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Abstract: Osteoporosis (OP) and vascular calcification (VC) represent relevant health problems that 

frequently coexist in the elderly population. Traditionally, they have been considered independent 

processes, and mainly age-related. However, an increasing number of studies have reported their 

possible direct correlation, commonly defined as “bone-vascular crosstalk”. Vitamin K2 (VitK2), a 

family of several natural isoforms also known as menaquinones (MK), has recently received par-

ticular attention for its role in maintaining calcium homeostasis. In particular, VitK2 deficiency 

seems to be responsible of the so-called “calcium paradox” phenomenon, characterized by low 

calcium deposition in the bone and its accumulation in the vessel wall. Since these events may have 

important clinical consequences, and the role of VitK2 in bone-vascular crosstalk has only partially 

been explained, this review focuses on its effects on the bone and vascular system by providing a 

more recent literature update. Overall, the findings reported here propose the VitK2 family as 

natural bioactive molecules that could be able to play an important role in the prevention of bone 

loss and vascular calcification, thus encouraging further in-depth studies to achieve its use as a 

dietary food supplement. 
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1. Introduction 

Osteoporosis (OP) is the most common bone disease that affects elderly men and 

women [1]. It is a metabolic skeletal disorder caused by an imbalance between bone 

formation and resorption, leading to a loss of bone mass and quality, skeletal structure 

deterioration and an increased risk of fractures [2,3]. OP is classified into a primary and 

secondary form with distinct etiological backgrounds. Type 1 (primary) is typical of 

postmenopausal women in whom the decrease in estrogenic levels is associated with an 

inflammatory state linked to an increase in osteoclast activity and a consequent imbal-

ance of bone metabolism, whereas type 2 (secondary) occurs in both males and females, 

but its pathologic mechanism has only partially been clarified [4]. 

Vascular calcification (VC) is defined as the ectopic deposition of mineral matrix in 

the vessel wall. It occurs prevalently in aging and primary chronic conditions (hyper-

tension, diabetes mellitus and chronic kidney disease), representing an important risk 

factor for cardiovascular morbidity and mortality [5–8]. Previously, the calcification of 

the vessel wall was known as a passive, degenerative and uncontrolled process caused 

only by the abnormal precipitation of calcium crystal in the vasculature [9,10]. Nowa-

days, a growing body of evidence suggests that it is an active, regulated event that shares 

similar characteristics with bone formation and metabolism. In particular, its discovery 

in the calcified vessel of bone-related proteins, bone-like structures and osteoblastic 

like-cells derived from vascular smooth muscle cells (VSMCs) has highlighted the active 
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and cell-mediated nature of this vascular process [11–16]. 

Although OP and VC produce differing pathophysiological effects, their onsets 

frequently coexist in aging, representing one of the main public health problems with 

significant morbidity and mortality [17]. 

For many years, their coexistence was considered independent and only related to 

age [18], but several studies have provided support for a close link between bone and 

vascular health (Table 1) [19,20]. 

Table 1. Clinical evidence linking bone loss to vascular calcification. 

Study Name of the Study Number of Patients Enrolled Key Findings 

[21] 
Framingham Heart 

Study 

364 women and 190 men  

(28–62 years old) 

Bone loss was associated with 

progression of aortic calcification in 

women over 25 years 

[22] 
Women’s Health Across 

the Nation Study 

90 women  

(45–58 years old) 

Lower BMD was related to high 

aortic calcification 

[23] MESA Study 

946 women  

(mean age 65.5 years old)  

and 963 men  

(mean age 64.1 years old) 

Lower BMD was associated with 

greater coronary artery and 

abdominal aortic calcium score 

[24] Rotterdam Study 
582 men and 694 women  

all >55 years old 

BMD loss was significantly 

associated with higher follow-up 

coronary artery calcification 

In this regard, many findings suggest that bone loss in OP may promote and in-

crease the risk of cardiovascular events and vascular atherosclerosis. In the Framingham, 

Women’s Health Across the Nation (SWAN), Multi-Ethnic Study of Atherosclerosis 

(MESA) and Rotterdam studies, loss of bone mineral density (BMD) was associated with 

the development and progression of aortic calcification as well as with a higher risk of 

cardiovascular disease (CVD) mortality [21–27]. On the other hand, a direct correlation 

between VC and risk of bone fracture was also found. The MINOS study, for example, 

emphasized that men with aortic calcification present a major risk of bone fracture [28]. 

