of the vitamin analog led to a higher 
bioavailability than the bulk form. Moreover, pharmacokinetic studies 
showed that there was a faster and higher rise in the blood serum levels 
for the nanoemulsions than the bulk form. 

6.4. Nutraceuticals 

Nanoemulsions have been widely used as a means of encapsulating, 
protecting, and delivering hydrophobic nutraceuticals [9,11,42]. Typi-
cally, the nutraceuticals are dissolved in the oil phase prior to homog-
enizing the nanoemulsions. The loading capacity of the nanoemulsions 
is then determined by the maximum solubility of the nutraceutical in the 
oil phase under the conditions used (particularly storage temperature), 
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as well as the amount of oil droplets present in the final product. In some 
situations, the nutraceuticals can be added to a nanoemulsion after it has 
been formed. For instance, curcumin can be incorporated into nano-
emulsions by adding it as a powder and then heating [106], dissolving it 
in an organic solvent and then mixing, or dissolving it in an alkaline 
solution and then mixing [107]. There have been a huge number of 
studies on the utilization of nanoemulsions for this purpose, and so only 
a few examples are given here, with a focus on in vivo studies of their 
bioavailability and/or bioactivity. 

Many researchers have used in vitro digestion models to study the 
impact of nanoemulsion composition and structure on the bio-
accessibility of encapsulated hydrophobic nutraceuticals, which has 
been reviewed in detail recently [42]. In general, these studies show that 
nutraceutical bioaccessibility depends on many factors, including oil 
droplet content, oil droplet size, oil digestibility, and emulsifier type 
[9,42]. Typically, bioaccessibility increases with decreasing droplet size, 
since this leads to faster and more complete lipid digestion. The di-
mensions of the hydrophobic domains within the mixed micelles (mi-
celles and vesicles) formed after lipid digestion are also important. To be 
solubilized within the intestinal fluids, nutraceuticals must be small 
enough to fit inside the hydrophobic domains inside the mixed micelles. 
It is for this reason that long hydrophobic molecules, like β-carotene, 
have a high bioaccessibility when delivered in nanoemulsions formu-
lated from long-chain triglycerides but not in those formulated from 
medium-chain triglycerides [108]. In vitro digestion studies have shown 
that nanoemulsions can increase the bioaccessibility of many different 
nutraceuticals, including β-carotene [109,110], lycopene [111–113], 
lutein [114,115], astaxanthin [116,117], curcumin [106,107,118], 
pterostilbene [119] and quercetin [120,121]. It should be noted, how-
ever, that reducing the lipid droplet size does not always improve the 
bioavailability of nutraceuticals. For instance, it has recently been 
shown that the chemical degradation of curcumin is worse in nano-
emulsions than conventional emulsions because of the larger surface 
area of the oil droplets in the former [122]. Consequently, it may be 
important to optimize nanoemulsion-based delivery systems to obtain 
good bioaccessibility and chemical stability. 

Essential oil (Carum Carvi) nanoemulsions have been shown to 
exhibit anticancer (apoptotic and cytotoxic effects) on model colon 
cancer cells (HT-29) using an MTT assay [123]. The same study showed 
that the cytotoxicity of the anticancer nanoemulsions was much lower 
on model normal cells (Huvec) than on the model cancer cells, with the 
IC50 values being 50 and 12.5 μ g/ml, respectively. Another study 
showed that nanoemulsions loaded with a botanical extract (golden-
berry) exhibited greater cytotoxicity against cancer cells than non- 
cancer cells [124]. These nanoemulsions were formulated using a 
mixture of non-ionic surfactants (Tween 80 and Span 80, using medium 
chain triglycerides (MCT) as a carrier oil. 

An in vitro and in vivo study has been carried out to establish the 
impact of tea polyphenols on the storage stability and gastrointestinal 
fate of ingested nanoemulsions containing β-carotene [123]. The 
incorporation of tea polyphenols in the water phase of the Tween 80-sta-
bilized nanoemulsions increased the chemical stability of the caroten-
oids during storage, which was attributed to the antioxidant activity of 
the polyphenols. The nanoemulsions were then orally administered to 
Sprague-Dawley (SD) rats. Later, the rats were euthanized and the liver, 
feces, and contents of their GIT tracts (small and large intestine) were 
collected and analyzed. The authors also measured the levels of vitamin 
A in the liver, since β-carotene is converted into this oil-soluble vitamin 
there. The study showed that the addition of tea polyphenols to the 
nanoemulsions increased the amount of vitamin A detected, which was 
attributed to the ability of the tea polyphenols to inhibit the degradation 
of the carotenoids prior to absorption. 

