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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global COVID-19 pandemic. Rapidly spread-
ing SARS-CoV-2 variants may jeopardize newly introduced antibody and vaccine countermeasures. Here, using monoclonal
antibodies (mAbs), animal immune sera, human convalescent sera and human sera from recipients of the BNT162b2 mRNA
vaccine, we report the impact on antibody neutralization of a panel of authentic SARS-CoV-2 variants including a B.1.1.7 isolate,
chimeric strains with South African or Brazilian spike genes and isogenic recombinant viral variants. Many highly neutralizing
mAbs engaging the receptor-binding domain or N-terminal domain and most convalescent sera and mRNA vaccine-induced
immune sera showed reduced inhibitory activity against viruses containing an E484K spike mutation. As antibodies binding
to spike receptor-binding domain and N-terminal domain demonstrate diminished neutralization potency in vitro against some
emerging variants, updated mAb cocktails targeting highly conserved regions, enhancement of mAb potency or adjustments to
the spike sequences of vaccines may be needed to prevent loss of protection in vivo.

has caused the global COVID-19 pandemic infecting more
than 111 million people and causing 2.4 million deaths.
Clinical disease in humans ranges from asymptomatic infection to
pneumonia, severe respiratory compromise, multi-organ failure and
systemic inflammatory syndromes. The rapid expansion and pro-
longed nature of the COVID-19 pandemic and its accompanying
morbidity, mortality and destabilizing socioeconomic effects have
made the development of SARS-CoV-2 therapeutics and vaccines
an urgent global health priority’. Indeed, the emergency use autho-
rization and rapid deployment of antibody-based countermeasures,
including mAbs, immune plasma therapy and messenger RNA, and
inactivated and viral-vectored vaccines has provided hope for cur-
tailing disease and ending the pandemic.
The spike protein of the SARS-CoV-2 virion binds the cell-surface
receptor angiotensin-converting enzyme 2 (ACE2) to promote entry
into human cells’. Because the spike protein is critical for viral entry,

f evere acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

it has been targeted for vaccine development and therapeutic anti-
body interventions. SARS-CoV-2 S proteins are cleaved to yield S1
and S2 fragments. The S1 protein includes the N-terminal (NTD)
and receptor-binding (RBD) domains, whereas the S2 protein pro-
motes membrane fusion. The RBD is recognized by many potently
neutralizing monoclonal antibodies’”, protein-based inhibitors®
and serum antibodies’.

The current suite of antibody therapeutics and vaccines was
designed with a spike protein based on strains circulating dur-
ing the early phases of the pandemic in 2020. More recently, vari-
ants with enhanced transmissibility have emerged in the United
Kingdom (B.1.1.7), South Africa (B.1.351), Brazil (B.1.1.248) and
elsewhere with multiple substitutions in the spike protein, includ-
ing in the NTD and the receptor-binding motif (RBM) of the RBD.
Preliminary studies with pseudoviruses suggest that neutralization
by some antibodies and immune sera may be diminished against
variants expressing mutations in the spike gene'’"”. Given these
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concerns, here, we evaluated the neutralizing activity in cell culture
of monoclonal and serum-derived polyclonal antibodies against a
panel of authentic, infectious SARS-CoV-2 variants, including a
B.1.1.7 isolate, chimeric Washington strains with a South African
(Wash SA-B.1.351) or Brazilian (Wash BR-B.1.1.248) spike gene and
isogenic recombinant variants with designed mutations or deletions
at positions 69-70, 417, 484, 501, 614 and/or 681 of the spike pro-
tein. Our data show moderate to substantially diminished neutral-
izing potency of antibodies and sera against chimeric SARS-CoV-2
strains or isogenic variants containing a mutation at position 484.

Results

To evaluate the effects of SARS-CoV-2 strain variation on anti-
body neutralization, we obtained or generated a panel of authen-
tic infectious SARS-CoV-2 strains with sequence variations in the
spike gene (Fig. la—c). A B.1.1.7 isolate had signature changes in
the spike gene', including the 69-70 and 144-145 deletions and
N501Y, A570D, D614G and P681H substitutions. We created a
chimeric, fully infectious SARS-CoV-2 with a South African spike
gene (Wash SA-B.1.351; D80A, 242-244 deletion, R2461, K417N,
E484K, N501Y, D614G and A701V) and a panel of isogenic spike
mutants (D614G, K417N/D614G, E484K/D614G, N501Y/D614G,
P681H/D614G, del69-70/N501Y/D614G, E484K/N501Y/D614G
and K417N/E484K/N501Y/D614G) in the Washington strain back-
ground (2019n-CoV/USA_WA1/2020 (WA1/2020)). Recombinant
viruses and B.1.1.7 were propagated in Vero-TMPRSS2 and
Vero-hACE2-TMPRSS2 cells expressing transmembrane protease
serine 2 (TMPRSS2) and human ACE2 (hACE2) to prevent the
development of adventitious mutations in the spike, especially at or
near the furin cleavage site, which accumulate rapidly in Vero E6
cells” and can impact entry pathways and virulence'®. All viruses
were used at low passage (p0 or pl) and deep sequenced to con-
firm the presence of expected mutations and an absence of cell
type-dependent adaptations (Supplementary Table 1).

We tested our panel of viruses for antibody-mediated neutraliza-
tion in Vero-hACE2-TMPRSS2 cells and then repeated some exper-
iments with Vero-TMPRSS2 cells to evaluate for effects of hACE2
over-expression on neutralization'’. We performed high-throughput
focus reduction neutralization tests (FRNTSs)'® using a panel of neu-
tralizing mAbs recognizing distinct and overlapping epitopes in
the RBD, including some having potential use in humans. Class 1
antibodies (such as COV2-2196, COV2-2072, COV2-2050, COV2-
2381, COV2-2130, COVOX-384, COVOX-40, 1B07, S2E12, S2H58
and $2X259) are potently neutralizing, block soluble hACE2 bind-
ing and bind multiple proximal sites in the RBM of the RBD as
determined by structural or escape mutation analyses (Extended
Data Fig. 1a)>”'**; class 2 neutralizing antibodies (such as S309,
SARS2-3, SARS2-10, SARS2-31, SARS2-44) often cross-react with
SARS-CoV, bind the base of the RBD (Extended Data Fig. 1b) and
variably block hACE2 binding® (VanBlargan and Diamond, unpub-
lished results); and class 3 neutralizing mAbs (such as COV2-2676
and COV2-2489) recognize the NTD (Extended Data Fig. 1c)*".

Initially, we performed neutralization tests with WA1/2020
D614G and the two Vero cell types (Fig. 1d-i and Extended Data
Fig. 2). With the D614G strain, neutralization by the majority of
class 1 and class 2 mAbs was similar in Vero-hACE2-TMPRSS2
and Vero-TMPRSS2 cells. However, NTD-reactive mAbs showed
greater potency (up to 13-fold) and more complete neutralization on
Vero-TMPRSS2 than Vero-hACE2-TMPRSS2 cells (Fig. 1f). Given
that the expression of hACE2 on recipient Vero cells can impact the
neutralizing activity of mAbs binding outside of the RBD, we per-
formed subsequent studies with both cell types.

