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Vaccines and antimicrobial drugs both impose strong selection for resistance. Yet only drug resistance is a
major challenge for 21st century medicine. Why is drug resistance ubiquitous and not vaccine resistance?
Part of the answer is that vaccine resistance is far less likely to evolve than drug resistance. But what
happens when vaccine resistance does evolve? We review six putative cases. We find that in contrast to
drug resistance, vaccine resistance is harder to detect and harder to confirm and that the mechanistic basis
is less well understood. Nevertheless, in the cases we examined, the pronounced health benefits
associated with vaccination have largely been sustained. Thus, we contend that vaccine resistance is less of
a concern than drug resistance because it is less likely to evolve and when it does, it is less harmful to
human and animal health and well-being. Studies of pathogen strains that evolve the capacity to replicate
and transmit from vaccinated hosts will enhance our ability to develop next-generation vaccines that
minimize the risk of harmful pathogen evolution.
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Modern medicine and industrial animal farming greatly
benefit from vaccines and antimicrobial drugs (1–3). But
like all disease interventions targeted at pathogen fit-
ness, drugs and vaccines may drive pathogen evolution
that undermines their efficacy, threatening the sustain-
ability of medical and agricultural gains. This is starkly
obvious for antimicrobial drugs, with drug-resistant infec-
tions already responsible for well in excess of 100,000
deaths per year globally and a projected 10million deaths
per year by 2050 (4). In contrast, deaths due to vaccine-
preventable diseases are almost entirely due to lack of
access to vaccines, not vaccine resistance. Here we ask
why drug resistance is one of the biggest global chal-
lenges of our era (4, 5) whereas vaccine resistance is not.

For the purposes of this paper, we use “resistance”
to mean an evolutionarily acquired positive pathogen
population growth in treated hosts. Defined this way,
resistance is an increased ability of the pathogen to
infect, replicate, and/or transmit from a treated host.
Our definition of resistance therefore does not include
cases of intrinsic resistance, sometimes referred to as
insensitivity, where a pathogen was never susceptible
to treatment. Insensitivity is no doubt important, but
here we are interested in resistance that evolves in
response to vaccine or drug pressure. Note that our
definition of resistance is agnostic to the effects of

resistance on the prevalence and severity of disease,
an important distinction we return to below.

Vaccine resistance evolves less readily than drug
resistance (Fig. 1). Elsewhere, we have argued that
two key differences between drugs and vaccines ex-
plain why (6). The first is the timing of treatment, and
the second is the multiplicity of target sites. Vaccines
are used prophylactically, whereas drugs tend to be
used therapeutically. This difference in timing means
that, relative to drugs, vaccines tend to keep pathogens
from ever achieving large population sizes within hosts.
Resistance mutations are less likely to appear in small
populations (7), and when such mutations appear and
confer partial resistance within a host, they are unlikely
to replicate to the large population sizes that are asso-
ciated with onward transmission (6, 8). In addition,
drugs tend to target pathogens in a single way (9)
whereas vaccines tend to target pathogens in multiple
ways by inducing host-specific antibody and/or T cell
responses (10). This difference in the multiplicity of
target sites means that relative to drugs, more muta-
tions are likely needed to confer resistance to vaccines.
Variability in immune responses between hosts (11) fur-
ther implies that even if a pathogen variant were resistant
to vaccine protection in one host, it may still be detected
and killed in another vaccinated host.
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Together, these differences between drugs and vaccines mean
that pathogen populations generate less variation for vaccine
resistance than for drug resistance and that selection has fewer
opportunities to act on any variation that is generated. These two
factors synergistically slow the evolution of resistance to vaccines (6).

Thus, one reason why the evolution of drug resistance is more
problematic than the evolution of vaccine resistance is that drug
resistance is more likely to evolve. But what happens when vaccine
resistance does evolve? Is it as harmful to human and animal well-
being as drug resistance? To shed light on this, we briefly summarize
the health impact of drug resistance and then contrast this with six
cases in which the evolution of vaccine-resistant strains is strongly
suspected.

Drug Resistance
The first naturally derived antibiotic, penicillin G, also known as
benzylpenicillin, was serendipitously discovered in 1928 by Alexander
Fleming (12), when he noted a halo around a fungal contaminant on
his bacterial plates, indicating lysis. Efficacy in vivo was demon-
strated a decade later, showing that injections of penicillin G could
extend the life of mice challenged with lethal doses of bacteria (13).
By 1946, penicillin G was widely available by prescription (14).