The ability of nanoemulsions to increase the bioavailability of cur-
cumin has been assessed using a combination of in vitro and in vivo 
methods [118]. These nanoemulsions were stabilized using a thiol- 
modified chitosan. The curcumin-loaded nanoemulsions did not 

exhibit any cytotoxicity on model normal cells (mouse fibroblasts) but 
they did exhibit cytotoxicity against model colon cancer cells (HT29). A 
pharmacokinetic study showed that the nanoemulsions led to a faster 
and higher level of curcumin in the bloodstream after oral administra-
tion than for the non-encapsulated systems. Moreover, they showed that 
the presence of piperine increased the concentration of curcumin in the 
blood, which was attributed the ability to block efflux mechanisms in the 
epithelium cells. The in vivo rat feeding study also showed that the anti- 
inflammatory properties of the curcumin were enhanced after it was 
loaded into nanoemulsions, especially in the presence of piperine, which 
was mainly attributed to the increase in overall bioavailability. Another 
recent in vivo study showed that nanoemulsions were more effective 
than emulsions at increasing the bioavailability of curcumin when orally 
administered to Wistar rats [59]. The authors also showed that using 
conjugated linoleic acid (CLA) to formulate the nanoemulsions led to a 
higher curcumin bioavailability than using fish oil. These studies high-
light the importance of optimizing the formulation of nanoemulsions to 
enhance their biological activity. 

Nanoemulsions have also been used to orally deliver quercetin, 
which is a nutraceutical that is claimed to have anti-obesity effects 
[125]. In vitro cell culture studies (Caco-2 cell) showed that quercetin 
loaded in nanoemulsions had a 3.4-fold higher absorption than free 
quercetin. Moreover, an in vivo study that involved oral administration 
of the samples to mice showed that the nanoemulsion form of quercetin 
had about a 34-fold higher oral bioavailability than the free quercetin. 
Finally, there was a greater reduction in weight gain (around 24%) by 
rats fed a high fat diet for the nanoemulsions. Similarly, an in vivo study 
showed that nanoemulsions increased the oral bioavailability of Coen-
zyme Q10 (compared to a bulk oily formulation) when orally adminis-
tered to male Wistar rats [126]. 

6.5. Cannabinoids 

The utilization of nanoemulsion-based delivery systems for canna-
binoids, such as THC or CBD, has been a growing area over the past few 
years, with numerous examples of commercial companies using this 
technology to create cannabis-fortified edibles [35]. Nevertheless, there 
have only been a few academic publications in this area due to the fact 
that cannabinoids are not legal in many states and countries. Even so, 
there has been considerable progress made by industrial researchers 
who have created a range of cannabis edible products using nano-
emulsions. The nanoemulsions are used to encapsulate the cannabi-
noids, protect them from degradation during storage, and then produce 
a specific pharmacokinetic profile after ingestion. Typically, a rapid 
release of cannabinoids into the bloodstream is desirable so as to quickly 
get the desired effects. In one academic study, reported in a conference 
abstract, nanoemulsions were used to incorporate cannabis into bever-
ages [127]. In another study, a combination of fermentation and soni-
cation were used to prepare emulsified cannabis formulations suitable 
for incorporation into beverage products [127]. Researchers have also 
prepared oil-in-water nanoemulsions from hemp oil [128,129], and 
examined the factors that impact their physical and oxidative stability 
during storage [130]. This area appears to be one that would certainly 
benefit from more academic research in the future, as there have been 
many advances made in nanoemulsion technology that could lead to 
more reliable and efficacious cannabinoid formulations. 