We next assessed the impact of spike protein mutations on
mAb neutralization in Vero-hACE2-TMPRSS2 cells (Fig. 1h) and
Vero-TMPRSS2 cells (Fig. 1i). We observed the following patterns
with the variant viruses: (1) The P681H mutation (in the C-terminal

region of S1) and the 69-70 deletion (in the NTD) had marginal
effects on neutralization potency of the RBM and RBD mAbs we
evaluated. It was difficult to assess the impact of the P681H and
other mutations on the NTD mAbs, as these mAbs neutralized the
D614G virus poorly at baseline in Vero-hACE2-TMPRSS2 cells; (2)
The K417N mutation resulted in ~27-fold reduction in neutraliza-
tion by mAb COVOX-40 but did not negatively affect other mAbs
in our panel. If anything, several class 1 mAbs and also SARS2-44
showed slightly improved inhibitory activity (P=0.002, two-tailed
Wilcoxon matched-pairs signed-rank test) with this mutation; (3)
Mutation at N501Y reduced the neutralizing activity of COVOX-40,
SARS2-31 and SARS2-10 slightly but did not alter the potency of
other mAbs substantively; this result is consistent with data show-
ing that human convalescent sera efficiently neutralize viruses
with N501Y substitutions™**; (4) The E484K mutation negatively
impacted the potency of several class 1 antibodies. Compared to
the D614G virus, mAbs COV2-2196, COV2-3025, COV2-2381 and
S2E12 showed four to fivefold reduced activity against the E484K
virus and COV2-2050, 1B07, COVOX-384 and S2H58 lost virtu-
ally all neutralizing potential; (5) The combination of E484K and
N501Y mutations, which is present in the circulating South African
B.1.351 and Brazilian B.1.1.248 strains, showed even greater effects
(6- to 13-fold reductions) on the activity of class 1 mAbs COV2-
2196, COV2-3025, COV2-2381 and S2E12 mAbs; (6) When we
tested class 1 mAbs for inhibition of the Wash SA-B.1.351 virus con-
taining the full South African spike sequence, as expected, several
mAbs (COV2-2050, 1B07, COVOX-384 and S2H58) lost activity in
both Vero-hACE2-TMPRSS2 and Vero-TMPRSS2 cells. However,
the reductions in neutralizing potential by other class 1 mAbs
(COV2-2196, COV2-3025, COV2-2381 and S2E12) seen against
the E484K/N501Y virus were absent with Wash SA-B.1.351, which
contains additional mutations. The K417N substitution, which is
located at the edge of the RBM (Fig. 1b) and enhances neutraliza-
tion by some class 1 mAbs, may compensate for the negative effects
on inhibition of the E484K/N501Y mutations. In comparison, we
observed a distinct neutralization pattern with Wash SA-B.1.351
for class 2 and 3 mAbs. Because some mAbs neutralized poorly in
Vero-hACE2-TMPRSS2 cells, we performed parallel experiments in
Vero-TMPRSS2 cells. Class 2 mAbs binding the base of the RBD
showed no substantive loss in potency against the Wash SA-B.1.351.
However, the two NTD mAbs in class 3 (COV2-2676 and COV2-
2489) lost neutralizing activity against Wash SA-B.1.351 in
Vero-hACE2-TMPRSS2 and Vero-TMPRSS?2 cells, consistent with
recent data with other NTD mAbs and pseudoviruses'’; (7) None of
the class 1 mAbs lost neutralizing activity against the B.1.1.7 virus
on Vero-hACE2-TMPRSS2 cells. Nonetheless, we observed some
small reductions in potency (2.5- to 6-fold) with mAbs COV2-2381,
S2E12 and S2X259 on Vero-TMPRSS2 cells, although they remained
highly neutralizing. In comparison, we observed diminished (6-
to 13-fold) neutralizing activity of some class 2 mAbs (SARS2-31
and S309) against the B.1.1.7 strain in Vero-hACE2-TMPRSS2
but not Vero-TMPRSS2 cells. The reduced potency of S309 mAb
against B.1.1.7 strain in Vero-hACE2-TMPRSS2 cells contrasts
with data showing that it binds avidly to the B.1.1.7 spike protein
on the surface of cells and potently neutralizes a vesicular stomati-
tis virus (VSV) pseudotyped with B.1.1.7 spike protein in Vero E6
cells or a WA1/2020 virus derived in Vero CCL81 cells and tested
on Vero-hACE2-TMPRSS2 or Vero-TMPRSS2 cells (Extended Data
Fig. 3a—c). Finally, one of the NTD class 3 mAbs (COV2-2489) lost
inhibitory activity against the B.1.1.7 strain in both cell types, possi-
bly due to the deletions present in the NTD (69-70 and 144-145)*'.

Several academic and industry groups have developed mAb
cocktails to overcome possible emergence of resistance during
therapy”*. We tested two mAb combinations that have potential
use in humans (COV2-2196 + COV2-2130, Vanderbilt University
Medical Center (with engineered derivatives being tested in clinical
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Fig. 1| Neutralization of SARS-CoV-2 viral variants by mAbs. a,b, SARS-CoV-2 spike trimer. One protomer is highlighted, showing the NTD in orange, RBD
in green and S2 portion of the molecule in blue, with N- and C-termini annotated. Substitutions in the B.1.1.7 variant (69-70 deletion, 144-145 deletion,
A570D, D614G, P681H and T7161) are shaded in red (a). Red triangle depicts approximate location of P681H, which was not included in the model. Inset
shows a top-down view of the RBD showing the location of the N501Y mutation contextualized with the RBM. Substitutions in the Wash SA-B.1.135 variant
(242-244 deletion, D80A, R246l, D614G and A701V) are shaded in red (b). The red diamond denotes approximate location of D80A, which is buried

in this view. Inset shows top-down view of the RBD with Wash SA-B.1.351 substitutions K417N, E484K and N501Y shaded red and contextualized with

the RBM. For all panels, structures depicting spike protein were modeled using PDB: 7C2L. Structures depicting RBD were modeled using PDB: 6\W41. All
analyses and figures were generated with UCSF ChimeraX®. ¢, Viruses with indicated spike mutations. d-f, Neutralization curves in Vero-hACE2-TMPRSS2
cells (left) or Vero-TMPRSS2 cells (right) comparing the sensitivity of SARS-CoV-2 strains with class 1 (COV2-2130 and COV-2150) (d), class 2 (SARS2-
31and S309) (e) and class 3 (COV2-2676 and COV2-2489) (f) mAbs and indicated viruses. g, Also shown are the neutralization curves for antibody
cocktails (COV2-2196 + COV2-2130 and S309 + S2E12). One representative experiment of two performed in technical duplicate is shown. h,i, Summary

of ECy, values (ngml™) of neutralization of SARS-CoV-2 viruses propagated on the indicated cells and performed in Vero-hACE2-TMPRSS2 (h) or
Vero-TMPRSS2 (i) cells. Blue shading of cells shows virtually complete loss of neutralizing activity, ECs,>10,000 ng ml-".
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Fig. 2 | Neutralization of SARS-CoV-2 viral variants by convalescent human serum in Vero-hACE2 TMPRSS2 cells. a-e, Paired analysis of neutralizing
activity by convalescent human sera (n=19) obtained approximately 1 month after mild SARS-CoV-2 infection against WA1/2020 D614G and variant
viruses in Vero-hACE2-TMPRSS2 cells: B.1.1.7 (a), K417N/D614G (b), E484K/N501Y/D614G (c), K417N/E484K/N501Y/D614G (d) or Wash SA-B.1.351
(e). g, Paired analysis of neutralizing activity by a separate convalescent human sera cohort (n=10) obtained approximately 1 month after mild
SARS-CoV-2 infection against WA1/2020 D614G and Wash BR-B.1.1.248 in Vero-hACE2-TMPRSS2 cells. Results are from one experiment performed

