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Abstract
The Third International Conference on Controversies in Vitamin D was held in Gubbio, Italy, September 10–13, 2019. The conference
was held as a follow-up to previous meetings held in 2017 and 2018 to address topics of controversy in vitamin D research. The spe-
cific topics were selected by the steering committee of the conference and based upon areas that remain controversial from the pre-
ceding conferences. Other topics were selected anew that reflect specific topics that have surfaced since the last international
conference. Consensus was achieved after formal presentations and open discussions among experts. As will be detailed in this arti-
cle, consensus was achieved with regard to the following: the importance and prevalence of nutritional rickets, amounts of vitamin D
that are typically generated by sun exposure, worldwide prevalence of vitamin D deficiency, the importance of circulating concen-
trations of 25OHD as the best index of vitamin D stores, definitions and thresholds of vitamin D deficiency, and efficacy of vitamin
D analogues in the treatment of psoriasis. Areas of uncertainly and controversy include the following: daily doses of vitamin D needed
to maintain a normal level of 25OHD in the general population, recommendations for supplementation in patients with metabolic
bone diseases, cutaneous production of vitamin D by UVB exposure, hepatic regulation of 25OHD metabolites, definition of vitamin
D excess, vitamin D deficiency in acute illness, vitamin D requirements during reproduction, potential for a broad spectrum of cellular
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and organ activities under the influence of the vitamin D receptor, and potential links between vitamin D andmajor human diseases.
With specific regard to the latter area, the proceedings of the conference led to recommendations for areas in need of further inves-
tigation through appropriately designed intervention trials. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC. on
behalf of American Society for Bone and Mineral Research.
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Introduction

Following meetings held in 2017(1) and 2018,(2) the Third
International Conference on Controversies in Vitamin D

was held in Gubbio, Italy, September 10–13, 2019. The aim of
the conference was to convene leading worldwide experts in
vitamin D research to address ongoing controversies and current
topics of debate in vitamin D research. Following formal presen-
tations on specific topics, discussions among experts were used
to help resolve lingering issues and to clarify areas of uncertainty.
Several core issues from the previous conference in 2018 were
revisited, such as assays to determine serum 25OHD concentra-
tion, which remains a critical and controversial issue for defining
vitamin D status. Definitions of vitamin D nutritional status were
also revisited. New areas were discussed, including the epidemi-
ology of vitamin D in developing countries and 25OHD threshold
values and how they should be defined in the context of health
and disease in different stages of human development. Thera-
peutic roles of vitamin D and findings from recent randomized
clinical trials were also discussed for cancer, cardiovascular dis-
ease, and diabetes mellitus (DM). It was evident that results from
recent trials are inconclusive because of questionable design, the
treatment regimen adopted, or the baseline vitamin D status of
the study subjects. Here we also identify issues concerning vita-
min D in both skeletal and nonskeletal diseases where consensus
is becoming established or is still lacking.

Topics Considered for Consensus

Nutritional rickets

Nutritional rickets, caused by a simple vitamin D or calcium defi-
ciency or both, still affects a significant number of infants and
children worldwide.(3) Vitamin D-deficiency rickets is cured by
vitamin D administration.(3) There is consensus that infants and
most children require approximately 400 IU (or 600 IU for older
children) of vitamin D per day to prevent rickets because direct
exposure to sunlight is often avoided and not recommended
for the very young.(4) However, such a supplementation policy
is either not or not fully implemented in many countries.

Although countries in Asia and the Middle East are most often
affected by nutritional vitamin D deficiency, African and some
Asian countries also encounter rickets caused by calcium defi-
ciency.(3) For newborns 0 to 6 and infants 6 to 12 months of
age, adequate calcium intake is 200 and 260 mg/day, respec-
tively, whereas for children over 12 months of age, a dietary cal-
cium intake of <300 mg/day increases the risk of rickets
independent of serum 25OHD levels.(5) For children over
12 months of age, classification of dietary calcium intake can
be defined as: sufficiency = >500 mg/day; insufficiency = 300
to 500 mg/day, and deficiency = <300 mg/day.(6)

