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Vitamin D and Its Potential Benefit for the COVID-19 Pandemic 22 

Abstract 23 

Vitamin D is known not only for its importance for bone health, but also for its 24 

biologic activities on other many other organ systems. This is due to the presence of the 25 

vitamin D receptor (VDR) in various types of cells and tissues, including the skin, skeletal 26 

muscle, adipose tissue, endocrine pancreas, immune cells and blood vessels. Experimental 27 

studies have shown that vitamin D exerts several actions that are thought to be protective 28 

against COVID-19 infectivity and severity. These include the immunomodulatory effects on 29 

the innate and adaptive immune systems, the regulatory effects on renin-angiotensin-30 

aldosterone-system in the kidneys and the lungs, and the protective effects against endothelial 31 

dysfunction and thrombosis. Prior to the COVID-19 pandemic, studies have shown that 32 

vitamin D supplementation is beneficial in protecting against risk of acquiring acute 33 

respiratory viral infection and may improve outcomes in sepsis and critically ill patients. 34 

There are a growing number of data connecting COVID-19 infectivity and severity with 35 

vitamin D status, suggesting a potential benefit of vitamin D supplementation for primary 36 

prevention or as an adjunctive treatment of COVID-19. Although the results from most 37 

ongoing randomized clinical trials aiming to prove the benefit of vitamin D supplementation 38 

for these purposes are still pending, there is no downside to increasing vitamin D intake and 39 

having sensible sunlight exposure to maintain serum 25-hydroxyvitamin D at least 30 ng/mL 40 

(75 nmol/L) and preferably at 40 – 60 ng/mL (100 – 150 nmol/L) to minimize the risk of 41 

COVID-19 infection and its severity.  42 

Keywords: Vitamin D, 25-hydroxyvitamin D, COVID-19, SARS-CoV-2 43 
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Introduction  45 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the new strain of 46 

coronavirus that causes coronavirus disease (COVID-19) (1, 2). Due to the high infectivity 47 

and transmissibility of this novel virus, COVID-19 quickly became a global pandemic that 48 

has already affected at least 219 countries since its emergence from Wuhan, China in 49 

December 2019 (2, 3). The most common clinical manifestations of COVID-19 include 50 

fever, fatigue, anorexia, myalgia, cough, sputum production and dyspnea (4, 5). Although the 51 

majority of the COVID-19 patients are either asymptomatic or develop only mild respiratory 52 

symptoms, a significant number of patients develop severe complications that result in 53 

morbidity and mortality, including acute respiratory distress syndrome (ARDS), arterial and 54 

venous thrombosis, multi-organ failure, septic shock, among others (4, 5). Factors known to 55 

be associated with increased susceptibility to severe outcomes are advanced age, cancer, 56 

immunocompromised state, chronic kidney disease, chronic respiratory disease, cardio-57 

metabolic disorders and smoking (6). The elderly, African Americans, patients with obesity 58 

and nursing home residents (7, 8) have disproportionately higher rates of infection, morbidity 59 

and mortality from COVID-19. These populations are also known as being at high risk for 60 

vitamin D deficiency (9-12). Thus, vitamin D deficiency could potentially contribute to 61 

higher COVID-19 positivity, morbidity and mortality rates appreciated in these populations. 62 

Vitamin D is not only known for its importance for bone health, but also recognized 63 

for its potential protective effects against multiple chronic diseases as well as its 64 

immunomodulatory activities (10, 11, 13). With the global prevalence of vitamin D 65 

deficiency (defined by serum 25-hydroxyvitamin D [25(OH)D] level of <20 ng/mL) and 66 

insufficiency (defined by serum 25(OH)D level of 20 - <30 ng/mL), of 40 – 100% (14-17), 67 

correcting vitamin D deficiency would be a cost-effective intervention to alleviate the burden 68 

of this pandemic in a populational level.  The aim of this review is to discuss potential 69 

biological mechanisms by which vitamin D could be protective against COVID-19 and to 70 

summarize evidence from observational studies and clinical trials that demonstrated the direct 71 

and indirect link between vitamin D and COVID-19. 72 

Sources, synthesis and metabolism of vitamin D 73 

Vitamin D is responsible for regulating calcium and phosphate metabolism and 74 

maintaining healthy mineralized skeleton. It is also known for its biologic activities on 75 

various types of tissues including the immune system (10, 11, 13, 18-20). There are two 76 
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forms of vitamin D: vitamin D2 (ergocalciferol) and vitamin D3 (cholecalciferol). Vitamin D2, 77 

synthesized from ergosterol, is found in sun dried and ultraviolet irradiated mushrooms and 78 

yeast, while vitamin D3 is synthesized from endogenous 7-dehydrocholesterol in the skin and 79 

can be found naturally in oily fish and cod liver oil, as well as in meat in the form of 80 