This was also found in healthy post-menopausal women with aortic calcification associ-

ated with lower BMD and increased risk of femur fractures (2.3-fold increase) [29]. 

Different hypotheses have been proposed to better explain the link between bone 

and vascular system, which is commonly referred to as “bone-vascular crosstalk”. 

First, bone loss and vascular calcification share common risk factors, including 

smoking, physical activity, alcohol intake, Type 2 diabetes, menopause and hypertension. 

In addition, both are characterized by chronic low-grade inflammation and oxidative 

stress and by the involvement of bone morphogenetic proteins (BMP), osteoprotegerin, 

and parathyroid hormone, thus also suggesting common pathophysiologic mechanisms 

[19]. 

In this context, it is important to mention the role of the VitK2 family, lipid soluble 

compounds that play a pivotal role in the maintenance of calcium homeostasis [30]. Spe-

cifically, it is involved in the “calcium paradox”, a phenomenon in which a low calcium 

deposition in the bone tends to be associated with a parallel increase of calcium deposi-

tion in the vessel wall as a consequence of impaired calcium metabolism [31–33]. 

Given that the role of VitK2 in bone-vascular crosstalk and the “calcium paradox” 

has only been partially explained, this review aims to describe and summarize the most 

relevant knowledge concerning the nature of this vitamin, its molecular mechanism and 

clinical outcomes at bone and vascular level. 
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2. Vitamin K, a Family of Essential Fat-Soluble Compounds 

Vitamin K is a family of essential fat-soluble compounds first identified in the early 

1930s by the Danish biochemist Hendrik Dam during his research on cholesterol metab-

olism [34]. He observed that chicks fed a low-fat and sterols-free diet showed increased 

bleeding, which did not disappear when cholesterol was replaced in the diet [35]. Suc-

cessively, Dam identified the “anti-haemorrhagic factor” in a fat-soluble compound that 

he named “Koagulation vitamin” (abbreviated vitamin K) to indicate its ability to clot 

blood [36]. 

Vitamin K naturally exists in two main forms: Vitamin K1 and Vitamin K2 [37]. 

Structurally both shared the central 2-methyl-1,4 naphthoquinone ring, named “mena-

dione”, with a side chain on the menadione 3-carbon position [32]. 

Vitamin K1, or phylloquinone, contains a phytyl chain of four isoprenoid residues. 

In contrast, Vitamin K2 presents a side chain based on the repeating, from 4 to 13, of 

unsaturated isoprenoid units [38] (Figure 1). 

 

Figure 1. Molecular structure of the two main forms of Vitamin K. The upper structure represents 

Vitamin K1, also known as phylloquinone. The bottom structure is Vitamin K2, also known as 

menaquinone (MK). 

All K-forms exert their biological function as cofactors for the Gamma-Glutamyl 

Carboxylase (GGCX), an enzyme which catalyzes the post-translational modification 

known as the “Vitamin K cycle” reaction [39]. More specifically, GGCX allows the con-

version of the amino acid glutamate (Glu) into ɣ-carboxyglutamate (Gla) residues in at 

least another 14 specific proteins called “Vitamin K-dependent Proteins” (VKDPs), that, 

once activated, are able to bind calcium through their Gla residues [40]. 

Both Vitamin K1 and Vitamin K2 act as cofactors of GGCX in the “Vitamin K cycle”. 