The pathogenesis of calcium deficiency rickets is probably
more complex than previously thought. However, we do know
that reduced calcium intake increases PTH secretion, which in

turn increases FGF-23. Increases in both PTH and in FGF-23 lead
to an increase in urinary phosphate excretion. This pathophysio-
logical sequence leads to reduced serum phosphate, which,
along with PTH, increases the 1,25-dihydroxyvitamin D [1,25
(OH)D] level. Elevated 1,25(OH)D upregulates a number of genes
causing an increase in pyrophosphate, a known inhibitor of bone
mineralization, along with osteopontin and small integrin-
binding ligand N-linked glycoproteins (SIBLINGS; Fig. 1).(7–10)

These abnormalities, along with low calcium and low phosphate
levels, are primarily responsible for the osteomalacia characteris-
tic of calcium deficiency. Although this pathophysiological
sequence has been demonstrated in animals, it is likely that
humans are affected in the same way.

Currently, there is still a high incidence of rickets, mainly based
on clinical signs, in different countries around the world
(Table 1).(11) Based on the widespread global prevalence of rick-
ets, a task force should be established to deal with this problem.
Such a task force comprised of representatives from societies
such as the International Society of Endocrinology, the Interna-
tional Federation of Musculoskeletal Research Societies, the
Pediatric Endocrine Society, and the European Society for Paedi-
atric Endocrinology, as well as representatives from the vitamin
D conference should prepare and present a plan to the WHO
to eradicate rickets before 2030.(3)

Vitamin D is produced by UVB light from the sun

UVB light (wavelength of approximately 280 to 310 nm) opens
the B ring of 7-dehydrocholesterol, the last step in the de novo
synthesis of cholesterol, and generates previtamin D, which
undergoes thermally induced isomerization into vitamin D3

before being transferred into the circulation by binding to the
serum vitamin D binding protein (DBP).

Short periods of exposure to sunlight are beneficial for vitamin
D production, whereas prolonged UVB exposure leads to sun-
burn and DNA damage.(12) Larger doses result in more intense
peak reactions in a roughly linear fashion, with the actual slope
of the lines defined by individual variability, which in turn is
probably accounted for, at least in part, by genetic determinants.
As UV doses increase, simple tanning is replaced by more
advanced degrees of sunburn. In contrast, vitamin D formation
is instantaneous and increases linearly in a time-dependent fash-
ion from very small to very large UV exposures. The dose
response for dermal photosynthesis of vitamin D increases line-
arly at small UV doses, but differs strikingly from the other
dose–response curves in reaching a plateau well below the
threshold dose for erythema; Fig. 2). (13,14) Thus, short UVB expo-
sure times increase vitamin D photosynthesis. However, many
other variables can influence vitamin D dermal photosynthesis
such as age, skin color, sunscreen use, latitude, time of day,
and season. As a result, there is no consensus on what consti-
tutes safe and effective exposure to sunlight for the general pop-
ulation.(6) Moreover, given the above-noted individual
differences, attempting blanket guidance seems ill-advised.
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Vitamin D deficiency is prevalent

Although cutaneous vitamin D3 synthesis occurs rapidly in the
presence of adequate solar UVB because of human behavior—
indoor work, sun avoidance, etc.—vitamin D deficiency is wide-
spread.(15) Using a definition of <20 ng/mL (<50 nmol/L),(16) as
many as one third of the world’s population is deficient, with a
percentage as high as 40% in Europe (Table 2). Severe vitamin
D deficiency, defined as <30 nmol/L (or <12 ng/mL), is seen in

approximately 7% of the population worldwide, with consider-
able variation observed between different countries and popula-
tions. Nevertheless, severe vitamin D deficiency occurs in high-
risk populations worldwide.(17) High-risk groups for vitamin D
deficiency include those who lack effective exposure to sunlight.
This could be because of a variety of climatologic, cultural, or reli-
gious reasons, as well to skin pigmentation. Vitamin D deficiency
was long considered rare in Africa, but a systematic analysis of
African countries revealed that severe vitamin D deficiency is
present in 18% of all African subjects, with clusters having a high
prevalence of deficiency widely dispersed based upon cultural/
behavioral practices.(18–26)

