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The Role of Vitamin D in Toxic Metal Absorption: A Review 

Jim Moon, PhD, FACN 

National College of Naturopathic Medicine, Portland, Oregon 
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Vitamin D increases intestinal calcium and phosphate absorption. Not so well known, however, is that 
vitamin D stimulates the co-absorption of other essential minerals like magnesium, iron, and zinc; toxic 
metals including lead, cadmium, aluminum, and cobalt; and radioactive isotopes such as 89,,0strontium 
and 137cesium. Vitamin D may contribute to the pathologies induced by toxic metals by increasing their 
absorption and retention. Reciprocally, lead, cadmium, aluminum, and strontium interfere with normal 
vitamin D metabolism by blocking renal synthesis of 1,25-dihydroxyvitamin D. This is the first review 
of the role of the vitamin D endocrine system in metal toxicology. 

Key teaching points: 
• Vitamin D increases absorption of several toxic metals including lead, cadmium, aluminum, and cobalt. 
• Vitamin D increases absorption of radioactive isotopes of strontium and cesium. 
• Lead, cadmium, aluminum, and strontium interfere with normal vitamin D metabolism. 
• These effects should be taken into consideration when establishing regulations regarding use of vitamin D. 

INTRODUCTION 

A role for vitamin D in calcium (Ca2+) and phosphate 
(HP04

2_) metabolism has been known since the discovery 
of the anti-rickets vitamin in the early 1920s. Since 1930, 
a much broader role for the vitamin D endocrine system 
in mineral balance and metal toxicology has been devel
oping. In 1932 Shelling [1] demonstrated that irradiated 
ergosterol (vitamin D2 or ergocalciferol) increased lead 
(Pb2+) absorption in rats. Sobel [2] confirmed this and 
extensively studied the relationship between vitamin D 
intake, and Pb2+ and ΗΡ04

2~ absorption. Greenberg [3] 
demonstrated that vitamin D increases stable strontium 
(ST2*) absorption in chicks and rats. This was extended to 
radioactive isotopes of strontium (̂ ""Sr2"1") by Mraz and 
Bacon [4]. Worker and Migicovsky [5] reported the uptake 
of all Group IIA elements (Ca2+, Be2+, Mg2+, ST2*, Ba2+) 
from an oral dose was significantly increased in chicks by 
vitamin D3; no effect was observed from a subcutaneous 
dose of the minerals, leading to the conclusion that the 
effect of vitamin D on these elements is due to increased 
intestinal absorption rather than to a direct effect of vita
min D on bone. Worker and Migicovsky [6] studied the 
effect of vitamin D3 on the absorption of Group IIB 
elements in chicks, finding zinc (Zn2+) and cadmium 

(Cd2+) increased in bone from an oral dose but not from 
subcutaneous injection, while mercury (Hg2+) absorption 
was not affected by vitamin D treatment. Masuhara and 
Migicovsky [7] demonstrated that vitamin D-induced ab
sorption of Fe2+ and Co2+ is increased when dietary Ca2+ 

is low, suggesting a common absorptive mechanism for 
these elements. 

Following discovery of the vitamin D-induced Ca2+-
binding protein [8], Wasserman and Corradino [9] dem
onstrated binding properties of the protein for the various 
cations of Group IIA in the order: Ca2+ > ST2* > Ba2+ > 
Mg2+. The role of Ca2+-binding protein in absorption of 
cations is still not clear. Nevertheless, these studies estab
lished the foundation for current understanding of the 
emerging role for the vitamin D endocrine system in 
mineral homeostasis and metal toxicology. In addition to 
the effect of the vitamin D endocrine system on the ab
sorption of cations, a number of cations (Pb2+, Cd2+, ST2*, 
Al3+) adversely influence renal production of 1,25-dihy
droxyvitamin D ( 1,25(OH)2D), resulting in metabolic bone 
disease. In the present article current knowledge of the 
interactions of the vitamin D endocrine system with Pb2+, 
Cd2+, Al3+, ST2*, Fe2+, l37Cs+, and plutonium (239Pu4+) is 
reviewed. Effects of the vitamin D endocrine system on 
Ca2+, Mg2+, and HP04

2~ have been reviewed by others 
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Vitamin D and Toxic Metals 

[10-13], and will not be included in the present discussion. 
No studies have been conducted on the possible role of 
vitamin D on vanadium or arsenic absorption, although 
as vanadate and arsenate these may be absorbed in a 
fashion similar to phosphate absorption. 