The first evidence that bacteria had potential to evolve re-
sistance to penicillin G traces back to its original discovery by
Fleming, when he noted differences in lysis between species of
bacteria in vitro. Abraham and Chain (15) showed that at least
some of those differences were due to the production of an en-
zyme now known to be beta-lactamase. Due to the common use
of the drug, resistance to penicillin G quickly became widespread
(14). For example, the majority of Staphylococcus aureus isolates
in a British hospital were resistant by 1948 (16). Drug resistance is
typically quantified by measuring minimum inhibitory concentrations

(MIC) in vitro, but resistance can often be observed before such as-
says when patients either fail to respond to treatment or relapse
during treatment (e.g., ref. 17).

The emergence of penicillin G–resistant infections prompted
the development of penicillin derivatives resilient to beta-lactamase
and with broader spectra of activity. It also prompted the discovery
of alternative classes of antibiotics with fundamentally different
mechanisms of action. Resistance, nevertheless, emerged against
these derivatives and alternative antibiotic classes (18) (Fig. 1).
Acquisition of antibiotic resistance has occurred through both hori-
zontal gene transfer and de novo mutation (19, 20), and the mech-
anisms of resistance have been diverse, including the acquisition
of enzymes that inactivate drugs, the modification of target site
expression or drug-binding affinity, and the reduction of drug
access to target sites (9).

Antibiotics are still highly effective in treating bacteria sus-
ceptible to particular drugs, but resistance is widespread, causing
problems for public health. Currently, antibiotic resistance costs
approximately $US 20 billion and involves 8 million extra hospi-
tal days per year in the United States alone (21). The rise of
multidrug-resistant pathogens, including some resistant to all
available antibiotics, is threatening to increase this burden. The
consequences of such evolution can be severe. For example,
multidrug-resistant Pseudomonas aeruginosa bloodstream infec-
tions result in 50% mortality compared with the 24% mortality of
nonmultidrug-resistant infections (22). New measures to control
antibiotic-resistant bacteria are therefore desperately needed.
These include the development of new antibiotics, although new
antibiotics are becoming increasingly difficult and expensive to
discover and bring to market (23, 24). Moreover, it seems likely
that resistance to next-generation antimicrobials will evolve just as
readily as it has in the past.

Fig. 1. Time between deployment of an intervention and the first documented failure in humans due to resistance (marked with “x”s). Different
classes of antibiotic drugs are labeled in different colors. Viral vaccines are labeled in purple and bacterial vaccines are labeled in green. The circle
for the smallpox vaccine denotes global eradication of the virus, which ended the opportunity for vaccine resistance to evolve. Influenza is shown
as a dotted line to highlight that it is routinely changed in an attempt to match circulating virus strains. Note that serotype replacement is
not shown. While many of the cases of antibiotic resistance and one case of vaccine resistance can be explained by horizontal gene transfer,
horizontal gene transfer is not considered to be an important factor in the evolution of antimalarial, antitubercular, or antiviral drug resistance.
Data for antimalarial drugs are from refs. 130–132. Data for antibiotic drugs are from ref. 132. Data for vaccines are from refs. 27, 48, and
133–136. Modified from ref. 6.
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One solution to the antibiotic-resistance crisis might be vac-
cination (23, 24). Vaccination can slow the spread of antibiotic
resistance by reducing the need for the appropriate use of anti-
biotics (e.g., Haemophilus influenzae type b and Streptococcus
pneumoniae), by reducing the inappropriate use of antibiotics for
viral infections such as influenza virus, and by developing vaccine
protection that targets antibiotic-resistant variants of a pathogen
such as with S. pneumoniae vaccination (23, 24). But like drugs,
vaccines also impose immense selection for resistance. We have
already argued that vaccines are less likely to be undermined by
resistance than are drugs, but what are the health consequences
of vaccine resistance when it does evolve? Here we summarize six
putative cases of vaccine resistance, three in human diseases and
three in animal diseases. These cases are summarized in Table 1.