6.6. Excipient foods 

Recently, “excipient” nanoemulsions have been developed to in-
crease the bioavailability of hydrophobic substances (such as vitamins 
and nutraceuticals) in co-ingested foods [40,131]. Excipient nano-
emulsions are typically oil-in-water systems whose composition and 
structure are carefully controlled to create an environment within the 
human gut that boosts the bioaccessibility, stability, and/or absorption 
of co-ingested bioactive substances [132]. Excipient nanoemulsions 
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could be used as a basis to form a variety of products intended for use in 
the food or supplement industries: (i) cooking sauces that are consumed 
with cooked vegetables; (ii) salad dressings that are poured onto salads; 
(iii) rich creams that are poured onto fruit; or (iv) creamy beverages that 
are drunk with nutritional supplements. Nanoemulsions are especially 
suitable for this purpose because they can be designed to contain small 
oil droplets that are quickly digested within the human gut, thereby 
rapidly producing mixed micelles that can solubilize and transport the 
hydrophobic substances liberated from the foods or supplements 
consumed with them [133–135]. Previously, it has been shown that 
excipient nanoemulsions can enhance carotenoid bioaccessibility in 
spinach [135,136], tomatoes [137], carrots [138], and dietary supple-
ments (capsules and pills) [139]. It should be noted, excipient nano-
emulsions also have the potential to enhance the bioavailability of 
potentially harmful hydrophobic substances in foods, e.g., the pesticides 
used to treat agricultural produce [140–142]. Nevertheless, these 
studies suggest that only highly hydrophobic pesticides are impacted by 
the presence of excipient nanoemulsions. The nature of the lipid phase 
used to formulate excipient nanoemulsions is important because it de-
termines the solubilization capacity of the mixed micelles formed within 
the small intestine, thereby influencing the bioaccessibility of hydro-
phobic substances in foods. Nevertheless, other components can also be 
added to excipient nanoemulsions to increase the bioavailability of hy-
drophobic substances, such as substances to inhibit their chemical 
degradation (such as antioxidants and chelating agents) or substances to 
increase their absorption (such as permeation enhancers or efflux 
inhibitors). 

7. Advanced nanoemulsion-based technologies 

Nanoemulsions have some advantages due to their small particle 
sizes but they also have some disadvantages for the same reason. For 
instance, bioactive release rates tend to be very rapid due to the small 
particle dimensions and bioactive degradation rates tend to be rapid due 
to the high droplet surface area. The functional performance of nano-
emulsions can be improved using a variety of strategies, a few of which 
are shown schematically in Fig. 6. A brief overview of these strategies is 
given here, along with some of their potential applications. 

7.1. Lipid phase solidification 

The lipid core of nanoemulsion droplets can be fully or partially 
crystallized by careful selection of the type of lipids used, as well as the 

thermal history of the system (Fig. 6) [143–147]. This is typically ach-
ieved using long-chain saturated triacylglycerols (digestible) or edible 
waxes (indigestible). When the lipid phase is fully crystallized, the 
particles are usually referred to as solid lipid nanoparticles (SLNs) but 
when it is only partially crystallized, they are referred to as nano-
structured lipid carriers (NLCs). Crystalline lipid nanoparticles can be 
used to protect encapsulated bioactive components from release or from 
chemical degradation during storage, since the diffusion coefficient of 
the bioactives or other components within the particle matrix is reduced 
[148]. Moreover, they can be used to reduce lipid digestion or prolong 
bioactive release, since solid nanoparticles are digested more slowly 
than equivalent lipid nanoparticles [149–152]. Nevertheless, the SLNs 
or NLCs have to be carefully formulated to ensure they are physically 
stable and have the required functional performance. 

7.2. Interfacial engineering 

The lipid droplets in nanoemulsions can be coated with layers of 
edible biopolymers to enhance their stability and functionality (Fig. 6) 
[153–155]. Typically, the electrostatic layer-by-layer (LbL) method is 
used to form laminated biopolymer layers around emulsifier-coated 
lipid droplets [156]. First, a nanoemulsion is created using an electri-
cally charged emulsifier, such as an ionic surfactant, phospholipid, or 
protein (1-layer system). Second, this nanoemulsion is mixed with a 
solution of biopolymers with an opposite charge to the emulsifier-coated 
lipid droplets, which causes a layer of biopolymers to form around the 
lipid droplets (2-layer system). Third, the nanoemulsion is then mixed 
with another biopolymer solution that has an opposite charge to the first 
biopolymer, which causes a second layer of biopolymer to form around 
the lipid droplets (3-layer system). This process can be repeated 
numerous times to create multiple layers around the lipid droplets. The 
functional performance of a nanoemulsion can be modulated by con-
trolling the composition, thickness, and external charge of the nano-
laminated coatings [157]. This can be achieved by using different types, 
numbers, and sequences of biopolymers to carry out the coating. 
Numerous studies have shown that this approach can be used to increase 
the resistance of nanoemulsions to environmental stresses (such as 
changes in pH, ionic strength, heating, freezing, and dehydration), to 
protect encapsulated substances from chemical degradation during 
storage, and to control the gastrointestinal fate of bioactives [153,158]. 