THE ROLE OF VITAMIN D IN 
TOXIC METAL ACCUMULATIONS 

Vitamin D Administration Increases Pb2+ 

Absorption 

Early investigators demonstrated summer outbreaks of 
pediatrie Pb2+ poisoning long before vitamin D was dis
covered. After the discovery of vitamin D, this observation 
lead to the suggestion that solar synthesis of vitamin D is 
a contributing factor to the increased Pb2+ poisoning that 
occurs in summer months [14]. Sobel et al [2] concluded 
that normal rations of vitamin D2 cause a rise in Pb2+ 

content of bone ash and blood of rachitic Pb2+-poisoned 
rats, and that the biochemical behavior of Pb2+ is influ
enced by vitamin D, Ca2+, and HP04

2_. This was con
firmed and extended by Sobel and his various co-workers 
[15-18]. Prior to 1980 interrelationships among Pb2+, 
Ca2+, HPO42", and Fe2+ were recognized [19-23], but the 
role of the vitamin D endocrine system in Pb2+ absorption 
and retention remained largely unexplored. 

One effect of vitamin D is the induction of Ca2+-binding 
protein by intestinal cells. Although the relationship be
tween the vitamin D-induced Ca2+-binding protein and 
Pb2+ absorption has not been fully established, Edelstein 
et al [24] showed that an increase in Ca2+-binding protein 
might be involved. An increase in Pb2+ absorption in chicks 
that were maintained on vitamin D3 and fed a low Ca2+ 

diet was associated with increased intestinal Ca2+-binding 
protein. However, when chicks were maintained on 
l,25(OH)2D3 as the sole source of vitamin D and fed a low 
Ca2+ diet, no increase in intestinal Ca2+-binding protein or 
in Pb2+ absorption was observed. Although these appar
ently contradictory results have not been fully explained, 
Edelstein et al [24] concluded that an increase in the 
calcium-binding protein is necessary for increased Pb2+ 

absorption. 
Fullmer et al [25] studied the Pb2+-binding properties 

of the intestinal Ca2+-binding protein. The chick Ca2+-
binding protein binds 4 Ca2+ atoms with high affinity 
(kaCa2"1" = 2 x IO6 M4). Ca2+ displacement studies indicate 
higher affinity for Pb2+ than for Ca2+, with a binding 
constant of (k,Pb2+ = 1.6 x 107 NT')· Since Ca2+-binding 
protein also binds Sr2+, Ba2+, Pb2+, and Cd2+ in a fashion 
apparently related to their ionic radii [9]. Fullmer et al 
[25] suggest that the Ca2+-binding protein may be basic to 
the absorption of all of these cations. Calmodulin, troponin 

C, and oncomodulin also bind Pb2+ with high affinities 
and in preference to Ca2+, suggesting that Pb2+-binding is 
a general property of proteins belonging to the troponin C 
superfamily of Ca2+-binding proteins [25]. 

In the late 1970s, increasing environmental contami
nation by Pb2+ stimulated interest in the relationship be
tween Pb2+ and vitamin D. Smith et al [26] and Mahaffey 
et al [27] demonstrated that in rats (using both in vivo and 
in vitro systems) vitamin D markedly enhanced Pb2+ ab
sorption. Mahaffey et al [27] reported that in vivo absorp
tion of Pb2+ acetate (0.01 mM) was around 16% in rats in 
the absence of vitamin D. This increased to 31 % with 6.25 
μg/day vitamin D3, and 49% with 25 Mg/day. The greatest 
enhancement observed was in the distal small intestine, 
which is a site of minimal vitamin D stimulation of Ca2+ 

absorption. Thus, although a high Ca2+ diet decreases Pb2+ 

absorption, the absorption of the two cations may not be 
controlled by the same absorptive mechanism. Smith et al 
[26] pointed out that vitamin D also stimulates HP04

2_ 

transport especially in the distal small intestine, suggesting 
that Pb2+ transport may be related in some way to HP04