25(OH)D3 (10, 11, 21-23).  Once entering the circulation, vitamin D (vitamin D2 and D3) is 81 

converted by several vitamin D-25-hydroxylases (i.e., CYP2R1, CYP27A1, CYP2C11, 82 

CYP2J3, CYP3A4) in the liver into 25(OH)D, the major circulating metabolite of vitamin D. 83 

25(OH)D is then metabolized by the 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1) to 84 

the biologically active form, 1,25-dihydroxyvitamin D [1,25(OH)2D] (24). The kidneys are 85 

the main site of conversion of 25(OH)D into the circulating bioavailable 1,25(OH)2D, which 86 

is responsible for regulating intestinal calcium absorption and bone calcium mobilization (10, 87 

11). Furthermore, CYP27B1 is expressed in several other tissues, including parathyroid 88 

glands, breast, colon, keratinocytes, microglia and immune cells where 1,25(OH)2D is 89 

produced and exerts its autocrine, paracrine and intracrine functions by binding with the 90 

intracellular vitamin D receptor (VDR), which subsequently leads to up- or down-regulation 91 

of a multitude of genes (10, 11). 92 

Vitamin D and immune function 93 

Due to the presence of the VDR in most tissues, including the skin, skeletal muscle, 94 

adipose tissue, endocrine pancreas, immune cells and blood vessels, vitamin D has been 95 

shown to have a multitude of non-skeletal biological activities. In particular, vitamin D is 96 

considered an immunomodulatory agent that regulates both innate and adaptive immune 97 

systems (Figure 1) (10, 11, 13, 18-20). Activated macrophages express CYP27B1 that 98 

converts 25(OH)D into 1,25(OH)2D. 1,25(OH)2D, in turn, induces the macrophage 99 

production of the endogenous antimicrobial peptides, cathelicidins and defensins (18, 19, 25). 100 

Furthermore, 1,25(OH)2D has been shown to alter the activity of different types of T helper 101 

cells by promoting a shift from T helper 1 (TH1) and T helper 17 (TH17) to T helper 2 (TH2) 102 

immune profile and facilitating differentiation of regulatory T cells (Treg) (26-29). In addition, 103 

both cytotoxic T lymphocytes (CTL) and B cells, when activated, upregulate their VDR, 104 

suggesting a coordinated regulation of the VDR signaling pathway and response to stimuli of 105 

these components of the adaptive immune system (30-32). 106 

The effect of vitamin D supplementation on immune function has been well-107 

demonstrated in a recent study that evaluated broad gene expression in peripheral blood 108 
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mononuclear cells (PBMCs) after orally supplementing various doses of vitamin D (33-35). 109 

Thirty healthy adults with vitamin D insufficiency [25(OH)D 20 - <30 ng/mL or 50 -<75 110 

nmol/L] or deficiency [25(OH)D <20 ng/mL or <50  nmol/L] were randomized to receive 111 

600, 4,000 or 10,000 IU per day of vitamin D3 for 6 months and were found to have dose-112 

dependent alteration in broad gene expression with 162, 320 and 1,289 genes up- or down- 113 

regulated in their PBMCs, respectively (33). Equally interesting if not more is that some 114 

individuals might respond to vitamin D more or less than others as high inter-individual 115 

difference in responsiveness to vitamin D supplementation has been observed (Figure 2). In 116 

the same clinical trial, those who received this same dose of vitamin D and raised their serum 117 

concentrations of 25(OH)D to the same degree showed marked differences in the level of 118 

expression of the same genes (33). In addition, different patterns of serum metabolomic 119 

profile were also observed between the subjects with robust and minimum to modest genomic 120 

responses (33, 34). These observations support of the findings from a previous clinical trial 121 

that gave 3,200 IUs of vitamin D3 per day to 71 prediabetic patients for 5 months and 122 

revealed robust changes in broad gene expression in PBMCs only in about half of the 123 

subjects despite comparable serum concentrations of 25(OH)D (35).  124 

Potential protective effects of vitamin D against COVID-19 125 

There are multiple biological explanations by which vitamin D could potentially be 126 