However, Vitamin K1 triggers the activation of hepatic VKDPs implicated in the coagu-

lation process (factor II, VII, IX and X). Whereas Vitamin K2 activates the VKDPs of ex-

tra-hepatic origin, such as Osteocalcin (OC) and Matrix Gla Protein (MGP) [37,41,42]. 

3. Vitamin K2 and Its Biomolecular Mechanisms of Action 

The term VitK2 indicates a family of bioactive isoprenologs, also called “menaqui-

nones” (MKs), which differ from each other with respect to the number of isoprenoid 

units in the side chain [32]. Thus, it is generally denoted as MK-n, where “n” (1–15) is the 

number of isoprenoid residues in the side chain [43–45]; for example, the isoforms men-

aquinone-4 (MK-4) and menaquinone-7 (MK-7) present four and seven isoprenoid units, 

respectively [43]. 
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Most of the production of VitK2 in the human body take place at the intestinal level, 

where it is synthesized by intestinal bacteria of the genera Bacteroides, Lactococcus and 

Escherichia Coli [46,47]. However, the amount of VitK2-derived from intestinal bacteria 

is poorly absorbed and is not able to reach the optimal concentration required to exert the 

physiological functions [48,49]. Therefore, this vitamin should be supplemented daily 

with dietary sources such as animal-based foods (meat and egg yolk), bacterially fer-

mented cheese, and the traditional Japanese dish called Natto, a fermented soybean in 

which the presence of Bacillus Subtilis reaches up to 1100 µg/100 g of VitK2 [50]. 

Regarding its metabolism, the various K2 isoforms show different bioavailability, 

and there is a direct correlation between their side chain length, lipophilicity, intestinal 

uptake and bioavailability in the human body [37,51]. 

As described in the previous paragraph, the compound members of VitK2 family 

are specific GGCX cofactors essential for the activation of extra-hepatic VKDPs. Specifi-

cally, through the activation of MPG and OC, VitK2 regulates the “calcium paradox” by 

reducing calcium deposition in the vessel wall and increasing it in the bone tissue, re-

spectively. This results in the promotion of the bone mineralization process and a parallel 

inhibition of ectopic VC [38]. 

Osteocalcin, also known as bone γ-carboxyglutamate (Gla) protein or “Bone Gla 

Protein” (BGLP), was the first extra-hepatic VKDPsidentified, and represents the most 

abundant, non-collagenous protein in the mineralized bone matrix [52,53]. It is a secre-

tory small peptide of 49 amino acids and 5.6 kDa [54,55] synthesized by osteoblasts and 

resealed into bone microenvironment in two circulating forms: carboxylated (cOC) and 

undercarboxylated (ucOC) [56]. 

As shown in Figure 2, the carboxylated form plays an important role in the binding 

and precipitation of calcium-hydroxyapatite (Ca-HA), allowing bone matrix mineraliza-

tion [57]. Once the mineralization process has been induced, cOC remains trapped in the 

bone matrix, and then it is released upon bone degradation into the circulation as ucOC 

[56,58]. Consequently, serum levels of cOC, ucOC and their ratio have to date been con-

sidered important biomarkers of bone turnover status, both in healthy and osteoporotic 

subjects [59,60]. 

 

Figure 2. Mechanisms of action of VitK2 in “bone and vascular cross-talk”. At vascular level, VitK2, 

acting as cofactor for the enzyme GGCX, triggers the conversion of undercarboxylated MGP 

(ucMGP) in active carboxylated MGP (cMGP). The active cMGP could directly inhibit ectopic Ca2+ 

precipitation, but also VSMCst trans-differentiation through BMP-2. VitK2 can also inhibit VSMCs 

apoptosis through the Gas6/ AxL/Akt anti-apoptotic pathway. In bone tissue, VitK2 could promote 

osteoblasts proliferation and activity through MGP and Wnt/β-catenin pathway, control of oxida-

tive stress (Ox-S) imbalance, via SXR receptor, and the well-established GGCX-dependent path-

way. VitK2 may also exert a control of osteoclasts activities through the inhibition of NF-kB. 
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In addition, ucOC also plays an important function as a bone-derived hormone able 

to enhance insulin secretion, sensitivity, energy expenditure and glucose homeostasis 

[61–63]. Thus, it was recently designated as a predictor and potential therapeutic target of 

several metabolic diseases, including diabetes [64,65]. 