2_ 

absorption. 
Physiologic doses of vitamin D may enhance Pb2+ 

absorption as much as high doses [26]. Hart and Smith 
[28,29] demonstrated that in young growing rats vitamin 
D3 treatment increases intestinal Pb2+ absorption and dep
osition in kidney and bone, concluding that tissue deposi
tion of Pb2+ is a primary effect of vitamin D and is not 
secondary to increased Pb2+ absorption. Mykkänen and 
Wasserman [30,31] demonstrated that in rachitic chicks, 
the rate of absorption of Pb2+ is greater in the distal than 
in the proximal segments of the intestine, whereas after 
vitamin D repletion, the degree of absorption in all seg
ments is similar. On acute dosage with l,25(OH)2D3, both 
Pb2+ and Ca2+ absorption increased, but the time course 
and patterns of absorption differred, again suggesting sep
arate absorptive mechanisms. Barton et al [32] reported 
that dietary vitamin D deficiency and repletion resulted in 
increased absorption of Pb2+ in intact rats presumably due 
to prolonged gastrointestinal transit time, since manipu
lation of dietary vitamin D content did not affect the 
absorption of Pb2+ from isolated gut loops. 

Andrushaite et al [33,34] demonstrated a doubling in 
2l0Pb absorption 72 hours after administration of 500 IU 
vitamin D3 to rachitic chicks. Among rats, ingestion of 
0.82% Pb2+ suppressed plasma levels of l,25(OH)2D on a 
low phosphorus or a low Ca2+ diet and blocked the intes
tinal Ca2+ transport response to vitamin D3, 25-hydroxy-
vitamin D3 (25-OHD3), and l,25(OH)2D3 [35]. It thus 
appears that vitamin D ingestion increases Pb2+ absorp
tion, and Pb2+ absorption interferes with vitamin D func
tions. 

Children with high blood Pb2+ (> 60 ^g/dL) have low 
levels of circulating 25-OHD which may be due to reduced 
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intake of vitamin D, since appetite impairment is a subtle 
clinical manifestation of Pb2+ intoxication [36,37]. There 
is a decrease in l,25(OH)2D3 in children with increased 
Pb2+ absorption due to an effect of the Pb2+ ion which 
impairs renal hydroxylation of 25-OHD [38]. A significant 
negative correlation (r = -0.88) was observed between 
l,25(OH)2D3 and blood Pb2+ concentrations for 177 sub
jects from 1 to 16 years old over the entire range of blood 
Pb2+ levels(12-120 μ$) [39]. Thus, low serum l,25(OH)2D3 
appears to be a sensitive index of Pb2+ toxicity. 

Vitamin D Administration Increases Cd2+ 

Absorption 

Wasserman [9] demonstrated that Ca2+-binding protein 
binds Cd2+ as well as most other divalent cations. Worker 
and Migicovsky [6] reported a vitamin D3-induced increase 
in Cd2+ absorption among chicks. This was confirmed and 
extended by Koo et al [40], who found a lack of correlation 
between Cd2+ absorption and Ca2+-binding protein and 
concluded that the vitamin D-dependent Ca2+-binding 
protein was not directly involved in Cd2+ absorption. On 
the other hand Washko and Cousins [41], using male rats, 
demonstrated an increase in Ca2+-binding protein and 
Cd2+ absorption on low Ca2+ diets, and concluded that 
Ca2+-binding protein is responsible for Cd2+ absorption. 
Cd2+ concentrates in kidney and bone, two organs of 
primary importance in vitamin D metabolism and func
tion. An effect of Cd2+ on renal biosynthesis of 1,25(OH)2D 
might therefore be expected. This is supported by the 
observation that osteomalacia is induced by Cd2+ [42,43]. 
Feldman and Cousins [44] reported that Cd2+ blocks renal 
\-a hydroxylation of 25-OHD3 which may explain the 
induction of osteomalacia by this cation. Ando et al [45] 
demonstrated inhibition by Cd2+ of vitamin D stimulated 
Ca2+ transport in rats, also attributed to a decreased renal 
production of l,25(OH)2D3. On the other hand, Kawash-
ima et al [46] found no evidence of suppression of produc
tion of l,25(OH)2D3 in monkeys treated with Cd2+ for 9 
years. Further studies regarding Cd2+ and vitamin D are 
needed. 

Vitamin D Administration Increases Al3* 
Absorption 

Al3+-induced osteomalacia resulting from dialysis osteo-
dystrophy has been known for a number of years [47,48]. 
The presence of Al3+ in bone prevents bone response to 
vitamin D [49]. In addition to the harmful effects of Al3+ 

on bone mineral metabolism, recent interest has focused 
on Al3+ as a neurotoxin possibly involved in Alzheimer's 
senile dementia [50-52]. For these reasons there has been 
increased interest in the role of the vitamin D endocrine 
system in Al3+ toxicology within the last few years. 