protective against infectivity and severity from COVID-19. These include vitamin D’s 127 

immune- and non-immune- mediated actions on several tissues via both genomic and non-128 

genomic pathways. First, 1,25(OH)2D enhances the innate immune system by inducing not 129 

only the macrophages but also the respiratory epithelial cells to produce the antimicrobial 130 

peptide, cathelicidin LL-37 (36). This antimicrobial peptide not only acts against invading 131 

bacteria and fungi by destabilizing their cell membranes, but also exhibits direct antiviral 132 

activities against respiratory viruses by altering viability of host target cells and disrupting 133 

their envelopes (37-39). This mechanism is supported by the result of a pilot clinical trial that 134 

gave a single enteral dose of 400,000 IUs of vitamin D3 or placebo to patients with sepsis and 135 

demonstrated an increase in serum cathelicidin in the treatment group compared with the 136 

placebo group (40). More interestingly, it has been recently demonstrated in an experimental 137 

study using surface plasmon resonance analysis that LL-37 competitively binds to SARS-138 

CoV-2 S protein, which, in turn, inhibits viral binding to the receptor ACE2 and most likely 139 

prevents viral entry into the cell (41). In addition, cathelicidins were shown to prevent against 140 

lung damage associated with oxygen toxicity (42).  141 
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The second mechanism is related to the immunomodulatory effects of vitamin D on 142 

the adaptive immune system. As discussed in the previous section, 1,25(OH)2D has been 143 

shown to down-regulate the activities of TH1 and TH17 and promote differentiation of Treg 144 

(26-29). This leads to a decrease in the production of proinflammatory cytokines, including 145 

IL-6, IL-8, IL-12, TNL-α and IL-17 (26-29), thereby alleviating the cytokine storm syndrome 146 

in COVID-19 patients with high inflammatory burden and therefore preventing multi-organ 147 

dysfunction. Interestingly, vitamin D has also been shown to up-regulate the expression of 148 

IL-10 which is thought to be a potential treatment target for COVID-19 (43-46). These 149 

potential immunologic effects of vitamin D is supported by multiple studies that reported the 150 

impact of vitamin D supplementation on reduction of inflammatory burden in TH1 and/or 151 

TH17 mediated autoinflammatory diseases such as rheumatoid arthritis (47), psoriasis (48, 152 

49), multiple sclerosis (50) and inflammatory bowel disease (51). In addition, it has been 153 

suggested that activation of the VDR in the pulmonary stellate cells might play a role in 154 

suppressing inflammation and fibrotic changes in the lungs of COVID-19 patients (52).   155 

Third, 1,25(OH)2D has been shown to regulate the renin-angiotensin-aldosterone 156 

(RAAS) system (Figure 3) (53, 54), and the effects are thought to be different among tissues. 157 

In an animal model, oral administration of alfacalcidiol (1α-hydroxyvitamin D) was shown to 158 

inhibit ACE2 expression, which is the main receptor entry of SARS-CoV-2, in the renal 159 

tubular cells (54, 55). Therefore, 1,25(OH)2D likely exerts the same biologic on the kidney 160 

and therefore may be protective against COVID-associated kidney injury by reducing viral 161 

entry into the cell. It has been shown that SARS-CoV-2 infection downregulate ACE2 in the 162 

lungs (56). This causes accumulation of angiotensin II, which is believed to play a role in the 163 

development of ARDS, myocarditis, and cardiac injury the major severe complications of 164 

COVID-19 (56). In the lipopolysaccharide-induced acute lung injury animal model, 165 

1,25(OH)2D was shown to suppress renin, ACE and angiotensin II expression and increase 166 

ACE2 expression (57, 58). These effects could potentially reduce the accumulation of 167 

angiotensin II and therefore reduce the risk of ARDS and cardiac injury especially in 168 

COVID-19 patients who have pre-existing dysregulation of the RAAS system such as those 169 

with underlying hypertension, heart failure and renal insufficiency (59). Additionally, a 170 

mechanistic model generated from gene expression data of cells in bronchoalveolar lavage 171 

fluid from COVID-19 patients and controls have suggested that the inhibitory effect of 172 