25OHD is the “best” marker of vitamin D status

The circulating 25OHD concentration is widely accepted as the
best marker of an individual’s vitamin D status, and has been
used by numerous agencies in the establishment of vitamin D
dietary requirements and for population surveillance of vitamin
D deficiency or inadequacy.(27) However, circulating 25OHD
has, at least historically, been felt to have little physiologic regu-
lation, thus other measures could potentially be better indicators
of vitamin D status. Notably, there is ongoing debate with regard
to whether free 25OHD (unbound to carrier proteins) or the ratio
of 24,25-dihydroxyvitamin D [24,25(OH)2D]:25OHD is a superior
marker than total 25OHD.(28)

The ratio of 25(OH)D3:24,25(OH)2D3 has been developed as a
diagnostic tool for idiopathic infantile hypercalcemia caused by
mutations of CYP24A1. However, the ratio is also elevated in
patients with vitamin D deficiency, who undergo dialysis for
chronic kidney disease caused by downregulation of the
CYP24A1 enzyme.(29,30) It is also possible in certain

Fig 1. Mechanisms involved in the pathogenesis of rickets caused by a chronic low calcium intake. ANK = ankylosis protein; Ca = calcium; ENPP =
ectonucleotide pyrophosphatase/phosphodiesterase; FGF-23 = fibroblast growth factor 23; PPi = inorganic pyrophosphate; PTH = parathyroid hor-
mone; SIBLINGS = small integrin-binding ligand, N-linked glycoproteins; Tnap = tissue nonspecific alkaline phosphatase.

Table 1. Prevalence of Rickets Worldwide

Country Year
Rate
(%) Method

Mongolia 1998 70 Rickets signs
Tibet 1994 66 Rickets signs
Ethiopia 1997 42 X-rays
Yemen 1987 27 –
Turkey 1994 10 –
Nigeria 1998 9 Rickets signs
Iran 1975 15 X-rays
China 1977–83 47 Rickets signs

3.7 X-rays/
biochem

The Gambia (West
Kiang)

2007 3.3 Rickets signs

0.6 Physician
exam

Bangladesh
(Chittagong)

2008 2.2 Rickets signs

1.0 X-rays
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circumstances that the ratio of 1,25(OH)2D:25OHD could be a
useful marker for CYP27B1 activity.(31)

Importantly, vitamin D research data are plagued by variation
in the quality of serum total 25OHD assay methods—which has
compromised, and continues to compromise—the ability to dis-
tinguish among the different guidelines currently in use.(32) Sim-
ilarly, uncertainty about the quality of free 25OHD measurement
hinders its evaluation compared with serum total 25OHD. For
25OHD and 24,25(OH)D2, reference methods are available that
are used to improve the standardization of these analytes. Stan-
dardization is encouraged by the Vitamin D Standardization

Program (VDSP) and by the Vitamin D External Quality Assurance
Scheme (DEQAS). DEQAS, backed-up by CDC-standardized tar-
get values, has monitored the performance of 700 to 1000 labo-
ratories assaying 25OHD quarterly for 30 years. Over the
decades, it has documented problematic assays and kit manu-
facturers.(33,34) DEQAS also promotes an accurate assay of 24,25
(OH)2D3 and 1,25(OH)2D by circulating serum samples.

Currently, the VDSP is coordinating an effort to harmonize
direct free 25OHD measurement by the development of “true-
ness” controls (Personal Communication, Professor Chris T Sem-
pos). Finally, the NIH Office of Dietary Supplements, as part of the
VDSP, is sponsoring the development of a reference method for
1,25(OH)2D, which will help to standardize its measurement in
vitamin D research and bring clarity to its role.(26) Such standard-
ization efforts are essential to advance clarification of what truly
constitutes vitamin D deficiency.

However, standardization is not the only analytical challenge
in the measurement of vitamin D metabolites. Patient- or
matrix-dependent deviations are a well-known confounder in
many 25OHD immunoassays leading to inaccurate results, for
example, in pregnant women or hemodialysis patients. In addi-
tion, differences in the affinity for, or release from DBP for
25(OH)D3 and 25(OH)D2 within immunoassays lead to impor-
tant problems in the determination of the serum 25OHD con-
centration in subjects taking D2 supplements.(35) These
problems cannot be solved by standardization initiatives, but
are inherent in the specific immunoassays; it is therefore essen-
tial that these immunoassays should be improved as well. This
is particularly important in regions where ergocalciferol is com-
monly used and for vegans who may choose to avoid
cholecalciferol.