in duplicate (a-e,g). GMTs are shown above each graph. Dotted line represents the limit of detection of the assay. Two-tailed Wilcoxon matched-pairs
signed-rank test: D614G versus B.1.1.7, P=0.0546; D614G versus K417N/D614G, P=0.0361; D614G versus E484K/N501Y/D614G, P< 0.0001; D614G
versus K417N/E484K/N501Y/D614G, P< 0.0001; D614G versus Wash SA-B.1.351, P< 0.0001; D614G versus Wash BR-B.1.1.248, P=0.0020. f h, Heat
maps of the relative neutralizing activity of sera from individual convalescent subjects against indicated SARS-CoV-2 viruses compared to recombinant

WA1/2020 D614G. Blue, reduction; red, increase.

trials by AstraZeneca) and $309+S2E12, Vir Biotechnology) for
their inhibitory activity against the SARS-CoV-2 variant viruses
(Fig. 1g-i). The COV2-2196+COV2-2130 combination gener-
ally retained inhibitory activity (<fourfold reduction) against all
strains. Although the $309+4 S2E12 combination showed reduced
(~tenfold) potency against the E484K/N501Y/D614G strain, it per-
formed effectively against the Wash SA-B.1.351 virus, again suggest-
ing that additional mutations in natural variants (such as K417N)
enable some antibodies to function better against viruses containing
E484K and N501Y mutations.

We next assessed how spike protein mutations impacted the
neutralizing activity of polyclonal sera obtained from individu-
als (n=19), approximately 1 month after mild SARS-CoV-2

infection®. Based on experiments with the mAbs, we used
Vero-hACE2-TMPRSS2 cells and focused our testing on WA1/2020
D614G, B.1.1.7, Wash SA-B.1.351 and WA1/2020 D614G with muta-
tions at K417N, E484K/N501Y or K417N/E484K/N501Y (Fig. 2
and Extended Data Fig. 4). When compared to the WA1/2020
D614G virus, we observed the following: (1) differences in neu-
tralization were not observed with the B.1.1.7 strain (Fig. 2a); (2)
a small increase (1.5-fold, P<0.05) in neutralization was detected
with the K417N virus (Fig. 2b), similar to that seen with some mAbs
(Fig. 1h); and (3) serum neutralization titers were lower against
E484K/N501Y  (fivefold, P<0.0001), K417N/E484K/N501Y
(3.5-fold, P<0.0001) and Wash SA-B.1.351 (4.6-fold, P<0.0001)
viruses (Fig. 2c-e), all of which contain the E484K mutation.
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A heat map analysis showed that most individuals lost neutralizing
activity against all three viruses containing the E484K and N501Y
mutations (Fig. 2f). Given these results with viruses encoding
E484K mutations, we performed separate studies with human con-
valescent serum (n=10) and a chimeric SARS-CoV-2 WA1/2020
strain encoding a Brazilian variant spike gene (Wash BR-B.1.1.248;
L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G,
H655Y, T10271 and V1176F; Extended Data Fig. 5a). As expected,
several class 1 (RBM-binding) and class 3 (NTD-binding) mAbs
showed reduced neutralizing activity against Wash BR-B.1.1.248
(Extended Data Fig. 5b,c). Nonetheless, we observed a smaller yet
significant decrease (2.5-fold, P<0.01) in neutralization potency
of convalescent serum against Wash BR-B.1.1.248 (Fig. 2g,h and
Extended Data Fig. 4).

Given that viruses containing changes at positions 484 and 501
escape neutralization by serum from convalescent humans, we
next examined the effects of vaccine-induced antibody responses.
Initially, we interrogated sera from mice (n=10), hamsters (n=8)
and nonhuman primates (NHPs; rhesus macaques, n=6) obtained
1 month after immunization with ChAd-SARS-CoV-2, a chimpan-
zee adenoviral vectored vaccine encoding for a prefusion stabilized
form of the spike protein’’~*. Using Vero-hACE2-TMPRSS2 cells,
we assessed serum neutralization of WA1/2020 D614G, B.1.1.7,
Wash SA-B.1.351 and recombinant WA1/2020 D614G viruses with
mutations at K417N, E484K/N501Y or K417N/E484K/N501Y
(Extended Data Fig. 6). For serum samples from mice, when com-
paring the geometric mean neutralization titers (GMTs) of neu-
tralization to the WA1/2020 D614G strain, we observed a slight
increase (1.9-fold, P<0.05) with K417N (Fig. 3b), decreases with
E484K/N501Y (ninefold, P<0.001; Fig. 3c), K417N/E484K/N501Y
(fivefold, P<0.01; Fig. 3d) and Wash SA-B.1.351 (fivefold, P<0.01;
Fig. 3e), yet no significant differences with B.1.1.7. (Fig. 3a). In a
heat map plot (Fig. 3p), nine of the ten mouse sera show a loss of
neutralizing activity against multiple viruses containing the E484K
mutation. In hamsters, the results were similar. We observed a
marked decrease (10- to 12-fold, P<0.01) in serum neutralization
of E484K/N501Y, K417N/E484K/N501Y and Wash SA-B.1.351
(Fig. 3h-j). Statistically significant differences in neutralization were
not observed with K417N and B.1.1.7 viruses (Fig. 3f,g). This pat-
tern was reflected at the individual sample level (Fig. 3q). In NHPs,
we also observed a substantial decrease (9- to 11-fold, P<0.05) in
serum neutralization of E484K/N501Y, K417N/E484K/N501Y and
Wash SA-B.1.351 (Fig. 3m-o). In comparison, with B.1.1.7 (Fig. 3k)
or K417N (Fig. 31) viruses, we detected no change or small signifi-
cant increases (1.5-fold, P < 0.05) in neutralization, respectively. The
heat map analysis showed that all NHP sera consistently exhibited
reduced neutralizing activity against viruses containing the E484K
mutation (Fig. 3r).

Because samples from human immunization trials with
ChAd-SARS-CoV-2 are not yet available, we interrogated sera from
individuals who received the Pfizer-BioNTech (BNT162b2) vaccine,
a lipid nanoparticle encapsulated-mRNA that encodes a similar

membrane-bound, prefusion stabilized form of the full-length
SARS-CoV-2 spike protein®. We tested sera (Extended Data Figs.
7 and 8) for neutralization of our panel of SARS-CoV-2 variants
(Fig. 4a—t). Compared to the WA1/2020 D614G variant, we observed
moderate reductions in neutralizing activity (GMTs) of B.1.1.7
(twofold, P<0.01; Fig. 4a) and E484K/N501Y (fourfold, P <0.0001;
Fig. 4c) and larger decreases in activity against Wash SA-B.1.351
(tenfold, P<0.0001; Fig. 4d), with all participants showing sub-
stantially reduced potency (Fig. 4f), results that agree with pseudo-
virus studies”. Analogous to the results with human convalescent
sera (Fig. 2g), we observed a smaller decrease (2.2-fold, P<0.01) in
neutralization potency of serum from vaccine recipients against the
Wash BR-B.1.1.248 virus (Fig. 4¢). Significant differences in neutral-
izing activity were not detected with K417N/D614G (Fig. 4b).