Similarly, Matrix Gla Protein belongs to the family of extra-hepatic VKDPs, but it 

plays a significant role in the prevention of ectopic calcification in vascular system. It is a 

secretory protein of 14 kDa, 88 amino acids and 5 Glu residues in positions 2, 37, 41, 47 

and 52 [37]. 

Once synthesized by VSMCs in the vessel wall, MGP undergoes two types of 

post-translational modifications: ɣ-glutamate carboxylation and the serine phosphoryla-

tion [66,67]. Serine phosphorylation, in positions 3, 6 and 9, is catalyzed by the “Gol-

gi-localized enzyme casein kinase” [68]; its precise function is not clear, although recent 

studies suggest that it may be implicated in MGP secretion into the extracellular mi-

cro-environment [69]. On the contrary, ɣ-carboxylation is necessary for the biological ac-

tivation of MGP as an inhibitor of ectopic mineralization in the vessel wall [70,71]. 

The central role of MGP in vascular health was first demonstrated in 1997 through 

the development of MGP knock-out (−/−) mice. All mice lacking MGP died within 8 

weeks of birth due to massive arterial calcification [72]. Subsequently, it was also found 

in humans that a loss-of-function mutation in the MGP gene results in Keutel syndrome 

[73], a rare autosomal recessive disease characterized by ectopic calcification of soft tis-

sues [74]. 

Based on this, several mechanisms have been proposed to explain the inhibitory role 

of carboxylated MGP (cMGP) on ectopic vascular mineralization. First of all, the ability of 

cMGP to directly inhibit calcium-phosphate crystal precipitation was demonstrated [75] 

(Figure 2). Furthermore, its role in the inhibition of VSMC trans-differentiation into os-

teoblastic-like cells [76] was highlighted. Indeed, MGP is able to inhibit the osteoblast 

trans-differentiation of VSMCs through the bone morphogenetic protein-2 (BMP-2) 

(Figure 2). The latter is one of the main osteogenic transcription factors, and has also been 

found in calcified atherosclerotic plaque and medial calcified lesions, where it exerts its 

function as an activator of VSMC osteogenic trans-differentiation [13,76–78]. In this re-

gard, the active carboxylated form of MGP inhibits BMP-2 expression and its osteoin-

ductive properties [79–81]. 

Based on these findings, and given that only the active MGP exerts the inhibitory 

role on ectopic mineralization, the uncarboxylated form (ucMGP) is currently recognized 

as a specific diagnostic marker of VC and cardiovascular clinical outcomes [82]. 

4. Vitamin K2 and Bone Health 

Although several reports have underlined the important role of VitK2 in the 

maintenance of bone health, its exact function in bone metabolism has to date been 

poorly clarified [83,84]. This might be due to different shortcomings in the available 

studies, such as the limited numbers, structural heterogeneity and various isoforms of 

VitK2 used. 

For this reason, in recent years, several randomized controlled trials (RCTs) have 

been conducted aiming to better investigate the effects of VitK2 supplementation in the 

prevention of bone loss and fracture in both healthy and osteoporotic patients (Table 2) 

[44]. 

Specifically, Kanellakis and collaborators [85], in a clinical trial of 219 osteoporotic 

postmenopausal women, found a significant increase in total BMD following one year of 

supplementation with VitK2 (100 µg/day). Thereafter, in a study that enrolled 244 

healthy post-menopausal women, daily administration for three years of MK-7 (180 

mcg/day) was associated with a decrease of bone loss and risk of vertebral fractures [86]. 
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Table 2. Clinical evidence linking vitamin K2 supplementation and bone health. 