Definition/thresholds of vitamin D deficiency

There is an ongoing debate regarding the definition of vitamin D
deficiency as noted by different recommendations from various
expert groups.(4) However, there is consensus on two points:
25OHD levels below 12 ng/mL (30 nmol/L) are clearly deficient
at all ages and levels above 30 ng/mL (75 nmol/L) are clearly suf-
ficient. In contrast, there is disagreement on how to regard levels
between 12 and 30 ng/mL (30 and 75 nmol/L). Some guidelines
recommend a threshold value of 20 ng/mL (50 nmol/L),(36)

whereas others aim for ≥30 ng/mL (≥ 75 nmol/L).(37) This discus-
sion is based in large part on the lack of 25OHD assay
standardization.(32)

These cut points have key implications for randomized clinical
trials (RCTs). There are few clinical trials that enrolled clearly vita-
min D-deficient subjects; one example is the work of Chapuy and
colleagues.(38,39) The importance of studying the effect(s) of vita-
min D supplementation only in deficient subjects cannot be
overemphasized because vitamin D is a threshold nutrient,(40)

which means that a physiological endpoint, such as calcium
absorption, is enhanced in dose–response fashion up to the
threshold value above which higher levels do not lead to a
greater effect. If a clinical trial enrolls subjects whose 25OHD
levels are above the threshold, randomizing subjects to receive
additional vitamin D greatly reduces the likelihood of showing
a benefit of supplementation. Recent well-publicized RCTs pub-
lished in major peer-reviewed journals illustrate this confound-
ing point well.(41–44) One would not expect to see an effect of a
threshold nutrient if both the control and the supplemented
groups started at baseline with sufficient levels of 25OHD.(45)

Fig 2. Relationship between minimal erythema dose (MED) of UV expo-
sure and level of DNA damage, suntan/tanning, and vitamin D synthesis.

Table 2. Vitamin D Deficiency Around the World

Serum 25OHD
<25/30 nmol/L
(12 ng/mL) (%)

<50 nmol/L
(29 ng/mL) (%)

World overviewa 6.7 37
US: NHANES 2010
datab (>12 years)

6.7 26

EU countries (adults)c 13 40
Middle East/N Aftric,
Iran + Jordand

~50 90

African countriese <0.1 7
Chinaf ~37 ~72
Mongoliad ~50

aHilger et al, 201417
bSchleicher et al 201622
cCashman et al 201723
dArabi et al 201024
eDurazo-Arvizu et al 201425
fZhang et al 201326
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Vitamin D analogues are the preferred local therapy for
psoriasis

The benefits of vitamin D analogues for the treatment of psoria-
sis are well-established.(46–48) A topical vitamin D analogue is a
first-line choice in the management of psoriasis, either alone or
in combination with topical corticosteroids.(49–54) Unlike cortico-
steroids, which can be associated with tachyphylaxis, topically
administered vitamin D analogue treatment is effective long-
term without side-effects in patients of all ages.(55–59)

Topics for Which Consensus Is Not Established

What daily doses of vitamin D are recommended to
maintain a normal level of 25OHD in the general
population?

The Institute of Medicine recommends 400–600–800 IU/day
vitamin D supplementation if there is no exposure to sunlight
for infants, children/adults, and elderly, respectively.(36) These
recommendations are endorsed by guidelines formulated by
Nordic and DACH (German-speaking) countries, Australia and
New Zealand, the European Food Safety Agency, the European
Calcified Tissue Society, and the International Osteoporosis
Foundation.(61–65) The Endocrine Society recommends 600 IU/
day up to 2000 IU/day for so-called risk groups.(37) UK guidelines
(the Scientific Advisory Committee on Nutrition) recommend
400 IU/day for any age.(66) A few other organizations suggest
much higher doses (4000 to 10,000 IU/day).(67) These recom-
mendations are for individuals who do not have osteoporosis
or other metabolic bone disease. Unfortunately, this point has
not been appreciated by many organizations or practitioners.
Errors can occur in two ways. First, subjects who are overly con-
cerned about their skeletal health could conceivably take too
much if recommendations by some bodies of up to 10,000 IU
per day are followed. It is estimated, for example, that 3% of
adults in the United States take a vitamin D supplement of
>4000 IU/day.(68) Such amounts could potentially be deleterious
as such doses may decrease rather than increase BMD or bone
strength.(69) On the other hand, use of relatively low doses could
be deleterious for those in whom requirements are higher (eg,
malabsorption or obesity). It is clearly essential to define and
reach consensus regarding what constitutes deficiency to allow
resolution of existing differences in daily supplementation dose
recommendations.