Because of the differences in neutralization seen with some mAbs
on Vero-hACE2-TMPRSS2 and Vero-TMPRSS2 cells (Fig. 1h,i), we
also evaluated the impact of hACE2 receptor expression on neutral-
izing activity of serum samples from convalescent adults (Fig. 5a-d)
and from BNT162b2 mRNA-vaccinated individuals (Fig. 5e-h).
Given the limited remaining serum quantities, we performed neu-
tralization experiments on Vero-TMPRSS2 cells with WA1/2020
D614G, B.1.1.7 and Wash SA-B.1.351 and Wash BR-B.1.1.248
viruses. These experiments (Extended Data Fig. 9) revealed the fol-
lowing: (1) Convalescent and vaccine sera showed small yet signifi-
cant reductions (1.7- to 2.5-fold, P<0.01) in neutralizing activity
of B.1.1.7 compared to the WA1/2020 D614G virus (Fig. 5a,e). (2)
Sera from both convalescent and vaccinated individuals showed a
marked six- to ninefold reduction (P < 0.01) in neutralizing potency
against the Wash SA-B.1.351 virus (Fig. 5b,f); and (3) we again
observed a smaller decrease (1.7- to 4.5-fold, P<0.01) in neutraliza-
tion potency of serum against Wash BR-B.1.1.248, (Fig. 5¢,g). The
results were similar in magnitude between Vero-hACE2-TMPRSS2
and Vero-TMPRSS2 cells (see also Fig. 4a,d,e) and suggest that cel-
lular expression of hACE2 does not markedly impact neutralization
outcome of polyclonal antibodies in these assays.

Discussion

Our in vitro experiments using a B.1.1.7 isolate and engineered
variants in the backbone of the WA1/2020 strain establish that
mutations in the spike can impact the potency of antibody neutral-
ization. Some neutralizing mAbs targeting the base of the RBD or
NTD showed reduced activity against the B.1.1.7 isolate, whereas
others targeting the RBM or N'TD failed to inhibit infection of Wash
SA-B.1.351, Wash BR-B.1.1.248 or variants containing the E484K
mutation. These finding are potentially important because the RBM
has functional plasticity’"** and additional mutations in this region
that occur as the pandemic evolves could further impact the efficacy
of mAbD therapies or vaccines. Our results establishing the E484K
substitution as a vulnerability for multiple neutralizing mAbs are
consistent with deep mutational scanning or VSV-SARS-CoV-
2-based neutralization escape screening campaigns®-*. However,
several other highly neutralizing mAbs (such as COV2-2196,

>
>

Fig. 3 | Resistance of SARS-CoV-2 viral variants to neutralization by vaccine-induced serum derived from mice, hamsters and NHPs. a-o, Paired analysis
of neutralizing activity by sera from mice (a-e, n=10), hamsters (f-j, n=8) and NHPs (k-o0, n=6) obtained ~30d after a single intranasal immunization
with an adenoviral vectored SARS-CoV-2 vaccine (ChAd-SARS-CoV-2-5¥). Neutralization data on Vero-hACE2-TMPRSS2 cells is displayed as WA1/2020
D614G versus the variant viruses: B.1.1.7 (a,f k), K417N/D614G (b,g 1), E484K/N501Y/D614G (¢, h,m), K417N/E484K/N501Y/D614G (d,i,n) or Wash
SA-B.1.351 (e,j,0). Results are from one experiment performed in duplicate, with some exceptions due to limited sample. GMT values are shown above each
graph. Dotted line represents the limit of detection of the assay. Two-tailed Wilcoxon matched-pairs signed-rank test was used. Mouse sera: D614G versus
B.1.1.7, P=0.323; D614G versus K417N/D614G, P=0.0020; D614G versus E484K/N501Y/D614G, P=0.0020; D614G versus K417N/E484K/N501Y/
D614G, P=0.0039; D614G versus Wash SA-B.1.351, P=0.0020. Hamster sera: D614G versus B.1.1.7, P=0.9453; D614G versus K417N/D614G, P> 0.9999;
D614G versus E484K/N501Y/D614G, P=0.0078; D614G versus K417N/E484K/N501Y/D614G, P=0.0078; D614G versus Wash SA-B.1.351, P=0.0078.
NHP sera: D614G versus B.1.1.7, P=0.0625; D614G versus K417N/D614G, P=0.0312; D614G versus E484K/N501Y/D614G, P=0.0312; D614G versus
K417N/E484K/N501Y/D614G, P=0.0312; D614G versus Wash SA-B.1.351, P=0.0312. p-r, Heat maps of the relative neutralizing activity of sera from
individual mice (p), hamsters (q) and NHPs (r) against indicated SARS-CoV-2 viruses compared to WA1/2020 D614G. Blue, reduction; red, increase.
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COV2-2381, COV2-3025 and S2E12) showed intact or only mildly
diminished inhibitory activity against the suite of variant viruses
we tested, possibly because they bind the RBM at sites other than
the E484K residue (Table 1). Moreover, cocktails of mAbs binding

Mouse sera

Hamster sera

NHP sera

log,o(1/serum dilution) log,o(1/serum dilution)

log,o(1/serum dilution)

different epitopes of the spike protein overcame virus resistance to
individual mAbs. Alternative approaches to addressing the dimin-
ished mAb neutralization activity by variant SARS-CoV-2 lineages
include targeting of conserved regions of the spike and identifying
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Fig. 4 | Resistance of SARS-CoV-2 viral variants to neutralization by human serum from Pfizer-BioNTech BNT162b2 mRNA-vaccinated individuals in
Vero-hACE2-TMPRSS2 cells. Paired analysis of neutralizing activity by sera from humans (n=24) obtained after boosting with the BNT162b2 mRNA
vaccine. a-e, Neutralization data on Vero-hACE2-TMPRSS2 cells is displayed with WA1/2020 D614G versus the variant viruses: B.1.1.7 (a), K417N/
D614G (b), E484K/N501Y/D614G (c), Wash SA-B.1.351 (d) or Wash BR-B.1.1.248 (e) (n=15). Results are from one experiment performed in duplicate.
GMT values are shown above each graph. Dotted line represents the limit of detection of the assay. Two-tailed Wilcoxon matched-pairs signed-rank test:
D614G versus B.1.1.7, P< 0.0001; D614G versus K417N/D614G, P=0.6231; D614G versus E484K/N501Y/D614G, P< 0.0001; D614G versus K417N/
E484K/N501Y/D614G, P=0.8774; D614G versus Wash SA-B.1.351, P< 0.0001; D614G versus Wash BR-B.1.1.248, P=0.0020. f, Heat map of the relative
neutralizing activity of sera from vaccinated individuals against indicated SARS-CoV-2 viruses compared to WA1/2020 D614G. Blue, reduction; red,

increase. An X indicates sera was not evaluated.

clonal mAD variants with greater potency, such that a given dose of
mAb can protect against a range of variants despite some decrease
in neutralization activity.