7.3. Lipid droplet clustering 

In many applications it is desirable for the droplets in nanoemulsions 
to be isolated from each other, since this improves the overall stability of 
the systems. In some cases, however, it may be useful to promote 
controlled clustering of the lipid droplets in nanoemulsions (Fig. 6) 
[159]. For instance, clustering can lead to an increase in the viscosity or 
gel strength of a nanoemulsion, which may be useful for the creating of 
highly viscous or semi-solid materials, such as creams or pastes 
[160,161]. This approach has been used to enhance the mouthfeel of 
nanoemulsions by increasing their perceived creaminess and thickness 
[162]. Moreover, clustering of oil droplets inside the gastrointestinal 
tract can reduce the rate of lipid digestion, which may prolong the 
release of encapsulated bioactive components [163–165]. The clustering 
of emulsifier-coated oil droplets can be controlled by manipulating the 
attractive and repulsive interactions acting between them, such as the 
electrostatic, hydrophobic, depletion, and/or bridging forces [166]. 

7.4. Particle coating 

The small lipid droplets in nanoemulsions can be used to coat larger 
particles, such as microgels, to alter their functional attributes [167] 
(Fig. 6). Typically, this is achieved by inducing an attractive interaction 
between the surfaces of the emulsifier-coated lipid droplets and the 
surfaces of the larger particles. Electrostatic attraction is typically used 
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Fig. 6. Examples of approaches that can be used to improve the functional 
performance of nanoemulsions. 
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for this purpose, e.g., cationic lipid droplets can be made to form a 
coating around anionic microgels. This approach may be useful for 
creating reduced calorie food products – a microgel coated with lipid 
droplets may exhibit similar characteristics as a larger fat droplet, 
thereby reducing the overall fat content of the system. 

7.5. Microgel encapsulation 

Finally, lipid droplets can be embedded inside larger particles to alter 
their functional properties [168–170]. For instance, nanoemulsion 
droplets can be trapped inside biopolymer microgels (Fig. 6). These 
filled microgels can be formed by mixing a nanoemulsion with a gelling 
biopolymer (such as alginate) and then injecting the mixture into a 
gelling solution (such as calcium chloride). This process leads to the 
formation of microgel particles with small lipid droplets trapped within 
them. The composition, external dimensions, shape, pore size, and 
charge characteristics of the microgels can be controlled by using 
different ingredients and processing methods to formulate them. In 
addition, lipid droplets can be encapsulated within microgel-in-microgel 
systems [171] (Fig. 6), where each microgel phase may be made of a 
similar or different type of biopolymer. As a result, delivery systems with 
a broad range of functional attributes can be created. For instance, 
encapsulation of bioactive-loaded lipid droplets inside microgels can be 
used to protect the bioactive agents from chemical degradation during 
storage [172–174]. Alternatively, encapsulation can be used to prolong 
the release of a bioactive component, such as a hydrophobic flavor 
molecule during cooking [175,176]. Biopolymer microgels have also 
been used to control the gastrointestinal fate of nanoemulsions. For 
instance, encapsulation of the lipid droplets can slow down the rate of 
lipid digestion under simulated GIT conditions, as well as prolong the 
release of bioactive components [171,177]. 

There are numerous other strategies that can be employed to 
improve nanoemulsion performance, but these few examples highlight 
the potential of using these approaches. As a result, the functional 
properties of nanoemulsion-based systems can be extended and tailored 
for specific applications. 