What are the recommendations for supplementation in
patients with metabolic bone diseases?

In patients who have osteoporosis or other metabolic bone dis-
eases, the discussion about vitamin D is different from that for
the general population.(70) Clearly, greater emphasis is placed
upon first ensuring that the 25OHD level is sufficiently above
the threshold, whichever one is being followed, either 20 or
30 ng/mL (50 or 75 nmol/L). Furthermore, there is evidence that
the response to antiosteoporosis drugs may be enhanced when
vitamin D and calcium sufficiency are ensured.(71,72)

This consensus has recently been questioned by ameta-analysis
conducted by Bolland and colleagues.(73) In their review, they
stated: “Our findings suggest that vitamin D supplementation does
not prevent fractures or falls or have clinically meaningful effects
on bone mineral density.” They concluded their discussion with
the following statement: “There is little justification to use

vitamin D supplements to maintain or improve musculoskeletal
health” and “This conclusion should be reflected in clinical guide-
lines.”(73) First, other experts, who have taken issue with their
statements, have questioned such conclusions. Lips, Bilezikian,
and Bouillon(74) note that this meta-analysis excluded all studies
that compared calcium plus vitamin D versus double placebo.
Boonen and colleagues showed many years ago that it is neces-
sary to administer both calcium and vitamin D in sufficient
amounts to observe a reduction in fractures.(75) Weaver and col-
leagues, representing the National Osteoporosis Foundation,
came to the same conclusion,(76) as did Yao and colleagues in a
recent meta-analysis.(77) Second, over 60% of the studies were
short-term, <1 year. It is unreasonable to expect a beneficial
effect of antiosteoporotic nutrients on fracture risk over such a
short period. Third, vitamin D-deficient individuals (25OHD
<12 ng/mL or 30 nmol/L) represented a miniscule percentage
of the entire population studied: <2.1%. Fourth, the trial that con-
stituted individuals at highest fracture risk (18%) was hampered
by poor compliance (~50%).(78) Another flaw in this meta-
analysis was inclusion of studies that utilized high intermittent
boluses of vitamin D, whichmight increase fracture risk.(79) More-
over, the two main authors of this meta-analysis have indepen-
dently published separate meta-analyses in which they
conclude that combined vitamin D and calcium supplements
can reduce the risks of hip and nonvertebral fractures in the
elderly.(73,80) This earlier review was not mentioned or discussed
in their latest meta-analysis. Other experts have reached similar
conclusions.(74,81) Nevertheless, the debate is alive with contrary
views still being expressed as recently as the 2019meeting of the
ASBMR.(82)

Cutaneous production of vitamin D by UVB exposure

Studies led by Holick and colleagues have repeatedly stated that
a full day of sun exposure can produce 10,000 to 25,000 IU of
vitamin D.(83–85) To this point, in other studies it has been shown
that the indigenous, very dark-skinned Masai people are said to
make 10,000 or 20,000 IU per day. More recent studies have
raised questions about the magnitude of the sun’s effect on der-
mal vitamin D production. Young Danish women exposed to
intensive sun in the Canary Islands showed an increase in
25OHD that was equivalent to only 600 to 1000 IU/per day. A
similar increase in serum 25OHD was induced by comparing
total-body UVB exposure three times per week with an oral daily
intake of only 800 IU of vitamin D.(86,87) Another study from the
Canary Islands of young Danish women, exposed to 1 week of
daily sunlight, showed that serum levels of 25OHD increased
by only 20 nmol/L (8 ng/mL), equivalent to about 800 IU of oral
vitamin D per day.(88) In yet another study from the Canary
Islands, young Polish volunteers with near total body sun
exposure achieved a change in 25OHD of 28 nmol/L
or approximately 12 ng/mL equivalent to approximately 600 to
1200 IU (~15 to 30 μg) of oral vitamin D per day.(89) Finally, expo-
sure of 1000 cm2 on the back three times per week at half the
minimal erythematous dose in nursing home residents increased
median serum 25OHD in 3 months from 7.2 to 24 ng/mL
(18 nmol/L to 60 nmol/L), equivalent to a supplement of
400 IU/day.(90) It is at this time unclear what full daily exposure
to sun produces. Is it about 1000 IU or closer to 10,000 IU? An
answer to that question may be helpful in the interpretation of
the daily requirements of vitamin D in subjects with little expo-
sure to sunlight.
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Hepatic regulation of 25OHD metabolism