Our studies with human sera from convalescent patients and
recipients of the BNT162b2 mRNA vaccine and animal sera
after immunization with a vaccine encoding a similar spike gene,
demonstrate a lower potency of neutralization against E484K
and N501Y-containing viruses (we did not perform studies with
single-mutation viruses due to limited serum availability). This
observation is unexpected given that antibody responses in animals
and humans are polyclonal and in theory, should overcome resis-
tance associated with individual mutations and loss of activity of
particular B cell clones.

Our analyses agree with some studies showing substantial or
complete escape against spike proteins corresponding to the South
African lineage (B.1.351 or 501Y.V2) by antibodies in convales-
cent or vaccine-immune plasma using lentiviral-based pseudotype
neutralization assays'®'"**. Moreover, they are consistent with stud-
ies showing loss of neutralization potency of human convalescent
serum against VSV-SARS-CoV-2 chimeric virus variants contain-
ing the E484K mutation® and selection of escape E484K mutants
under serial passage of convalescent COVID-19 plasma®. Indeed,
similar findings with authentic SARS-CoV-2 viruses encoding
E484K mutations were recently reported®. One unique trend we
noticed was that convalescent and vaccine-induced immune sera
neutralized infection of the chimeric SARS-CoV-2 strains encod-
ing the Brazilian spike (B.1.1.248) better than the South African
spike (B.1.351) even though both viruses encoded E484 and N501
mutations. While follow-up corroborating studies are warranted,
this result could be due to the distinct set of mutations and/or dele-
tions in the NTD region or enhanced neutralization of B.1.1.248 by

anti-RBD antibodies that bind outside of the RBM (Extended Data
Fig. 5¢). Overall, our findings may have therapeutic implications, as
immune plasma derived from individuals infected early during the
pandemic might fail to protect patients infected with more recent
isolates containing the E484K mutation.

Limitations of the study. These studies focused exclusively on the
impact of sequence changes in the spike protein on antibody neu-
tralization in cell culture. Despite observing differences in serum
neutralizing activity against authentic SARS-CoV-2 variant viruses,
it remains unclear how this finding translates into effects on protec-
tion in the context of secondary infection or infection after vaccina-
tion with platforms using historical spike gene sequences. Although
serum neutralizing titers are an anticipated correlate of protection”,
this measurement does not account for Fc effector functions; Fcy
receptor or complement protein engagement by non, weakly, or
strongly neutralizing antibodies that bind the SARS-CoV-2 spike
protein on the surface of infected cells could confer substantial pro-
tection**. Also, the role of memory T or B cells in protection against
variant viruses is unknown and could prevent severe infection even
in the setting of compromised serum antibody responses*'~*.
Moreover, the field still does not know whether Vero or other
cell-based neutralization assays predict antibody-mediated protec-
tion. Indeed, primary cells targeted by SARS-CoV-2 in vivo can
express unique sets of attachment and entry factors*, which could
impact receptor and entry blockade by specific antibodies. We
observed that the cell line used can affect the potency of antibody
neutralization against different SARS-CoV-2 variants. Such results
may impact the congruity of data across laboratories and interpreta-
tion of effects of viral variants on vaccine efficacy. As an example,
recent studies with Vero E6 cell-derived SARS-CoV-2 with spike
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Fig. 5 | Resistance of SARS-CoV-2 viral variants to neutralization by human serum from convalescent and vaccinated individuals in Vero-TMPRSS2 cells.
a-g, Sera from individuals who had been infected with SARS-CoV-2 (a-¢, =10, ~1 month after infection) or vaccinated with the Pfizer-BioNTech mRNA
vaccine (d-f, n=10) were tested for neutralization of the indicated SARS-CoV-2 strains (WA1/2020 D614G (a-c,e-g), B.1.1.7 (a,e), Wash SA-B.1.351 (b,f),
or Wash BR-B.1.1.248 (c,g) using a FRNT in Vero-TMPRSS2 cells. Results are from one experiment performed in duplicate, with some exceptions due to
limited sample. GMT values are shown above each graph. Dotted line represents the limit of detection of the assay. Two-tailed Wilcoxon matched-pairs
signed-rank test. Convalescent sera: D614G versus B.1.1.7, P=0.0039; D614G versus Wash SA-B.1.351, P=0.0020; D614G versus Wash BR-B.1.1.248,
P=0.0020. Vaccine sera: D614G versus B.1.1.7, P=0.0039; D614G versus Wash SA-B.1.351, P=0.0020; D614G versus Wash BR-B.1.1.248, P=0.0020.

h, Heat maps of the relative neutralizing activity of sera from convalescent (d) or vaccinated (h) individuals against indicated SARS-CoV-2 viruses
compared to WA1/2020. Blue, reduction; red, increase.

proteins containing some (E484K, N501Y and D614G) or all of the ~ Received: 11 February 2021; Accepted: 22 February 2021;
South African mutations showed smaller 1.2 to 2.7-fold decreases  Published online: 04 March 2021

in neutralization potency by BNT162b2 mRNA vaccine-elicited
human immune sera’*. When we compared neutralization of
deep-sequenced confirmed p0 (Vero E6 cell-produced) and pl
(Vero-hACE2-TMPRSS2  cell-produced) K417N/E484K/N501Y/
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Methods

Cells. Vero E6 (CRL-1586, American Type Culture Collection), Vero-TMPRSS2
(ref. **) (a gift of S. Ding, Washington University) and Vero-hACE2-TMPRSS2 (a
gift of A. Creanga and B. Graham, National Institutes of Health (NIH)) cells were
cultured at 37°C in Dulbecco’s modified Eagle medium (DMEM) supplemented
with 10% fetal bovine serum (FBS), 10mM HEPES (pH 7.3), 1 mM sodium
pyruvate, 1X nonessential amino acids and 100 Uml~ of penicillin-streptomycin.
Vero-TMPRSS?2 cell cultures were supplemented with 5pgml~" of blasticidin.
TMPRSS2 expression was confirmed using an anti-V5 antibody (Thermo

Fisher Scientific, 2F11F7) or anti-TMPRSS2 mAb (Abnova, Clone 2F4) and
APC-conjugated goat anti-mouse IgG (BioLegend, 405308). Vero-hACE2-TMPRSS2
cell cultures were supplemented with 10 pgml~" of puromycin.