8. Potential toxicity of edible nanoemulsions 

There has been some concern about the potential toxicity of nano-
particles in foods [178–180]. However, the nature of the nanoparticles 
concerned have a major influence on their potential toxicity, e.g., their 
size, shape, charge, and digestibility. Nanoemulsions contain lipid 
nanoparticles that may exhibit toxicity through various mechanisms as a 
result of their small dimensions and the ingredients used to formulate 
them. A number of the most important ones are briefly highlighted here: 

• Greater penetration through biological barriers: In principle, nano-
particles can penetrate through biological barriers, such as the 
mucus layer and epithelium cells, more easily than larger particles 
[181]. In practice, most food-grade nanoemulsions are rapidly 
digested by the enzymes within the upper gastrointestinal tract (such 
as lipases and proteases) and are therefore broken down before 
reaching these biological barriers. Nevertheless, there are some po-
tential exceptions. First, lipid droplets that are not partially digested 
in the stomach do not produce free fatty acids there, which the body 
normally uses as a signal to regulate gastric emptying [181]. As a 
result, a high concentration of lipid droplets may enter the small 
intestine and not be fully digested before they reach the epithelium 
cells. Second, the droplets in nanoemulsions formulated from indi-
gestible oils (such as mineral oils) are resistant to digestion in the 
upper GIT [182]. As a result, they may be able to penetrate through 
the mucus layer and reach the epithelium cells (provided they do not 
coalesce or flocculate first). Third, nanoemulsions may be encapsu-
lated within indigestible food matrices (such as dietary fiber coatings 
or microgels) prior to ingestion [171]. In this case, they may be 

released in the small intestine and then travel through the mucus 
layer before being fully digested. Fourth, some of the components 
used to formulate nanoemulsions (such as surfactants and alcohols) 
could increase the permeability of the epithelium cells by disrupting 
the lipid bilayers, thereby allowing the lipid droplets to penetrate 
through the cells more easily [181]. Finally, studies have found that 
there is often an optimum nanoparticle size for absorption, around 
50 to 100 nm [181].  

• Increased bioavailability into a toxic level: Many studies have shown 
that nanoemulsions can increase the bioavailability of hydrophobic 
bioactive substances [9]. Usually, this enhancement is desirable 
because it increases the bioactivity but there may be circumstances 
where it is not. For instance, some bioactive agents have been re-
ported to promote adverse health effects when consumed at high 
levels, e.g., increasing the levels of β-carotene consumed has been 
reported to increase the risk of lung cancer in smokers [183]. 
Consequently, if nanoemulsions greatly increase the bioavailability 
of these substances in foods they could lead to health problems in 
certain populations. Similarly, if nanoemulsions increase the 
bioavailability of any undesirable (toxic) substances in foods (such as 
pesticides) they may have adverse effects on health [141]. 

• Dysregulation of metabolism or hormonal system: Bulk oils or conven-
tional emulsions are typically digested relatively slowly because of 
their large lipid domains (small surface areas). As a result, free fatty 
acids and monoglycerides are released and absorbed relatively 
slowly leading to a moderate increase in blood lipids (Fig. 2). 
Conversely, nanoemulsions are digested rapidly, which could lead to 
a spike in blood lipids. Over time, this could lead to dysregulation of 
the metabolic and hormonal systems, e.g., feelings of hunger and 
satiety. To the authors knowledge, no research has previously been 
carried out in this area, but this could be a fruitful area for future 
studies.  

• Enhanced toxicity due to ingredients used: Another potential source of 
toxicity is related to the type and amount of ingredients used to 
formulate nanoemulsions. Nanoemulsions are typically formulated 
using the same ingredients as conventional emulsions, but higher 
emulsifier levels are required to stabilize their higher surface areas. 
Some studies have shown that certain types of food-grade emulsifiers 
potentially have adverse effects on human health, e.g., by altering the 
gut microbiome or permeability [181,184–187]. In some cases, 
nanoemulsions with small droplet sizes can only be created using 
small molecule synthetic surfactants, which may be more toxic than 
natural emulsifiers (such as proteins or phospholipids). 