1,25(OH)2D on renin expression may result in decreased flux of angiotensin I to angiotensin-173 
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(1-9) (60). This mechanism is thought to help mitigate bradykinin storm, which has been 174 

shown to underlie the multiple organ dysfunction in COVID-19 (60). 175 

Another action of vitamin D is its pleiotropic effects against endothelial cell 176 

dysfunction and vascular thrombosis, which may mitigate vascular leakage secondary to 177 

systemic inflammatory response and prevent COVID-associated arterial and venous 178 

thrombosis (61-63). It has been shown in the primary dermal human microvascular 179 

endothelial cell model that vitamin D3, 25(OH)D3 and 1,25(OH)2D3 stabilized vascular 180 

endothelial membranes via a non-genomic pathway (61). Additionally, vitamin D3, which 181 

normally circulates at about 100 times higher concentration than 1,25(OH)2D3, was at least 182 

10 times more potent than 1,25(OH)2D3 and more than 1,000 times more potent than 183 

25(OH)D3 in stabilizing the endothelium  (61). Furthermore, it has been shown in a uremic 184 

rat model that paricalcitol [19-nor-1,25(OH)2D2] could prevent the development of 185 

endothelial intracellular gaps and reduce endothelial damage (62). Finally, vitamin D is 186 

known to exert direct and indirect antithrombotic activities by controlling the expression of 187 

multiple genes involved in the coagulation pathway (63). 188 

Despite multiple mechanisms suggesting potential benefits of vitamin D for COVID-189 

19, 1,25(OH)2D is known to inhibit plasma cell differentiation and reduce immunoglobulin 190 

production by B-cells in the settings of autoimmune disorders (30, 64, 65). It is still unclear 191 

whether this biologic action could dampen the production of neutralizing antibodies and be 192 

detrimental in the setting of response to COVID-19 infection or COVID-19 vaccine. Further 193 

studies are required to investigate this aspect of vitamin D actions.  194 

Pre-COVID evidence from clinical studies  195 

The outbreak of influenza infection is seasonal and usually occurs in the winter in 196 

high-latitude areas but is sporadic throughout the year in tropical areas (66, 67). The most 197 

likely explanation of this phenomenon is the seasonal variation of temperature, humidity and 198 

intensity of ultraviolet radiation (68-70). Another possible explanation for this outbreak 199 

pattern is the seasonal variation in serum concentrations of 25(OH)D of the population that 200 

reach the lowest levels in the winter (71). This notion is supported by several studies that 201 

have shown the independent association between low concentration of serum 25(OH)D and 202 

incidence and severity of acute respiratory viral infection. For example, a cohort study in 203 

healthy adults demonstrated approximately 50% reduction in the risk of incident acute 204 

respiratory tract infection in those with serum 25(OH)D concentrations of ≥38 ng/mL (95 205 
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nmol/L) (72). A case-control study in 469 New Zealand children aged <2 years demonstrated 206 

that those requiring hospitalization for acute respiratory infection had a significantly 1.7-time 207 

higher odds of vitamin D deficiency than those with mild illnesses (73). To illustrate the 208 

causal association, a randomized controlled trial gave 1200 IUs of vitamin D3 per day or 209 

placebo to 167 Japanese schoolchildren for 4 months and revealed that those who received 210 

vitamin D3 supplementation had a significantly lower risk of influenza A infection compared 211 

with the placebo group (RR 0.58; 95% CI: 0.34 – 0.99) (74). A more recent meta-analysis of 212 

25 randomized controlled trials showed that supplementation of vitamin D2 or D3 can protect 213 

against the development of acute respiratory tract infection compared with placebo (adjusted 214 

OR 0.88; 95%CI: 0.81 – 0.96) (75). The protective effects were more pronounced in those 215 

with baseline 25(OH)D concentrations of less than 10 ng/mL, or 25 nmol/L (adjusted OR 216 

0.30; 95%CI: 0.17 – 0.53) (75). It should however be noted that there was moderate statistical 217 

heterogeneity in this main meta-analysis, with the I2 value of 53.3%, and that most of the 218 

individual clinical trials included in the meta-analysis failed to demonstrate statistical 219 

significance of the impact of vitamin D supplementation (75). 220 

Prior to the COVID-era, sepsis is one of the major causes of morbidity and mortality 221 

among hospitalized patients in the intensive care unit (76). A number of studies have shown 222 

the association between low concentrations of serum 25(OH)D increased unfavorable 223 

outcomes in sepsis and critically ill patients (77, 78). However, the association between 224 

vitamin D status and sepsis outcomes might be bi-directional as it is also probable that low 225 

serum 25(OH)D concentrations in patients with severe sepsis could be secondary to systemic 226 

inflammation that increases the activity of the 25(OH)D-24-hydroxylase that catabolizes 227 