Study Type of the Study 
Number of Patients 

Enrolled 
Key Findings 

[85] RCT 
219 post-menopausal 

women 

BMD increase following one year of 

vitamin K2 supplementation  

(100 µg/day) 

[86] RCT 
244 healthy  

post-menopausal women 

Decrease bone loss following three years 

MK-7 supplement  

(180 µg/day) 

[87] 
Meta-analysis of  

19 RCTs 

6759 participants  

(post-menopausal women) 

BMD improvement and low incidence 

of fracture in osteoporotic subjects 

following K2 treatment 

[88] 
Meta-analysis of  

36 RCTs 

11,122 participants  

(post-menopausal women) 

Vitamin K2 treatment  

(MK-4: 45mg/day) reduce fracture, 

increase cOC and decrease ucOC serum 

concentration 

[89] RCT 55 healthy children 
8 weeks MK-7 supplementation increase 

cOC serum concentration 

[90] 

Non-placebo-controlled 

dose-examination 

study 

55 healthy males 

MK-4 supplementation  

(600 and 900 µg/day) decrease ucOC 

and increase cOC level respectively 

[91] RCT 
48 healthy  

post-menopausal women 

Serum ucOC concentrations were 

significantly lower following 6–12 

months MK-4 treatment (1.5 mg/day) 

[92] RCT 60 postmenopausal women 

MK-7 treatment (100 µg/day) 

significantly decrease ucOC and 

increase cOC/ucOC ratio  

In support of this, a meta-analysis of 19 clinical trials including 6759 participants 

proved the effective role of VitK2 supplementation on BMD and risk of fractures in os-

teoporotic subjects [87]. Notably, these findings were recently confirmed by Mott and 

collaborators [88], who also described how, in osteoporotic post-menopausal women, 

treatment with this natural compound significantly reduced the level of ucOC and in-

creased the active carboxylated form. 

In this regard, it is well recognized that the primary mechanism by which VitK2 

exerts its effects on bone health is through the ɣ-carboxylation of OC [93]. This has been 

supported by different bodies of evidence. In a placebo-controlled study with 55 adoles-

cents, for instance, daily treatment with VitK2 (45 µg; MK-7) induced a significant de-

crease of ucOC with a significant parallel increase of cOC, resulting in an improvement of 

the bone mineralization process [89]. Subsequently, an increase of cOC serum concentra-

tion was also found in healthy adults (both male and females) subjected to daily vitamin 

administration [50,90–92]. This was similarly confirmed in post-menopausal women with 

osteoporotic fracture, with ucOC serum levels being comparable with young and healthy 

adults following MK-4 supplementation [88]. 

In addition to the clinical evidence reported above, the effects of VitK2 on bone 

metabolism have been investigated through pre-clinical animal studies. 

In a model of osteoporotic ovariectomized (OVX) mice, Rangel and collaborators 

[94] demonstrated how this compound was able to improve BMD and bone formation 

markers, while decreasing bone resorption markers. Similar results were recently ob-

tained in a model of osteopenic rats, which were characterized by an increase of bone 

formation and cOC serum levels following MK-4 treatment [95]. 

Based on the results obtained in in vivo models, several in vitro studies have been 

conducted to better understand the molecular mechanisms by which VitK2 acts in the 

bone system. 
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Remarkably, it was well established that it mainly acts on osteoblastic cells, im-

proving their proliferation and differentiation and the function of bone matrix deposition 

through the aforementioned OC γ-carboxylation pathway [96]. 

However, it was also found that VitK2 enhances bone mineralization and decreases 

bone resorption in an OC γ-carboxylation-independent manner. 

Indeed, a recent study demonstrated the involvement of MGP in the promotion of 

osteoblasts proliferation and activities through the Wnt/β-catenin signaling pathway [97]. 