A number of researchers have carried out in vitro and in vivo studies 
to assess the potential toxicity of various nanoemulsion formulations 
[188]. The most common method of assessing the potential toxicity of 
nanoemulsions is to use cell culture models, typically model normal 
cells, such as fibroblasts. As an example, the potential cytotoxicity of 
unloaded and curcumin-loaded nanoemulsions was tested using mouse 
fibroblasts (3T3) [118]. These studies showed that neither type of 
nanoemulsion exhibited appreciable cytotoxicity against the model 
normal cells, but the curcumin-loaded nanoemulsions did exhibit strong 
cytotoxicity against model colon cancer cells (HT29). A similar finding 
was reported for essential oil nanoemulsions, which were reported to 
exhibit strong cytotoxicity against HT-29 cells (IC50 = 12.5 μg/ml), but 
much less against model normal cells (Huvec) (IC50 = 50 μg/ml) [123]. 
A study using nanoemulsions loaded with a botanical extract (golden-
berry) reported that they exhibited much stronger cytotoxicity against 
cancer cells than non-cancer cells [124]. Nanoemulsions formulated 
from tocopheryl polyethylene glycol succinate (TPGS), lemon oil, 
Tween-80, and water have also been shown to be non-toxic when tested 
on Hep G2 cells [189]. In contrast, bergamot oil nanoemulsions have 
been shown to exhibit some cytotoxic activity against Caco 2 cells when 
applied at sufficiently high levels, although these authors did not expose 
the nanoemulsions to a simulated GIT prior to applying them to the cells 
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[190]. 
In a comprehensive in vitro (cell culture) study of the potential 

toxicity of nanoemulsions it was shown that loading bioactive agents 
within them (β-carotene), actually increased their cytotoxicity [181]. 
This effect was mainly attributed to the formation of reactive oxidative 
species inside the cells due to oxidation and metabolism of β-carotene. 
These authors passed the nanoemulsions through a simulated upper GIT 
and then applied them to a cell culture model. The translocation of the 
ingredients was then observed by confocal fluorescence microscopy, 
whereas the cytotoxicity was determined using cell viability methods 
(Caco 2 cells). Interestingly, they found for Tween 80-stabilized nano-
emulsions the cytotoxicity actually increased with increasing droplet 
diameter (45 to 200 nm), although these effects were only observed at 
relatively high doses. The increased toxicity with increasing droplet size 
was attributed to the higher concentration of non-absorbed surfactants 
(Tween 80) and alcohol (ethanol) in the nanoemulsions, which were 
able to disrupt the cell membranes. Overall, the authors suggested that 
the toxicity of the nanoemulsions was not due to their small size but due 
to the presence of specific ingredients (such as surfactants, alcohols, and 
carotenoids). 

Recently, an in vivo study was carried out using male Wistar rats to 
assess the potential toxicity of nanoemulsions [188]. The nanoemulsions 
were orally administered to the rats for 21 days at lipid concentrations of 
200, 400 or 800 mg/kg body weight. The authors then sacrificed the rats 
and measured “biochemical, hematological, oxidative stress, and geno-
toxicity parameters”. Oral ingestion of the nanoemulsions did not alter 
the organ weights or biochemical parameters of the rats compared to the 
controls. The authors concluded that “the results from this study suggest 
that [nanoemulsions] can be considered safe for oral administration. 

Taken together, these results suggest that nanoemulsions do not 
typically exhibit strong cytotoxic effects, provided they are formulated 
using food-grade ingredients. The small droplet size means that they are 
rapidly converted into monoglycerides and free fatty acids in the small 
intestine, which would not be expected to have toxic effects because 
these are normal digestion products. 

9. Conclusions and future directions 

There have been major advances in the formulation, characteriza-
tion, and utilization of edible nanoemulsions over the past decade or so. 
Studies have shown that stable nanoemulsions can be formulated from 
either synthetic or natural ingredients. Recently, however, there has 
been an emphasis on formulating nanoemulsions from botanical in-
gredients, such as plant-based oils and emulsifiers, due to consumer 
desires for more label friendly commercial products. There is accumu-
lating evidence from in vitro and in vivo studies showing that nano-
emulsions are highly effective at increasing the bioavailability and 
bioactivity of orally administered hydrophobic bioactives, such as 
nutraceuticals, vitamins, healthy lipids, and pharmaceuticals. In the 
future, it will be important to establish the efficacy of these formulations 
using human feeding studies, provided they are shown to be safe for 
consumption first. Moreover, more in vivo research needs to be carried 
on the next generation of nanoemulsion-based systems, such as filled 
microgels, clusters, or multilayer systems. 
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