Viruses. The 2019n-CoV/USA_WA1/2020 isolate of SARS-CoV-2 was obtained
from the US Centers for Disease Control. The B.1.1.7 isolate was obtained from an
infected individual. Individual point mutations in the spike gene (D614G, K417N/
D614G, E484K/D614G, N501Y/D614G, P681H/D614G, del69-70/N501Y/D614G
and E484K/N501Y/D614G) were introduced into an infectious complementary
DNA clone of the 2019n-CoV/USA_WA1/2020 (WA1/2020) strain as described
previously’'. Nucleotide substitutions were introduced into a subclone puc57-CoV-
2-F5-7 containing the spike gene of the SARS-CoV-2 wild-type infectious clone™.
The South African (B.1.351) and Brazilian (B.1.1.248) variant spike genes were
produced synthetically by Gibson assembly. The full-length infectious cDNA clones
of the variant SARS-CoV-2 viruses were assembled by in vitro ligation of seven
contiguous cDNA fragments following the previously described protocol™. In vitro
transcription was then performed to synthesize full-length genomic RNA. To recover
the mutant viruses, RNA transcripts were electroporated into Vero E6 cells. Viruses
from the supernatant of cells were collected 40h later and served as p0 stocks™. All
viruses were passaged once in Vero-hACE2-TMPRSS2 or Vero-TMPRSS2 cells and
subjected to deep sequencing after RNA extraction to confirm the introduction
and stability of substitutions (Supplementary Table 1). Viral RNA from cell culture
supernatants was used to generate next-generation sequencing libraries using
either the Illumina TruSeq Stranded Total RNA Library Prep with Ribo-Zero kit

or the Illumina Stranded Total RNA Prep, Ligation with Ribo-Zero Plus kit per the
manufacturer’s protocol. The final indexed libraries were quantified using Agilent’s
Bioanalyzer and pooled at an equal molar concentration. Illumina’s NextSeq
sequencer was used to generate paired-end 150-base-pair reads. Raw sequencing
data were processed using fastp** v.0.20.1 (https://github.com/OpenGene/fastp) to
trim adaptors and filter out sequences with <Q30. Alignment to the SARS-CoV-2
reference genome (MN908947.3) was performed using BWA* v.0.7.17-r1188
(http://bio-bwa.sourceforge.net). DeepVariant™ v.1.1.0 (https://github.com/google/
deepvariant) was used to call variants with an allele frequency >50%. Variants were
annotated using SNPEff"” 5.0c (https://sourceforge.net/projects/snpeft/). All virus
preparation and experiments were performed in an approved Biosafety level 3 facility.

Monoclonal antibodies. The human mAbs studied in this paper (COV2-2196,
COV2-2072, COV2-2050, COV2-2381, COV2-2130, COVOX-384, COVOX-

40, S309, S2E12, S2H58, S2X333, VIR-7381 and S2X259) were isolated from
blood samples from individuals in North America or Europe with previous
laboratory-confirmed symptomatic SARS-CoV or SARS-CoV-2 infection. The
original clinical studies to obtain specimens after written informed consent were
previously described**”*** and approved by the Institutional Review Board of
Vanderbilt University Medical Center, the Institutional Review Board of the
University of Washington, the Research Ethics Board of the University of Toronto
and the Canton Ticino Ethics Committee (Switzerland). Chimeric mAb 1B07
with a murine Fv and human Fc (human IgG1) were isolated from C57BL/6 mice
immunized with recombinant spike and RBD proteins and described previously™.
Murine mAbs were generated in BALB/c or C57BL/6 mice immunized with
recombinant spike and RBD proteins and described previously™.

Human immune sera. Multiple sources of human serum samples were used in

this study: Convalescent serum samples were obtained from a cohort recruited
from the St. Louis metropolitan area who experienced mild SARS-CoV-2

infection. None of those patients required intubation and the study was approved
by Washington University School of Medicine Institutional Review Board
(202003186 (WU353)). The serum samples from individuals immunized with

the Pfizer-BioNTech (BNT162b2) mRNA vaccine were obtained before primary
immunization or 1 week after boosting from young adults and the studies were
approved by Washington University School of Medicine Institutional Review Board
(202012081 (WU368) and 202012084 (COVaRiPAD))

Mouse, hamster and NHP immune sera. The mouse, hamster and NHP

immune sera were obtained 1 month after intranasal immunization with
ChAd-SARS-CoV-2, a chimpanzee adenoviral vectored vaccine encoding for a
prefusion stabilized form of the spike protein. Details of the immunization protocol

27-29

and functional analyses have been described elsewhere?

Focus reduction neutralization test. Serial dilutions of mAbs (starting at
10 pgml~" dilution) or serum were incubated with 10* focus-forming units of
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different strains or variants of SARS-CoV-2 for 1h at 37°C. Antibody-virus
complexes were added to Vero-hACE2-TMPRSS2 or Vero-TMPRSS2 cell
monolayers in 96-well plates and incubated at 37 °C for 1h. Subsequently, cells
were overlaid with 1% (w/v) methylcellulose in MEM supplemented with 2% FBS.
Plates were collected 24 h later by removing overlays and fixed with 4% PFA in PBS
for 20 min at room temperature. Plates were washed and sequentially incubated
with an oligoclonal pool of SARS2-2, SARS2-11, SARS2-16, SARS2-31, SARS2-38,
SARS2-57 and SARS2-71 anti-S antibodies and HRP-conjugated goat anti-mouse
IgG (Sigma, 12-349) in PBS supplemented with 0.1% saponin and 0.1% bovine
serum albumin. SARS-CoV-2-infected cell foci were visualized using TrueBlue
peroxidase substrate (KPL) and quantitated on an ImmunoSpot microanalyzer
(Cellular Technologies).

ELISA. Assays were performed in 96-well plates (MaxiSorp; Thermo) coated with
100 pl of recombinant spike or RBD protein® in PBS and plates were incubated at
4°C overnight. Plates were then blocked with 10% FBS and 0.05% Tween-20 in
PBS. Serum were serially diluted in blocking buffer and added to the plates. Plates
were incubated for 90 min at room temperature and then washed three times with
0.05% Tween-20 in PBS. Goat anti-human IgG-HRP (Jackson ImmunoResearch,
115-035-003; 1:2,500 dilution) was diluted in blocking buffer before adding

to wells and incubating for 60 min at room temperature. Plates were washed

three times with 0.05% Tween-20 in PBS and then washed three times with PBS
before the addition of peroxidase substrate (SigmaFAST o-phenylenediamine
dihydrochloride, Sigma-Aldrich). Reactions were stopped by the addition of 1M
HCI. Optical density measurements were taken at 490 nm. The half-maximal
binding dilution for each serum or plasma sample was calculated using nonlinear
regression. The limit of detection was defined as 1:30.

Transient expression of recombinant SARS-CoV-2 spike proteins and flow
cytometry. The full-length S gene of SARS-CoV-2 strain (SARS-CoV-2-S) isolate
BetaCoV/Wuhan-Hu-1/2019 (accession number MN908947) carrying D614G

was codon-optimized for expression in hamster cells and cloned into the pcDNA3
expression vector. Amino acid substitutions for B.1.1.7, P.1 (Brazilian lineage: L18F,
T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, H655Y, T10271 and V1167F)
and B.1.351 variants were introduced by overlap extension PCR. Briefly, DNA
fragments with overlap sequences were amplified by PCR (step 1). Mutations were
introduced by amplification with primers with similar melting points. Deletion of
the C-terminal 21 amino acids was introduced to increase surface expression of the
recombinant spike. Next, three contiguous overlapping fragments were fused by a
first overlap PCR (step 2) using the utmost external primers of each set, resulting
in three larger fragments with overlapping sequences. A final overlap PCR (step

3) was performed on the three large fragments using the utmost external primers
to amplify the S gene and the flanking sequences including the restriction sites
KpnI and Notl. This fragment was digested and cloned into the expression plasmid
phCMV1. For all PCR reactions, Q5 Hot Start High fidelity DNA polymerase was
used (New England Biolabs) according to manufacturer’s instructions and adapting
the elongation time to the size of the amplicon. After each PCR step, the amplified
regions were separated on agarose gel and purified using Illustra GFX PCR DNA
and a Gel Band Purification kit (Merck KGaA).