Vaccine Resistance
Hepatitis B Virus. In 1967, Baruch Blumberg discovered hepatitis
B virus (HBV), a causative agent of hepatitis, cirrhosis, and hepa-
tocellular carcinoma that can be transmitted by infected blood
and semen, including from mother to child during birth. A decade
and a half later, a vaccine was licensed for use in humans com-
posed of the hepatitis B surface antigen (HBsAg). Concerns that
vaccine resistance might evolve arose from the discovery that a
small fraction of unvaccinated patients with chronic liver disease
had HBV DNA, but no detectable HBsAg (25, 26). These concerns
were amplified by a large vaccine trial which detected virus in
44 vaccinated people (27). Viral typing from a subset of these
individuals and their presumed infectious contacts showed that
transmission to vaccinated hosts strongly correlated with a loss of
monoclonal antibody binding to HBsAg (27).

Since then, numerous putative vaccine-resistant variants have
been described (28, 29). Most are seen in newborns of HBV-

infected mothers or in liver transplant patients, both situations
where infection precedes the development of vaccine-induced
immunity (30, 31). More rarely, people have become infected
with HBV and developed acute illness after mounting a vaccine-
induced immune response (e.g., ref. 32). Nevertheless, no puta-
tive alleles conferring vaccine resistance have yet become a public
health concern (33). This could be because HBV has slow re-
placement dynamics (34), but available data suggest that, contrary
to earlier reports (35, 36), putative vaccine-resistant variants are
stable or even declining in vaccinated populations (33, 37–40).
This might be because vaccine resistance is accompanied by large
reductions in growth or transmission rates. It could also be that
vaccine resistance is specific to the immune response of a par-
ticular host, and so a resistant pathogen might not be resistant in a
new host. Consistent with that possibility, a putative vaccine-
resistant strain was unable to infect vaccinated chimpanzees,
despite being able to cause disease in seronegative chimpanzees
(41, 42).

Rates of HBV infection and hepatocellular carcinoma are sub-
stantially down where the vaccine is in regular use (43) (Fig. 2). To
the best of our knowledge, vaccine research in this system is fo-
cused on developing therapeutic vaccines rather than developing
vaccines against vaccine-resistant isolates.

S. pneumoniae. The bacterial pathogen S. pneumoniae is often
found benignly colonizing the nasopharynx of healthy children,
but it is also responsible for an array of illnesses in humans (44), a
large set of which are referred to as invasive pneumococcal dis-
ease (IPD). Rates of IPD dropped substantially upon the in-
troduction of pneumococcal conjugate vaccine 7 (PCV7) (45), a
conjugate vaccine that induces immunity against the capsule
polysaccharide of 7 of the >90 known serotypes of the bacteria.

Table 1. Summary of vaccine-resistance case studies in main text

Issues Hepatitis B virus S. pneumoniae B. pertussis Y. ruckeri
Avian

metapneumovirus
Marek’s disease

virus

Reason vaccine resistance
was first suspected

Variation in
key antigens

Variation in
key antigens

Outbreaks in
vaccinated
populations

Outbreaks in
vaccinated
populations

Outbreaks in
vaccinated
populations

Outbreaks in
vaccinated
populations

Evidence of resistance
Direct experiments Negative* Not done Positive* Mixed Positive Positive
Molecular epidemiology Positive Positive Positive Not done Not done Not done
Mechanistic plausibility Positive Positive Positive Positive Positive Positive
Expert opinion Positive Positive Positive Positive Positive Positive

Putative route of resistance Immune evasion Immune evasion Immune suppression
and immune evasion

Loss of immune
stimulation

Immune evasion ?†

Impact of vaccine
resistance on disease
Population level Extremely small Slight increase ?‡ ?§ ?§ Large increase{

Vaccinated host Rare disease Slight increase ?‡ Mixed evidence Increase Mild to severe
Unvaccinated host ?# Slight decrease ?k ? No change Very severe

Prompted development
of vaccination strategies
to combat resistance?