Furthermore, it is known that oxidative stress plays a key role in the alteration of 

bone cell metabolism and bone disease development. In particular, the redox imbalance 

could trigger osteoblast and osteocyte apoptosis, inhibiting bone formation and miner-

alization. This may induce a shift of the bone anabolic process towards osteoclast activity, 

leading to an increase of bone loss [98]. In this regard, more recently Muszynska and 

collaborators [99] demonstrated that vitamin K2 compounds exert a protective effect on 

the protein pattern involved in bone formation and mineralization by using a model of 

the osteoblastic cell line in which oxidative stress was induced by hydrogen peroxide 

(H2O2). 

In addition to this, the involvement of the nuclear steroid and xenobiotic receptor 

(SXR), a nuclear receptor which up-regulates the expression of the gene involved in os-

teoblast differentiation and bone matrix deposition, was found [100,101]. 

Finally, the anabolic effects of VitK2 at the bone level are also exerted through the 

regulation of different pathways implicated in osteoclast differentiation and activity; 

among these was the inhibition of the nuclear factor kappa-light-chain-enhancer of the 

activated B cells transcription factor (NF-kB) [102–104]. 

Given that these in vitro studies were mainly performed on differentiated bone cell 

cultures (osteoblasts and osteoclasts), we recently assessed the effects of VitK2 on osteo-

genic differentiation by using a model of human amniotic fluid primary mesenchymal 

stem cells (hAFMSCs). When these cells were cultured in a two-dimensional (2D) con-

ventional system, we found that MK-4 treatment significantly improved their osteogenic 

commitment through the abovementioned γ-carboxylation-dependent pathway. In that 

study, to mimic the “bone remodeling unit” in vitro, we also co-cultured hAFMSCs with 

human monocytes (hMCs) as osteoclast precursors by using a three-dimensional (3D) 

dynamic system. Interestingly, we showed that MK-4 was able to promote hAFMSC os-

teogenic commitment and inhibit hMC osteoclast differentiation, thus promoting the 

formation of 3D bone aggregates potentially useful for tissue engineering applications in 

bone regenerative medicine [105]. 

5. Vitamin K2 and Vascular Health 

The role of VitK2 in vascular health has been demonstrated by several studies em-

phasizing an inverse relation between its intake and the development of VC or conse-

quent risk of cardiovascular events (Table 3) [106,107]. 

The first unexpected piece of evidence for a link between this molecule and VC was 

provided by some observational studies based on the use of vitamin K antagonists 

(VKAs). VKAs, such as Warfarin, are anticoagulants administrated to avoid thrombosis 

onset [37,108–110]. However, their use not only prevents the activation of clotting factors, 

but also the activation of extra-hepatic VKDPs (MGP and OC) [111]. This was demon-

strated by several pre-clinical and clinical studies that showed that the use of VKAs was 

significantly associated with oxidative stress in VSMCs [112–114] and development of 

arterial calcification [49,115–117] in vessels, but also with loss of mineral density and in-

crease of risk fractures in bone [118]. 

Based on such evidence, the relationship between VitK2 intake and the risk of car-

diovascular events was further investigated in several clinical studies. 

In the Rotterdam cohort, its daily supplementation (25 µg) was associated with a 

significant decrease in the risk of VC (by 52%), development of coronary heart disease (by 

36%) and dying of heart disease (by 57%) [119]. Data from the Prospect-EPIC (European 
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Prospective Investigation into Cancer and Nutrition) cohort study showed that a higher 

VitK2 intake was associated with a lower risk of Peripheral Arterial Disease (PAD) [120]. 

In a cross-sectional analysis among 564 post-menopausal women, MK use was correlated 

with reduced coronary calcification [106,121]. 

Table 3. Clinical evidence linking vitamin K2 supplementation and vascular health. 