25(OH)D as well as causes extravascular leakage of the vitamin D-binding protein (79, 80). It 228 

should be noted that randomized clinical trials that investigated the impact of vitamin D 229 

supplementation on clinical outcomes of sepsis and critical illness have yielded mixed results. 230 

In a pilot study in 31 vitamin D-deficient patients who were on mechanical ventilations, 231 

administration of a single dose of enteral 500,000 or 250,000 IUs of vitamin D3 was found to 232 

decrease hospital length of stay compared with placebo (81). In another randomized 233 

controlled trial that gave enteral 540,000 IUs of vitamin D3 followed by monthly maintenance 234 

doses of 90,000 IU for 5 months or placebo to 475 vitamin D-deficient critically ill patients, a 235 

significant decrease in hospital mortality was observed in the subgroup of 200 patients with 236 

serum 25(OH)D<12 ng/mL, or 30 nmol/L (HR 0.56; 95%CI: 0.35 – 0.90) (82). On the other 237 

hand, in a larger clinical trial in 1,360 patients with critical illness, administration of a single 238 
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dose of enteral 540,000 IUs of vitamin D3 was not superior to placebo in reducing the risk of 239 

mortality and other clinical outcomes (83). This negative result may suggest that it is too late 240 

for the critically ill patients to benefit from vitamin D supplementation and that vitamin D has 241 

to be given at the earlier stages of disease to demonstrate its survival benefit (84, 85).  242 

Current evidence on vitamin D and COVID-19  243 

Multiple observational studies have reported the link between vitamin D status or 244 

serum 25(OH)D concentrations and risk of acquiring COVID-19 in many countries 245 

worldwide. For example, a study using a national clinical laboratory database of the United 246 

States of 191,779 patients, SARS-CoV-2 positivity is strongly and inversely associated with 247 

circulating 25(OH)D concentrations, although the analysis was limited to one SARS-CoV-2 248 

result per patient. The observed relationship was found to persist across latitudes, races, 249 

ethnicities, both sexes, and age ranges (86) (Figure 4). This result is in line with that of a 250 

retrospective cohort study showing that deficient vitamin D status was associated with an 251 

increased risk of positive test for COVID-19 [RR 1.77; 95% CI, 1.12 – 2.81] with likely 252 

sufficient vitamin D status after adjusting for potential confounders (87). Another study in 50 253 

hospitalized COVID-19 Korean patients and 150 age- and sex- matched controls showed that 254 

the COVID-19 patients were about 3 times more likely to be severely vitamin D-deficient 255 

[25(OH)D <10 ng/mL or 25 nmol/L] than the control group (88). Another populational-based 256 

study in 782 Israeli COVID-19 patients and 7,025 controls showed that vitamin D deficiency 257 

was independently associated with approximately 1.5 times higher odds of COVID-19 test 258 

positivity [adjusted OR 1.50; 95%CI: 1.13 – 1.98] (89). In a study of 216 COVID-19 Spanish 259 

patients and 197 population-based controls, vitamin D deficiency [25(OH)D <20 ng/mL or 50 260 

nmol/L] was found to be about 1.7 times more prevalent in COVID-19 cases than in the 261 

control group. Moreover, serum 25(OH)D concentrations were significantly lower in 262 

COVID-19 patients after adjusting for potential confounders (90). Nonetheless, a cohort 263 

study in 347 Italian hospitalized patients with positive and negative COVID-19 test showed 264 

no association between vitamin D status and COVID-19 test positivity (90). This negative 265 

finding is likely due to the fact that, unlike those of the other studies, hospitalized patients 266 

were recruited to be the control group (91). A study using data from the United Kingdom 267 

biobank consisting of 348,598 participants including 449 confirmed COVID-19 patients 268 

reported that vitamin D was associated with COVID-19 infection univariately, but not after 269 

adjustment for confounders. However, this study utilized serum concentrations of 25(OH)D 270 

measured during 2006 – 2000, which may not accurately reflect current vitamin D status (92).  271 
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In addition to the promising data on the relationship between vitamin D status with 272 

risk of acquiring COVID-19, a growing amount of evidence from multiple observational 273 

studies have reported the connection between vitamin D status and risks of severity in 274 