No Yes Unclear** Yes No Yes

*Animals models, not natural hosts. For HBV, the putative vaccine-resistant strain was unable to infect vaccinated chimpanzees, even though it was able to replicate in
unvaccinated animals. For B. pertussis, there was unambiguous evidence for prn−; ptxP3 evidence was mixed (main text).
†Resistance correlates with virulence in unprotected hosts.
‡Debate over the degree to which resurgence in cases (Fig. 2) is attributable to vaccine resistance.
§Despite lack of data, disease is presumably reduced given that vaccination is still widely used in the industry.
{Vaccine-resistant isolates reduce survival and increase condemnation rates in flocks vaccinated with first-generation vaccines.
#Vaccine-resistant isolates may have reduced pathogenicity due to fitness costs of resistance, but not obviously seen in the animal model (main text).
kSome vaccine-resistant isolates may have increased virulence in unvaccinated hosts (main text).
**New vaccines are in development but it is not clear that these are being developed to combat vaccine-resistant pathogen strains rather than, for example, waning
immunity.
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Even before the vaccine was first deployed, there was concern
that the benefits of PCV7 might be quickly eroded by serotype
replacement, in which nonvaccine serotypes increase in frequency
following vaccination (46), especially since S. pneumoniae is nat-
urally competent and serotype replacement was seen in clinical
trials (47). Serotype surveillance therefore frequently followed
vaccine rollout in a variety of locations.

Results varied slightly from study to study, but the balance of data
showed strong impacts of serotype replacement on benign carriage
rates and moderate but detectable impacts of serotype replacement
on IPD rates (45). At least one serotype increase was facilitated by
recombination between a vaccine-targeted and a nonvaccine-targeted
serotype that resulted in capsule switching and thus serotype change
(48). Presumably, this event and other serotype replacement events
conferred resistance to vaccination (but see ref. 49).

After PCV7 vaccination was introduced, IPD rates continually
declined without any indication that serotype replacement was
causing year-over-year increases in total IPD rates (50) (Fig. 2).
Nevertheless, an updated conjugate vaccine PCV13 was de-
veloped and introduced in 2010 to provide protection against the
original seven serotypes and an additional six others. This update
has prevented 30,000 extra IPD cases in its first 3 y of use (51).

Bordetella pertussis. Bordetella pertussis is the human bacterial
pathogen responsible for whooping cough, a respiratory disease
that is a substantial contributor to childhood mortality. Incidence of
disease was greatly reduced in themid- to late-20th century through
mass vaccination, but when disease later resurged (52), vaccine
resistance was posited as one of several explanations (53). Genetic
differences between clones circulating before and after vaccine

introduction (53), particularly at two key antigens, pertactin (prn) and
pertussis toxin (54), heightened concerns about vaccine resistance.
In vaccinated mice, this variation affected bacterial clearance rates
(55), and in an epidemiological study, bacterial isolates with the
same prn allele as the vaccine were underrepresented in vaccinated
children relative to unvaccinated children (56).

Recently, isolates of B. pertussis entirely lacking prn expression
(prn−) have been increasing in frequency (57–61) (but see ref. 62).
In vaccinated mice, prn− strains persist longer than prn+ strains and
outcompete prn+ strains during coinfection (63, 64), whereas in
naive mice, prn+ strains outcompete prn− strains during coinfection
(64). Similarly in humans, prn− strains are isolatedmore than twice as
often from vaccinated than from unvaccinated patients (65).

A mutation that increases the production of pertussis toxin has
also attracted considerable attention, the so-called ptxP3 allele
(66). The ptxP3 allele has spread in vaccinated populations, and
it is associated with increased hospitalizations, durations of
stay, and deaths (66–70). These increases may be due to the
immunosuppressive effects of the toxin (71–73). Investigations of
the vaccine-break potential of ptxP3 in animal models have only
just begun. However, experiments have shown that a ptxP3-bearing
strain was a better colonizer of both vaccinated and unvaccinated
mice than was a strain without the ptxP3 allele (74).

There is much debate about the role of bacterial evolution in
the resurgence of whooping cough because the resurgencemight
be explained entirely by epidemiological or immunological factors
(75, 76). If evolution is involved, the population-level benefits of
vaccination are still far from completely eroded (Fig. 2). Moreover,
vaccination substantially reduces the risk of severe disease, even
when infected with prn−/ptxP3 strains (70). Current research into im-
proving the efficacy of pertussis vaccines has been quite diverse,
ranging fromusing live bacteria or inactivated cells to altering antigens,
adjuvants, doses, number of boosters, and timing of boosters (77).