Study Type of the Study Number of Patients Enrolled Key Findings 

[120] 

Meta-analysis of 

Prospect-EPIC cohort 

study 

Healthy 16,057 women  

(49–70 years) 

Menaquinone’s intake reduces the 

incidence of coronary heart disease 

[121] RCT 564 post-menopausal women 
Menaquinone’s intake decreased 

coronary calcification 

[122] Prospective cohort 35,476 healthy subjects 
Menaquinone’s dietary intake was not 

associated with reduced stroke risk 

[106] RCT 244 post-menopausal women 

Vitamin K2 (MK-7; 180 µg/day) 

supplementation improves arterial 

stiffness 

[123] 
Prospective cohort 

study 

7216 participants  

(Mediterranean population at 

high cardiovascular disease 

risk) 

Vitamin K2 dietary intake was 

associated with a reduced risk of 

cardiovascular events and mortality 

[124] RCT 

Patients with coronary artery 

disease (number not 

specified) 

MK-7 (360 µg/day) supplementation 

arrested coronary artery calcification 

progression 

[125] 
Prospective cohort 

study 
36,629 participants with PAD 

Vitamin K2 intake was associated with 

a reduced risk of PAD 

[126] 
Prospective cohort 

study 

2987 (Norwegian men and 

women) 

Vitamin K2 intake was associated with 

a reduced risk of coronary artery 

disease 

[127] 
Prospective cohort 

study 

33,289 participants from the 

EPIC-NL cohort 

Higher intake Menaquinones was 

borderline significantly associated with 

lower CVD mortality 

[128] RCT 
68 Type II diabetes and CVD 

patients 

MK-7 (360 µg/day) was not associated 

with arterial calcification 

Furthermore, VitK2 consumption was also positively associated with a reduction of 

mortality risk in a Mediterranean population characterized by high risk of CVD [123]. In 

a double-bind, randomized, placebo-controlled study among patients with coronary ar-

tery disease, the supplementation for 24 months with MK-7 slowed down or totally in-

hibited coronary artery calcification progression [124]. Similar results were obtained from 

a prospective cohort of peripheral arterial disease patients (36,629 participants), in which 

a higher vitamin dietary intake was associated with a reduced risk of PAD [125]. This 

was recently confirmed by Haugsgjerd and collaborators [126], who showed an inverse 

association with the risk of coronary heart disease in a prospective cohort study that en-

rolled 2987 Norwegian men and women. 

However, despite the encouraging results mentioned above, no association has been 

found between VitK2 intake, reduced stroke risk [122], CVD mortality [127] and arterial 

calcification in Type 2 diabetes and CVD patients [128,129]. 

Regarding the molecular mechanism by which VitK2 might be involved in the reg-

ulation of vascular health, a growing amount of evidence emphasizes the strict link be-

tween VitK2 status, MGP and the development of cardiovascular events [130,131]. 

In this context, several observational studies have shown that the subjects with the 

highest levels of serum inactive ucMGP were characterized by increased VC, arterial 

stiffness, and higher risk of CVD [82,131–133]. Interestingly, a significant decrease of 

ucMGP was obtained with treatment with VitK2 [134–137]. However, it is important to 



Nutrients 2021, 13, 1222 9 of 15 
 

underline that these results were mainly achieved in specific high-risk population 

groups, such as chronic kidney diseases (CKD), and in diabetic and hypertensive patients 

[42]. 

The inhibitory role of VitK2 was also investigated in some recent pre-clinical in vivo 

studies. 

In a murine model of CKD-extraosseous calcification, supplementation with MK-7 

(100 µg/g diet) inhibited the development of cardiovascular calcification via MGP path-

way [71], whereas Wang and collaborators [138] found that this compound could inhibit 

the intimal calcification of the aortic artery in a high-fat diet in ApoE−/− mice model 

through the downregulation of the Toll-like receptor 2 (TLR2) and TLR4 expression. In 

addition, they confirmed these results in vitro using a cell line of VSMCs induced to the 

calcification process by β-sodium glycerophosphate [138]. 