COVID-19 patients. A meta-analysis of 27 studies published in reported that vitamin D 275 

deficiency in COVID-19 patients was significantly associated with higher risks of severe 276 

infection [OR 1.64; 95%CI: 1.30 – 2.09], hospitalization [OR 1.81; 95%CI: 1.42 – 2.21] and 277 

mortality [OR 1.92; 95%CI: 1.06 – 2.58] (93). Several more recent studies in many different 278 

regions worldwide have addressed the same question with relatively inconsistent results (93-279 

100). This could be due to different patient characteristics and study design across the studies.  280 

There are some issues that are worth noting while processing the evidence. First, 281 

vitamin D deficiency is associated with presence and disease burden of several comorbidities 282 

such as cardio-metabolic disorders, chronic kidney disease and obesity (101-103). Therefore, 283 

the observed association might be in part confounded by these factors, although most studies 284 

have already attempted to address this with multivariate analysis (98-100, 104). Second, the 285 

association between vitamin D status at the time of hospitalization and outcomes of acute 286 

inflammatory illness is likely due in part to reverse causation. Low level of serum 25(OH)D 287 

could also be secondary to systemic inflammatory response which results in vascular leakage 288 

of vitamin D-binding protein and albumin as well as increased catabolism of 25(OH)D (105, 289 

106). Third, vitamin D might benefit each individual differently as significant inter-individual 290 

difference in responsiveness to vitamin D supplement has been reported (33-35). 291 

Additionally, aged individuals may benefit from vitamin D more than young adults as they 292 

tend to have higher inflammatory burden of COVID-19. This notion is supported by the 293 

observation in some studies that showed a stronger association between vitamin D status and 294 

COVID-19 severity in elderly patients (93, 107). Finally, some studies that reported positive 295 

association utilized previous laboratory data (86, 89, 92) and use of diagnostic code of 296 

vitamin D deficiency from the medical record database to define vitamin D status (98). It is 297 

likely that an individual who was found to have vitamin D deficiency prior to the infection 298 

would have been treated for vitamin D deficiency and became vitamin D repleted by the time 299 

they were infected. This indicates that there might be the legacy effect of being vitamin D-300 

sufficient and that raising serum 25(OH)D concentrations over a short period of time might 301 

not be as effective as maintaining serum 25(OH)D concentrations in a preferred range of 40-302 

60 ng/mL (100 – 150 nmol/L) over the long term (12). 303 
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Given the promising evidence on the potential benefit of vitamin D against COVID-304 

19, a number of ongoing randomized controlled trials have been conducted with the aim to 305 

investigate the impact of vitamin D supplementation of different forms and dosing regimens. 306 

A pilot randomized clinical trial that gave oral 25(OH)D3 (calcifediol) or placebo to 76 307 

COVID-19 patients and showed that the treatment group had a markedly reduced rate of 308 

intensive care unit admission (2% vs. 50%, p<0.001) (108). However, in a larger randomized 309 

controlled trial giving 240 hospitalized patients with moderate to severe COVID-19 200,000 310 

IUs of vitamin D3 or placebo, there were no differences in length of hospital stay, in-hospital 311 

mortality, admission to intensive care unit or mechanical ventilation requirement (109). This 312 

emphasizes that the immunomodulatory effects of vitamin D are likely to be the results of its 313 

long-term rather than short-term actions.  314 

Recommended serum 25-hydroxyvitamin D concentrations to help fight the COVID 19 315 

pandemic   316 

It is largely controversial as to what concentration of serum 25(OH)D would provide 317 

optimal benefit for bone health, overall health benefits and prevention against COVID-19. 318 

Serum 25(OH)D concentration of higher than 15 – 20 ng/mL (37.5 – 50 nmol/L) would be 319 

sufficient for prevention of rickets, osteomalacia and symptomatic hypocalcemia (110). 320 

Notably, hypocalcemia is shown to be highly prevalent and associated with hospitalization in 321 

COVID-19 patients. Whether and how much sufficient level of serum 25(OH)D would be 322 

protective against hypocalcemia in COVID-19 patients requires further investigations (111). 323 

However, it is recommended that serum 25(OH)D concentration should be above 30 ng/mL 324 