Yersinia ruckeri. Yersinia ruckeri, the causative agent of enteric
redmouth disease, is a bacterial pathogen of fish that can lead to
substantial mortality in farmed salmonids. There are two biotypes,
a motile type with a flagellum [biotype 1(Bt1)] and a nonmotile
type that lacks a flagellum (Bt2) (78). A vaccine against enteric
redmouth disease licensed in Europe in 1983 became the first
commercially produced fish vaccine (79), and it was widely
adopted by the aquaculture community. Outbreaks in vaccinated
populations raised concerns about vaccine resistance, and be-
cause the outbreaks were often caused by Bt2 (80–82), concern
was focused on the possibility that Bt2 was vaccine resistant. It is
now known that vaccine protection is almost entirely due to IgM
responses to the bacterial cell wall (83, 84) and that the cell wall
does not necessarily differ between biotypes (85). Nevertheless,
flagellin, a defining difference between Bt1 and Bt2, is an immune
stimulator in fish (86), potentially providing a mechanistic expla-
nation for differences in vaccine resistance between biotypes.

Experimental evidence that Bt2 is vaccine resistant is, however,
mixed. Austin et al. (80) showed that commercial vaccines pro-
tected against disease less well for a European Bt2 strain than for a
canonical Bt1 isolate, but this pattern reversed when using a
noncommercial vaccine based on a European Bt1 strain. Tinsley
et al. (87) similarly found no consistent pattern between vaccine
efficacy and biotype. These experiments nevertheless show that
bacterial isolates differ in their ability to cause disease in vaccinated
hosts, and this difference must involve some trait not associated
with the presence of a flagellum.

Given the lack of data on historical or current incidence of
enteric redmouth disease and the lack of unbiased data on the
relative prevalence of Bt1 and Bt2 isolates over time, we cannot

A

C D

B

Fig. 2. (A–D) Disease incidence before and after vaccine
introductions for four of our case-study pathogens. Analogous data
are unavailable for Y. ruckeri and avian metapneumovirus. All data
reflect disease dynamics in the United States. Solid lines denote the
approximate introduction of first-generation vaccines. Dashed and
dotted lines denote the approximate introduction of second- and
third-generation vaccines, respectively. Updates to the hepatitis B
and pertussis vaccines were made in response to concerns of vaccine
safety, not pathogen evolution. Disease dynamics are driven by many
factors in addition to vaccines and vaccine resistance, and so not all
declines in disease can be attributed to vaccination. We nevertheless
note that inA–D, disease rates have never returned to prevaccination
levels despite the emergence of vaccine resistance. Data in A–C are
compiled from the Centers for Disease Control (137–139). Data in D
are compiled from the USDA Poultry Slaughter Reports (107).
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assess how strongly vaccine resistance has impacted disease
incidence or bacterial prevalence. In response to concerns of
resistance, researchers have identified alternative routes of ad-
ministration of existing vaccines that give better protective ef-
ficacy (88) and have developed new vaccines with improved
efficacy against both Bt1 and Bt2 isolates (87).

Avian Metapneumovirus. Avian metapneumovirus (AMPV) is a
single-stranded negative-sense RNA virus that causes respiratory
diseases in turkeys and other poultry (89). Various vaccines have
been developed to control the four subtypes of this virus (90), but
investigation into vaccine resistance began with the observation
that even homologous vaccines gave imperfect protection in the
field (91). To test whether this imperfect protection was a result of
evolved vaccine resistance, Catelli et al. (92) tested whether the
efficacy of vaccination differed among Italian isolates of AMPV in
experimentally infected turkeys. Using one historical virus isolate
and one isolate recently collected from a vaccinated flock with
disease problems, Catelli et al. (92) indeed found evidence of
vaccine resistance. In comparison with the historical isolate, the
recent isolate caused more severe disease in vaccinated birds.
Vaccinated birds also shed the recent isolate for longer than the
historical isolate, but disease severity and shedding duration did
not differ in unvaccinated birds (92). Further sequencing of virus
isolates collected over two decades revealed substantial variation
in the surface glycoprotein of the virus (93), a key antigen for vaccine-
induced immune protection (94). Moreover, this sequence variation
was located in putative T cell epitopes (93).

An isolate similar to the Italian vaccine-resistant isolate recently
appeared in a vaccinated flock in Romania (95) and might be a
harbinger of further spread. Despite these potential concerns,
current vaccine research is largely geared toward reducing the
rate of vaccine reversion to virulence and generating recombinant
vaccines that protect against more than one disease (96, 97).