ExpiCHO cells (Thermo Fisher Scientific, A29127) were transiently transfected
with SARS-CoV-2-§ expression vectors using Expifectamine CHO Enhancer. Two
days later, cells were collected for immunostaining with mAbs. Binding of mAbs
to transfected cells was analyzed by flow cytometry using a ZE5 Cell Analyzer
(Biorard) and FlowJo software (v.9, TreeStar). Positive binding was defined by
differential staining of CoV-S transfectants versus mock transfectants.

SARS-CoV-2 pseudotyped virus production. The 293T/17 cells (American
Type Culture Collection CRL-11268) were seeded in 10-cm dishes for 80%

next day confluency. The next day, cells were transfected with the plasmid
pcDNA3.1(+4)-spike-D19 (encoding the SARS-CoV-2 spike protein) or
pcDNA3.1(+)-spike-D19 variants using the transfection reagent TransIT-Lenti
according to the manufacturer’s instructions. One day after transfection, cells
were infected with VSV-luc(VSV-G) at a multiplicity of infection of 3. The cell
supernatant containing SARS-CoV-2 pseudotyped virus was collected at day

2 after transfection, centrifuged at 1,000g for 5min to remove cellular debris,
aliquoted and frozen at —80 °C. The SARS-CoV-2 pseudotyped virus preparation
was quantified using Vero E6 cells seeded at 20,000 cells per well in clear bottom
black 96-well plates the previous day. Cells were inoculated with 1:10 dilution
series of pseudotyped virus in 50 pl DMEM for 1h at 37°C. An additional 50 pl of
DMEM was added, cells were incubated overnight at 37 °C. Luciferase activity was
quantified with Bio-Glo reagent by adding 100 pl of Bio-Glo (diluted 1:1 in PBS),
incubated at room temperature for 5min and relative light units were read on an
EnSight or EnVision plate reader.

Neutralization of SARS-CoV-2 pseudotyped virus. Vero E6 cells were seeded
into clear bottom black-walled 96-well plates at 20,000 cells per well in 100 pl
medium and cultured overnight at 37 °C. Twenty-four hours later, 1:3 8-point
serial dilutions of mAb were prepared in medium, with each dilution tested

in duplicate on each plate (range: 10 pgml~ to 4ng ml~! final concentration).
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Pseudovirus was diluted 1:25 in medium and added 1:1 to 110 pl of each antibody
dilution. Pseudovirus:antibody mixtures were incubated for 1h at 37°C. Medium
was removed from the Vero E6 cells and 50 pl of pseudovirus:antibody mixtures
were added to the cells. One hour after infection, 100 pl of medium was added to
wells containing pseudovirus:antibody mixtures and incubated for 17h at 37°C.
Medium then was removed and 100 pl of Bio-Glo reagent (diluted 1:1 in DPBS)
was added to each well. The plate was shaken on a plate shaker at 300 r.p.m. at
room temperature for 20 min and relative light units were read on an EnSight or
EnVision plate reader.

Statistical analysis. All statistical tests were performed as described in the
indicated figure legends. Nonlinear regression curve fitting was performed to
calculate EC,, values. Statistical significance was calculated using a nonparametric
two-tailed Wilcoxon matched-pairs signed-rank test and Prism 8.0. The number of
independent experiments used are indicated in the relevant figure legends.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

All data supporting the findings of this study are available within the paper and are
available from the corresponding author upon request. Deep sequencing datasets
of viral stocks are available at NCBI BioProject PRINA698378. Source data are
provided with this paper.
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b C

Extended Data Fig. 1| MAb-spike structures. Structures of the SARS-CoV-2 RBD in complex with a representative neutralizing antibody from (a) class 1
(S2E12, PDB: 7K45), or (b) class 2 (S309, PDB: 6WPS). ¢, Structure of the SARS-CoV-2 spike N-terminal domain (NTD) in complex with a representative
class 3 neutralizing antibody (4A8, PDB: 7C2L). All structural analysis and figures were generated with UCSF ChimeraX®.
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Extended Data Fig. 2 | Neutralization curves with mAbs and variant SARS-CoV-2 strains. Anti-SARS-CoV-2 human mAbs were tested for neutralization

of infection of the indicated viral variants and isolates using a FRNT on Vero-hACE2-TMPRSS2 or Vero-TMPRSS2 cells. One representative experiment of
two performed in duplicate is shown.
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in orange, RBD in green, and S2 portion of the molecule in blue, with N- and C-termini annotated. Substitutions seen in the B.1.1.248 Brazilian variant (L18F,
T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y, T10271, and V1176F) are shaded red. Red hexagon depicts approximate location of
R190S, which is obscured in this view. Red star indicates approximate location of T10271, which is obscured in this view. V1176F is not shown, as it exists
beyond the C-terminus of this model, which ends at residue D1146. Inset shows top-down view of the RBD with B.1.1.248 RBD substitutions (K417T/
E484K/N501Y) shaded red and contextualized with the receptor-binding motif. Spike was modelled using PDB: 7C2L; RBD was modelled using PDB:
6WA41, All structural analyses and figures were generated with UCSF ChimeraX®. b, Selected anti-SARS-CoV-2 human mAbs (selected ones used are
indicated) were tested for neutralization of the indicated Wash BR-B.1.1.248 using a FRNT on Vero-hACE2-TMPRSS2 cells (top) or on Vero -TMPRSS2
cells (bottom). One representative experiment of two performed in duplicate is shown. ¢, Summary of EC, values (ng/ml) of neutralization of Wash
BR-B.1.1.248 performed in Vero-hACE2-TMPRSS?2 cells (top) or on Vero-TMPRSS2 cells (bottom). Data are an average of two experiments, each performed
in duplicate. Blue shading of cells shows virtually complete loss of neutralizing activity: ECs, > 10,000 ng/mL.
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Extended Data Fig. 6 | Neutralization curves with animal sera from ChAd-CoV-2 vaccinated animals and variant SARS-CoV-2 strains. Serum
samples were collected from mice (n=10), hamsters (n=8), or rhesus macaques (NHP, n=6) ~30 days after a single intranasal immunization with
ChAd-SARS-CoV-2-S. Sera were tested for neutralization of infection of the indicated viral variants and isolates in Vero-hACE2-TMPRSS?2 cells using a
FRNT. One experiment performed in duplicate is shown.
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Extended Data Fig. 7 | S and RBD binding activity of human sera from individuals vaccinated with BNT162b2 mRNA vaccine. Individuals were vaccinated
and boosted with the Pfizer-BioNTech mRNA vaccine. At seven days after boosting, sera were collected and tested for binding to S or RBD proteins
(WA1/2020 strain) by ELISA. One experiment performed in duplicate is shown.
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Extended Data Fig. 8 | Neutralization curves in Vero-hACE2-TMPRSS2 cells with human sera from subjects vaccinated with the BNT162b2 mRNA
vaccine and variant SARS-CoV-2 strains. Individuals were vaccinated and boosted with the Pfizer-BioNTech mRNA vaccine. Sera were collected and
tested for neutralization of infection of the indicated viral variants and isolates using a FRNT and Vero-hACE2-TMPRSS2 cells. One experiment performed
in duplicate is shown.
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Extended Data Fig. 9 | Neutralization curves of variant SARS-CoV-2 strains in Vero-TMPRSS2 cells with human sera from convalescent subjects or
those vaccinated with the BNT162b2 mRNA vaccine. Serum from individuals (n=10) who had been infected with SARS-CoV-2 (~ 1-month time point)
or vaccinated with the Pfizer-BioNTech mRNA vaccine (n=10) were tested for neutralization of the indicated SARS-CoV-2 strains (D614G, B.1.1.7, Wash
SA-B.1.351, Wash BR-B.1.248) using a FRNT and Vero-TMPRSS2 cells. One experiment performed in duplicate is shown, with some exceptions due to
limited sample.
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Extended Data Fig. 10 | Differential serum neutralization of SARS-CoV-2 produced in Vero E6 and Vero-hACE2-TMPRSS2 cells. ((Top panels) Immune or
vaccine-derived sera from mice, hamsters, NHP, or humans (see Figs. 2-4) were incubated with deep-sequenced confirmed pO (Vero cell-produced) or p1
(Vero-hACE2-TMPRSS2 cell-produced) versions of K417N/E484K/N501Y/D614G virus and then subjected to a FRNT in Vero-hACE2-TMPRSS2 recipient
cells. ECs, values were calculated from one experiment performed in duplicate. GMT values are shown above each graph. Dotted line represents the limit
of detection of the assay. Two-tailed Wilcoxon matched-pairs signed rank test: Mouse vaccine sera, P=0.0039; Hamster vaccine sera, P=0.0078; NHP
vaccine sera, P=0.0312; Human convalescent sera, P=0.0001; Human vaccine sera, P=0.0026. (Middle panels) Serum neutralization curves with K417N/
E484K/N501Y/D614G virus (pO, generated in Vero E6 cells; p1, generated in Vero-hACE2-TMPRSS2 cells) using a FRNT and Vero-hACE2-TMPRSS2 cells.
One experiment performed in duplicate is shown. (Bottom left panel) Neutralization curves and EC,, values with COV2-2050 and COV2-2196 mAbs using
the pO (Vero cell-produced) or p1 (Vero-hACE2-TMPRSS2 cell-produced) viruses and recipient Vero-hACE2-TMPRSS2 cells.
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in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|Z| The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