(75 nmol/L) to maximize the calcemic effects of vitamin D and minimize the risk of 325 

secondary hyperparathyroidism that predisposes to osteoporosis (12). It is worth considering 326 

the historical evidence to postulate vitamin D status in our hunter gatherer forefathers. Hadza 327 

tribesmen and Maasai herders were reported to have serum concentrations of 25(OH)D in the 328 

range of 40 – 60 ng/mL (100 – 150 nmol/L) (112-114). This range is in line with that 329 

reported not only in population-based studies to be associated with the lowest risk of chronic 330 

diseases and all-cause mortality (11, 114-117), but also in recent studies to be associated with 331 

decreased risks of COVID-19 infection and its severity (86-90, 93). With minimal sunlight 332 

exposure, an adult would require ingestion of 4,000 – 6,000 IUs of vitamin D3 or vitamin D2 333 

daily to maintain serum 25(OH)D in the preferred range of 40 – 60 ng/mL (100 – 150 334 

nmol/L) (12).  Obese adults require 2-3 times more vitamin D to maintain the same serum 335 

concentrations of 25(OH)D (12, 118). 336 
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On average, approximately 40% and 60% of children and adults have circulating 337 

concentrations of 25(OH)D <20 ng/mL (50 nmol/L) and <30 ng/mL (75 nmol/L), 338 

respectively (119). This already high prevalence of vitamin D deficiency/insufficiency tends 339 

to be further aggravated by the lack of sunlight exposure and outdoor activity as a result of 340 

the pandemic lockdown. Thus, patients hospitalized with COVID-19 are likely to be vitamin 341 

D-deficient or insufficient, and, therefore, it is reasonable to institute as standard of care to 342 

measure serum 25(OH)D level and to give at least one single dose of 80,000 – 100,000 IUs of 343 

vitamin D to all vitamin D-deficient [25(OH)D <20 ng/mL or 50 nmol/L] or insufficient 344 

[25(OH)D 20- <30 ng/mL or 50 -<75 nmol/L] COVID-19 patients with a normal body mass 345 

index and at least 200,000 IUs for those with obesity (body mass index >30 kg/m2) after 346 

being hospitalized (12, 85, 108). It is noteworthy that optimal magnesium status may be 347 

important for optimizing vitamin D status (120, 121). Therefore, maintaining magnesium 348 

status by giving magnesium supplementation with high-dose vitamin D may benefit in this 349 

situation. Additionally, corticosteroids have become a mainstay treatment for COVID-19 in 350 

patients with high inflammatory burden. It should be noted that corticosteroids and some 351 

other medications (e.g., antiepileptics and antiretrovirals) affects the steroid and xenobiotic 352 

receptor or the pregnane X receptor, causing increased catabolism of 25(OH)D and 353 

1,25(OH)2D into inactive water-soluble carboxylic acid derivatives (12). Thus, patients who 354 

receive any of these medications should also be given an increased dose of vitamin D of 355 

200,000 IUs (12). Finally, if hospitalized more than 1 week, with minimal sunlight exposure 356 

and dietary intake of vitamin D, they should continue to receive the daily or the equivalent 357 

weekly dose of about 2000 – 5000 IUs per day and 6000 – 10,000 IUs per day for those with 358 

obesity or receiving corticosteroids (12). This strategy is proposed to ensure serum 25(OH)D 359 

level of at least 30 ng/mL (75 nmol/L) throughout hospitalization. Further clinical trials are 360 

required to examine the clinical benefits or risks of this strategy specifically on COVID-19-361 

related outcomes. 362 

Conclusion 363 

Vitamin D is known not only for its importance for calcium and phosphate 364 

metabolism but also for its biologic actions on immune modulation. This is because of the 365 

presence of the vitamin D receptor in most types of cells, especially the immune cells 366 

including activated T and B lymphocytes and macrophages. Experimental studies have shown 367 

that vitamin D exerts several biological activities that are thought to be protective against 368 

COVID-19. These include the immunomodulatory effects on the innate and adaptive immune 369 
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systems, the regulatory effects on renin-angiotensin-aldosterone-system in the kidneys and 370 

the lungs, and the protective effects against endothelial dysfunction and thrombosis. Prior to 371 

the COVID-era, it has been reported that vitamin D supplementation is beneficial in 372 

protecting against risk of respiratory viral infection and may improve outcomes in sepsis and 373 

critically ill patients. There are a growing number of data suggesting the link between serum 374 

25(OH)D concentrations and COVID-19 infectivity and severity. Although it is still pending 375 

for the results from randomized clinical trials aiming to prove the benefit of vitamin D 376 

supplementation for these purposes, there is no downside to increasing vitamin D intake and 377 

having sensible sunlight exposure to maintain serum 25(OH)D at least 30 ng/mL (75 nmol/L) 378 

and preferably at 40 – 60 ng/mL (100 – 150 nmol/L) (12) to achieve optimal health benefits 379 

of vitamin D and minimize the risk of COVID-19 infection and its severity.  380 
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Figure legends 689 