Marek’s Disease Virus. Marek’s disease virus (MDV) is the caus-
ative agent of Marek’s disease (MD), a neoplastic disease of
chickens with clinical signs that include immune suppression,
paralysis, tumor formation, and death (98). Before the introduction
of the first vaccines in 1970, outbreaks of MD would often wipe
out entire flocks of chickens (99, 100). In addition, birds were
frequently removed from the food chain (“condemned”) at the
time of slaughter for traits closely associated with MD (101). The
introduction of live-virus vaccines in 1970 substantially reduced
both sources of loss, although the virus continued to circulate
without causing clinical signs of disease (102). Fear of vaccine
resistance began less than a decade later because of geo-
graphically clustered increases in MD-associated condemnation
and because “vaccine breaks” occurred, where outbreaks of MD
occurred in vaccinated flocks (103).

Laboratory infection experiments in chickens confirmed that
vaccine resistance had indeed evolved. Initial studies showed that
vaccine protection against disease was reduced for vaccine-break
isolates relative to historical isolates and relative to isolates col-
lected from farms without MD breaks (104, 105). A more recent
study has shown that vaccine-break isolates have greater lifetime
transmission potential than nonbreak isolates in vaccinated birds
(106). The mechanistic basis of this resistance is still unknown, but
vaccine-break isolates cause more severe disease in unvaccinated
birds, suggesting that increases in traits associated with patho-
genicity have facilitated vaccine resistance (98).

Despite the circulation of vaccine-break isolates, MD-associated
condemnation rates have steadily declined at the national scale
(107) (Fig. 2). Moreover, vaccinated birds infected with vaccine-

break virus isolates fare better than unvaccinated birds infected
with nonvaccine-break virus isolates (106), suggesting that the
health benefits of vaccination were only partially eroded by
evolution. Regardless, the scientific community responded to this
evolution with the introduction of new generations of vaccines
with improved efficacy (108, 109), and those are still in use today.
Although MDV continues to circulate on commercial poultry farms
(Fig. 3), MD is currently considered to be under control.

Discussion
Drug resistance almost always evolves in response to the wide-
spread use of drugs, but vaccine resistance does not (Fig. 1).
Vaccine resistance is less likely to emerge than drug resistance
because unlike drugs, vaccines are used prophylactically and they
target pathogens in multiple ways simultaneously, which together
drastically reduce the chance that resistance will emerge (6). There
are a handful of documented cases where vaccines have lacked
the benefits of these features and where putative vaccine-resistant
strains have been subject to empirical analysis. We summarized
six, three from farm animals and three from humans.

Several patterns emerged (Table 1). First, in four of the six,
vaccine resistance was first suspected because of disease out-
breaks in vaccinated populations. This contrasts with penicillin G
where the first evidence of resistance came from studies per-
formed in vitro before the drug was even approved for use (15). In
two cases, S. pneumoniae and HBV, vaccine resistance was dis-
covered by targeted surveillance before there were outbreaks of
disease. This early detection was no doubt possible because
these two vaccines seemed likely to prompt resistance evolution,
each inducing immunity against a single antigenic target. A similar
argument might be made for the detection of prn− variants in B.
pertussis. We thus conclude that a narrow target makes a vaccine
prone to drive the evolution of resistance as expected (6), but it
also makes resistance easy to detect, meaning that resistance can
be monitored and responses can potentially be implemented
before disease resurgence (e.g., PCV13 for S. pneumoniae).

Second, the emergence of vaccine resistance is confirmed in
various ways. In contrast, suspected cases of antimicrobial re-
sistance are usually easily confirmed using in vitro assays. In Table
1, we have separated the evidence of vaccine resistance into direct
experiments (measures of the performance of putative vaccine-
resistant strains in vaccinated hosts), molecular epidemiology (sur-
veillance of putative vaccine-resistant strains in vaccinated and
unvaccinated hosts or in pre- and postvaccine eras), mechanistic
plausibility, and expert opinion. This order is intentional to depict
the rough hierarchy of evidential quality. For example, a single
experiment performed under field-like conditions can demonstrate
vaccine resistance (e.g., refs. 92 and 106), whereas a plausible
mechanism for resistance may be better thought of as hypothesis
generating (e.g., Bt2 of Y. ruckeri). We note that for obvious rea-
sons, the confirmation of resistance to human vaccines frequently
relies on epidemiological data and lacks experimental data,
whereas for animal vaccines the reverse applies.