|Z| For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used in this study to collect data

Data analysis Prism 8.0 was used to perform all statistical analysis. BWA4 v0.7.17-r1188 (http://bio-bwa.sourceforge.net). DeepVariant4 v1.1.0 (https://
github.com/google/deepvariant) was used to call variants with an allele frequency >= 50%. Variants were annotated using SNPEff4 5.0c
(https://sourceforge.net/projects/snpeff/). FlowJo software (v9) was used for analysis of flow cytometry

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

All data supporting the findings of this study are available within the paper and are available from the corresponding author upon request. Deep sequencing
datasets of viral stocks are available at NCBI BioProject PRINA698378 (https://www.ncbi.nlm.nih.gov/bioproject/PRINA698378).
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Life sciences study design
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Sample size No sample sizes were chosen a priori, as samples were used based on availability. Notwithstanding this point, each serum analysis has n =10
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=
Q
=i
-
=
()
=
D
wv
D
Q
=
@)
o
=
D
o
¢}
=.
>
(e]
wv
e
)
Q
=
A

Data exclusions  No data was excluded.

Replication All experiments with monoclonal antibodies were performed at least two independent times each with two technical replicate per
experiment. Serum studies were performed as one independent experiment with two technical replicates.

Randomization  No randomization was performed as we obtained available samples that were deidentified

Blinding Blinding was not performed for convenience. However, data was scanned and analyzed by a separate investigator who did not perform the
experiment.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |:| Flow cytometry
|:| Palaeontology and archaeology |:| MRI-based neuroimaging

X Animals and other organisms
Human research participants
[] clinical data

|:| Dual use research of concern

XXOOXK OO s

Antibodies
Antibodies used Human mAbs (all generated by the Crowe, Ellebedy, Corti and Screaton laboratiries as part of this study): COV2-2196, COV2-2072,
COV2-2050, COV2-2381, COV2-2130, COVOX-384, COVOX-40, 1B07, S309, S2E12, S2H58, and $2X259; Mouse mAbs (all generated by
the Diamond laboratory): SARS2-2, SARS2-11, SARS2-16, SARS2-31, SARS2-38, SARS2-57, and SARS2-71; HRP-conjugated goat anti-
mouse IgG (Sigma 12-349), anti-V5 antibody (Thermo Fisher 2F11F7), anti-TMPRSS2 mAb (Abnova, Clone 2F4), APC-conjugated
goat anti-mouse 1gG (BioLegend, 405308), Goat anti-human IgG-HRP (Jackson ImmunoResearch, 115-035-003)
Validation All primary anti-SARS-2 CoV-2-S mAbs were validated using purified SARS-CoV-2 RBD or S proteins using ELISA or BLI assays. All

secondary antibodies were validated by each respective manufacturer per their associated DataSheets.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) Vero E6 (CRL-1586, American Type Culture Collection (ATCC), Vero-TMPRSS2, Diamond laboratory; Vero-hACE2-TMPRSS2,
Graham laboratory, VRC/NIH; Expi-CHO (ThermoFisher, A29127), 293T/17 (ATCC CRL-11268)

Authentication These were obtained from ATCC or other academic laboratories and grew and performed as expected (or stained positively
for antigens (TMPRSS2 and hACE2) by flow cytometry). No additional specific authentification was performed.

Mycoplasma contamination All cell lines are routinely tested each month and were negative for mycoplasma.




Commonly misidentified lines  This study did not involve any commonly misidentified cell lines.
(See ICLAC register)

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals BALB/c mice (both sexes, 4 months); Syrian Golden hamsters (both sexes, 1 year), Rhesus macaques (male 4 years): these were used
in previous studies. In this study, only banked sera was used

Wild animals N/A
Field-collected samples  N/A

Ethics oversight All experiments were conducted with approval of the Institutional Animal Care and Use Committee at the Washington University
School of Medicine (Assurance number A3381-01) - [prior studies, as current one did not have active animal work]
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Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics The convalescent patients were recruited from the St. Louis metropolitan area who experienced mild SARS-CoV-2 infection.
None of those patients required intubation. Human subjects information: (a) Convalescent subjects: Median age = 50
(21-69); Gender = Females (57%); Race = White (95%); (b) Vaccinated subjects: Median age = 45 (26-64); Gender = Females
(64%); Race = White (94%).

Recruitment Convalescent plasma donors were recruited from the St. Louis metropolitan area by the Washington University Infectious
Diseases Clinical Trials Unit. Vaccinated individuals were health care workers at Washington University School of Medicine
and Barnes and Jewish hospital. Potential self-selection and recruiting biases are unlikely to affect the parameters we

measured.

Ethics oversight Washington University School of Medicine Institutional Review Board. IRB approval numbers: 202003186 (WU353),
202012081 (WU368) and 202012084 (COVaRIiPAD)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots

Confirm that:
|Z| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
g All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology
Sample preparation Expi-CHO cells were transiently transfected with SARS-CoV-2-S expression vectors. Two days later, intact cells were collected
for immunostaining with mAbs.
Instrument ZE5 Cell Analyzer (Biorard)
Software FlowJo software (v9, TreeStar)
Cell population abundance N/A
Gating strategy Gating on live cells was performed using FSC and SSC

g Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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