Figure 1. Schematic representation of paracrine and intracrine function of vitamin D and its 690 

metabolites and actions of 1,25-dihydroxyvitamin D on the innate and adaptive immune 691 

systems. Abbreviation: 1,25(OH)2D: 1,25-dihydroxyvitamin D; 25(OH)D: 25-692 

hydroxyvitamin D, IFN-Ƴ: interferon- Ƴ; IL: interleukin; MHC: membrane 693 

histocompatibility complex, TH1: T helper 1; TH2: T helper 2; TH17: T helper 17; Treg: 694 

regulatory T cell, TNF-α: Tumor necrosis factor- α; TLR2: toll-like receptor 2; TLR4: toll-695 

like receptor 4. Reproduced with permission from Holick MF, 2020. 696 

Figure 2. Heatmaps of vitamin D responsive genes whose expression response variation in 6 697 

vitamin D-deficient subjects taking 10,000 international units per day of vitamin D3 for 6 698 

months showing that 3 subjects had a robust response in gene expression compared to the 699 

other 3 subjects who had minimum to modest responses even though these subjects raised 700 

their blood levels of 25(OH)D in the same range of ~60 – 90 ng/mL. Abbreviation: 0m: 0 701 

month; 6m: 6 months; 25(OH)D: 25-hydroxyvitamin D; PTH: Parathyroid hormone. 702 

Reproduced with permission from Holick MF, 2019. 703 

Figure 3. Schematic representation of the effects of 1,25(OH)2D on the renin-angiotensin-704 

aldosterone system. SARS-CoV-2 uses the ACE2 as the main receptor entry site and 705 

downregulates ACE2 in the lungs. This causes the accumulation of angiotensin II which 706 

causes inflammation and apoptosis in the lungs, and systemic vasoconstriction by interacting 707 

with the AT1 receptor, leading to COVID-related complications including ARDS, 708 

myocarditis and cardiac injury. 1,25(OH)2D inhibits renin and ACE, and induces the 709 

expression of ACE2 in the lungs, thereby reducing the accumulation of angiotensin II. 710 

Inhibition of renin expression may also result in decreased flux of angiotensin I to 711 

angiotensin-(1-9), thereby mitigating bradykinin storm Additionally, 1,25(OH)2D may inhibit 712 
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ACE2 expression in the renal tubular cells, which is thought to be protective against COVID-713 

associated kidney injury by reducing the viral direct cytopathic effects on the cell. 714 

Abbreviations: 1,25-dihydroxyvitamin D; 1,25(OH)2D; Angiotensin converting enzyme: 715 

ACE; Angiotensin converting enzyme 2: ACE2; AT1 receptor: Angiotensin II type 1 receptor; 716 

SARS-CoV-2: Severe acute respiratory distress syndrome coronavirus 2 (Copyright Holick, 717 

2021). 718 

Figure 4. SARS-CoV-2 nucleic acid amplification test positivity rates and circulating 25-719 

hydroxyvitamin D levels by (A) latitude region, (B) Predominately Black non-Hispanic, 720 

Hispanic, and White non-Hispanic zip codes, (C) age group and (D) sex. Smooth lines 721 

represent the weighted second order polynomial regression fit to the data associating 722 

circulating 25(OH)D levels (x-axis) and SARS-CoV-2 positivity rates (y-axis).  Copyright 723 

Kaufman 2020 with permission. 724 
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Highlights 

• Vitamin D is an immunomodulatory agent that is thought to be protective against 

severity of COVID-19. 

• There are a growing number of data connecting COVID-19 infectivity and severity 

with vitamin D status. 

• It is advisable to maintain serum 25-hydroxyvitamin D in the range of 40 – 60 ng/mL 

to minimize the risk of COVID-19 infection and its severity.  

 

Jo
urn

al 
Pre-

pro
of



Declaration of interests 

 

☐ The authors declare that they have no known competing financial interests or personal relationships 

that could have appeared to influence the work reported in this paper. 

 

☒The authors declare the following financial interests/personal relationships which may be considered 

as potential competing interests:  

 

 
 
 

 

Michael F. Holick is a consultant for Quest Diagnostics Inc., Biogena Inc. and Ontometrics Inc, 

and on the speaker’s Bureau for Abbott Inc.  

 

Jo
urn

al 
Pre-

pro
of