In the same way, to better clarify the mechanism underlining the inhibitory role of 

VitK2, we recently performed an in vitro study with primary VSMCs exposed to 

β-sodium glycerophosphate. 

Since hypertension is one of the main risk factors for cardiovascular calcification, 

VSMCs isolated from spontaneously hypertensive rats (SHR) were used as a model of 

cell vascular dysfunction [139]. Interestingly, we found that MK-4 reduced VC progres-

sion, preserving the contractile phenotype SHR-VSMCs. Specifically, we demonstrated 

for the first time that treatment with MK-4 was able to decrease the VC process through 

the inhibition of VSMC osteoblast trans-differentiation via MGP carboxylation, which 

triggered the inhibition of BMP-2 [140]. 

Finally, beyond the aforementioned role of VitK2 on VSMC osteoblast 

trans-differentiation through MGP, it is worth noting the involvement of the VKDPs, 

mainly expressed in the brain, and named Growth arrest-specific protein 6 (Gas6) [45]. 

Interestingly, since VSMC apoptosis represents another key event required for the de-

velopment and progression of VC, it was hypothesized that the anti-apoptotic role of 

Gas6 VKDPs [141] may play a role in this scenario [8]. Indeed, both in rats in vivo that in 

rats-derived VSMCs in vitro, treatment with VitK2 was able to inhibit VSMC calcifica-

tion, avoiding their apoptosis through the Gas6/AxL/Akt anti-apoptotic pathway 

[142,143]. 

6. Conclusions 

In summary, although controversial results can still be found in the current litera-

ture [83,84,144], the evidence analyzed and reported in this review may support the idea 

that VitK2 can exert a relevant role in the maintenance of bone and vascular health. 

With regard to bone disorders, its ability to reduce loss of BMD and fracture risk, as 

well as to improve bone quality, has been described by several clinical studies which, 

moreover, have confirmed that OC γ-carboxylation is the main mechanism of action 

through which this natural compound is able to improve bone health [88,90,92]. 

On the other hand, several bodies of clinical evidence suggest an analogous protec-

tive role of VitK2 at the vascular level, emphasizing a strict association between vitamin 

serum level, MGP γ-carboxylation levels, reduction of VSMCs osteogenic 

trans-differentiation and possibly the risk of cardiovascular events. 

The VitK2 effects described in the regulation of the phenomenon named 

“bone-vascular crosstalk” occur through several molecular mechanisms, which are illus-

trated in Figure 2. 

Specifically, at the vascular level, VitK2 acts as cofactor for GGCX, allowing the ac-

tivation of MGP through its carboxylation. In turn, the active MGP carboxylated form 

may directly inhibit both the ectopic Ca2+ precipitation in the vessel wall and, in parallel, 

VSMC osteoblast trans-differentiation by inhibiting BMP-2 expression. Furthermore, 

VitK2 may inhibit VSMC calcification, avoiding their apoptosis through the 

Gas6/AxL/Akt anti-apoptotic pathway. 
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Simultaneously, in bone tissue, VitK2 is able to modulate several molecular path-

ways. In fact, in osteoblasts it can promote bone matrix deposition through the activation 

of the SXR receptor bone mineralization via GGCX and OC, as well as osteoblast prolif-

eration and activity through the control of oxidative stress (Ox-S) imbalance and the in-

volvement of MGP and the Wnt/β-catenin signaling pathway. Of note, VitK2 can also 

regulate the osteoclast function of bone resorption through the inhibition of NF-kB. 

These interesting molecular effects exerted by VitK2 support the results of the 

pre-clinical and clinical studies reported here, implying that it can significantly promote 

bone and vascular health. 

Therefore, VitK2 could be recommended as a natural bioactive compound poten-

tially able to prevent and/or treat metabolic bone and vascular disease such as osteopo-

rosis and vascular calcification. 
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