Colussi et al [53] identified l,25(OH)2D3 as a risk factor 
in Al3+ bone toxicity, since a patient being treated with 
l,25(OH)2D3 for hyperparathyroidism unexpectedly devel
oped superimposition of Al3+-related osteomalacia on pre
vious osteitis fibrosa. In chronically uremie rats receiving 
oral Al3+ supplementation, Driieke et al [54] reported a 
decrease in liver Al3+ content accompanied by elevated 
serum Al3+ following treatment with l,25(OH)2D3. Al3+-
induced osteomalacia in rats has been attributed to chronic 
renal failure [55]. In Al3+-induced osteomalacia in dogs, 
reduced levels of l,25(OH)2D3 have been found [56], but 
not confirmed [57]. Adler and Berlyne [58] studied duo
denal Al3+ absorption in rats using an in vivo isolated gut 
segment technique, finding that Al3+ is absorbed by both 
a nonsaturable mechanism and a vitamin D-dependent 
saturable mechanism for which it may compete with Ca2+. 
In a review of gastrointestinal absorption of Al3+. Ihle and 
Becker [59] include parathyroid hormone (PTH) and vi
tamin D metabolites as factors that increase Al3+ absorp
tion. Elevated PTH may explain why some patients reach 
high serum Al3+ levels on low doses of Al3+. Mayor et al 
[60,61] demonstrated in rats that vitamin D and its metab
olites increase tissue Al3+ burdens independently of PTH. 
The parathyroid glands tend to concentrate Al3+, and thus 
contained significantly more Al3+ per unit mass than did 
thyroid glands or cervical muscle [62]. Anthony et al [64] 
found an increase in levels of Al3+ in muscle and heart of 
rats following administration of vitamin D3. 

Vitamin D Administration Increases the Body 
Burden of Radioactive Nuclides 

Mraz and Bacon [4] showed an increase in tissue levels 
of''Sr2* in rats fed ''Sr2* and excess vitamin D, confirming 
an earlier report by Greenberg [3]. Worker and Migicovsky 
[6] and Wasserman and Corradino [9] also found increased 
Sr2* absorption under the influence of vitamin D. As well, 
Sr2* interferes with Ca2+ absorption and utilization, result
ing in Sr^-induced rickets in laboratory animals [65]. Sr2"1"-
induced does not respond to vitamin D treatment, but 
increased dietary Ca2+ reverses the lesions. It is believed 
that this action of Sr2* is mediated via blockage of renal 
synthesis of 1,25(OH)2D3 [65]. Giza et al [66] reported that 
rickets induced by radioactive isotopes of Sr2+ in rats is 
not reversible by treatment with vitamin D2, suggesting 
that there may an association between 89.90Sr2+ levels in 
bone and vitamin D-resistant rickets. Spencer et al [67] 
have summarized 90Sr2+-Ca2+ interrelationships. In addi
tion to increasing the body burden of 89,90Sr2+, vitamin D 
increases intestinal absorption and bone deposition of 
137Cs+ [9]. 

In a unique study of the effects of vitamin D on skeletal 
239Pu4+ levels in mice, Battacharyya and Peterson [69] 
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attempted to remove skeletally deposited 239Pu4+ with large 
doses of vitamin D3, but were unable to demonstrate an 
increase in release of 239Pu4+ from its sites of deposition in 
the skeleton. 

CONCLUSIONS 
In addition to its traditional role in Ca2+ and HP04

2" 
metabohsm, the vitamin D endocrine system is important 
in the absorption and balance of other essential minerals 
(Mg2+, Fe2+, Zn2+). As well, absorption of several toxic 
metals (Pb2+, Cd2+, Al3+, Co2+, ̂ S r 2 * , 137Cs+) is increased 
under the influence of vitamin D. Reciprocally, these 
metals exert an adverse effect on vitamin D metabohsm 
which results in impaired renal production of 1,25(OH)2D3 

and metabolic bone disease. Although the significance of 
this information remains to be clarified, these effects 
should be taken into consideration when establishing reg
ulations regarding use of vitamin D. 
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