Third, vaccine resistance can be achieved by either active im-
munosuppression (turning down host defenses) or immune evasion
(avoiding detection). Pathogens have evolved a vast array of
countermeasures against natural host immunity (110, 111) and it
seems likely that many of these could be deployed against vaccine-
induced immunity. It will be especially interesting to see the
countermeasures pathogens evolve in response to next-generation
vaccines. Many vaccines of the future will likely induce responses
not naturally experienced by target pathogens. Presumably those
pathogens may evolve escape or evasion responses they do not
currently possess. Many routes to resist vaccine-induced immunity
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are possible, not least mechanisms analogous to those that com-
monly confer drug resistance: the production of enzymes that de-
grade effector molecules, altered target sites, altered expression of
target sites, and reduced access to target sites (9).

Fourth, our case studies show reduction of disease even in the
presence of vaccine resistance (Fig. 2). This is an interesting con-
trast with drugs, where the therapeutic gains in a patient can be
completely nullified by resistance. We can imagine several poten-
tial explanations for this observation. None are mutually exclusive.
First, resistant pathogen strains might still be evolving or spreading,
thus requiring more time to fully erode the benefits of vaccination.
Second, vaccine-resistant strains might never fully replace vaccine-
sensitive pathogen strains, for example, due to very high fitness
costs, competitive interactions, or heterogeneity in selection among
hosts or geographic locations. Third, vaccine resistance might be
incomplete, for example, if some degree of protection persists
against vaccine-resistant strains. Finally, the mechanisms by which
vaccines protect against disease (pathology) often differ from those
that protect against infection and transmission (112). If so, vaccines
could continue to deliver antidisease protection even when hosts
become infected with vaccine-resistant strains (see Fig. 3, for an ex-
ample). Perhaps vaccine-induced immunity nudges host responses
away from trajectories associated with immune pathology (113).

Finally, vaccine resistance has prompted research and devel-
opment into new vaccination strategies for only three of the case
studies (Table 1). Vaccine research is ongoing for all six, but vac-
cine resistance seems not to be the major motivator for HBV, B.
pertussis, or AMPV. This contrasts strongly with drugs, where
development pipelines exist primarily to combat the evolution of
resistance (114).

In the interest of brevity, we focused on six of the best-
documented cases of vaccine resistance. Other putative cases in-
clude avian influenza (115), avian reovirus (116), Corynebacterium
diphtheria (117), feline calicivirus (118), H. influenzae (119), in-
fectious bursal disease virus (120), Neisseria meningitidis (121),
Newcastle disease virus (122), and porcine circovirus type 2 (123).
Still more cases may have gone undocumented, particularly in
agriculture where autogenous vaccines are frequently developed
and deployed when commercial vaccines are unavailable or give
inadequate protection against disease (124). Like the cases we did
discuss, all of these deserve further work. We would be particularly
interested in seeing whether epidemiological factors, such as host
population density or host species, correlate with the emergence of
vaccine resistance.We note that theremay also be as yet unnoticed
cases of vaccine resistance; vaccine protection against infection
and transmission is difficult to measure (125) and usually not the
primary trait of interest with regard to human or animal health.

Conclusions
We have argued that vaccine resistance is substantially less
problematic for human and animal health than is drug resistance
because vaccine resistance is far less likely to evolve, and when it
has evolved, the pronounced health benefits associated with
vaccination have largely been retained. This provides yet another
reason why vaccines are an important part of the solution to drug
resistance (23, 24). However, we do not want to give the im-
pression that the possibility of vaccine resistance can be safely
ignored. First, it is unclear to what extent past successes are a
guide to future performance. If next-generation vaccines target
single antigens and/or fail to generate sterilizing immunity and so
allow onward transmission, vaccine resistance could become
more common (6). Second, vaccine resistance is in some ways
harder to respond to than drug resistance. Population-level pro-
tection against a vaccine-resistant pathogen may require large-
scale catch-up campaigns, whereas drug resistance can be han-
dled by swapping drugs at the time of treatment. Third, it is clear
from the literature that vaccine resistance is not just about immune
evasion; it can involve other phenotypes like immune suppression
and faster replication to outrun vaccine-induced immunity (106,
126, 127). Some of these phenotypes could cause more severe
disease in unvaccinated individuals (128, 129). While this is a mi-
nor inconvenience in agriculture when every animal can be vac-
cinated, the evolution of that sort of vaccine resistance would be a
substantial concern in human populations where universal vacci-
nation is not achievable.
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