Biochemical dogma states that vitamin D is hydroxylated in the
liver to 25OHD by the constitutively active hydroxylase, CYP2R1.
Although this enzyme is clearly the major converting enzyme, it
is not the only way in which hydroxylation occurs.(91) Recent data
have also called into question the constitutive nature of this reac-
tion by evidence suggesting this enzyme is subject to several dif-
ferent control mechanisms. For example, in the fasting state, a
significant reduction in the expression of CYP2R1 can be
observed.(92) In a murine model of DM, a 50% reduction in mRNA
and protein expression of CYP2R1 is demonstrable.(92) This study
identified novel molecular mechanisms (involving PPAR γ coacti-
vator a1 and estrogen-related receptor) for vitamin D deficiency
in DM and showed a novel negative feedback mechanism
that controls cross-talk between energy homeostasis and the
vitamin D pathway. Activation of the glucocorticoid receptor
(by dexamethasone or other corticosteroids) also supresses the
activity of CYP2R1. Thus, rather than viewing the liver as a consti-
tutive factory for the quantitative conversion of vitamin D to
25OHD via an unregulated CYP2R1 enzyme, metabolic and hor-
monal mechanisms are operative. More research is clearly
needed to understand better how the production of 25OHD is
regulated in the liver.

Definition of vitamin D excess

The classical concept of vitamin D toxicity was thought to be that
level above which hypercalcemia was likely to occur. Serum
25OHD values in excess of 100 or 150 ng/mL (250 or 375 nmol/
L) may lead to hypercalcemia and, thus, these cut points became
frames of reference for a number of authoritative bodies, such as
the Institute of Medicine, the Endocrine Society, and reference
laboratories.(36,37,93)

Although it would seem reasonable to identify hypercalcemia
as a threshold of toxicity, other indices of toxicity, such as hyper-
calciuria could occur at much lower levels.(94) In the study by Gal-
lagher and colleagues, hypercalciuria occurred in 30% of vitamin
D-deficient individuals administered only 800 to 2000 IU per day
for 1 year, whereas hypercalcemia occurred in 9%.

Further human studies conducted by Gallagher and col-
leagues and reanalyzed by Kaufmann and colleagues showed
that doses up to 4000 IU/day for a year resulted in serum
25OHD <90 ng/mL.(29)

There was no relationship between the administered amount
of vitamin D and the level of urinary calcium excretion or hyper-
calcemia. Moreover, in half of these subjects, the hypercalciuria
was transient. Adding further uncertainty to these data, however,
was the observation that those receiving placebo experienced
the same incidence of hypercalciuria. These data do not provide
compelling support for the idea that such low-dose regimens
may be harmful. In fact, most experts agree that doses
up to 4000 IU are probably safe.(41,95) A more compelling discus-
sion focuses upon fall risk associated with high doses of
vitamin D.(69,96,97) Intermittent high boluses or administration
of vitamin D to older individuals on a regular basis, associated
with levels of 25OHD >45 ng/mL (>113 nmol/L), may lead to an
increase risk of falls.(79) Further research is needed to further
clarify whether such 25OHD levels do indeed increase falls risk.

Skeletal health has also been a focus of recent studies related
to adverse effects of high vitamin D dosing. In the Calgary study
performed on healthy volunteers without osteoporosis whose
mean baseline 25OHD was approximately 31 to 32 ng/mL,

treatment with vitamin D for 3 years at a dose of 4000 IU/day
or 10,000 IU/day, compared with 400 IU/day, resulted in statisti-
cally significant reduction in radial volumetric BMD.(69) However,
no significant differences in bone strength at either the radius or
tibia were observed. Burt and colleagues concluded from this
study that there was no benefit from doses of vitamin D at
4000 IU or higher as an adjunct to bone health.

Vitamin D deficiency in acute illness

In the setting of acute illness, levels of 25OHD may be low
because of the acute reduction in circulating DBP.(98) Dilutional
effects of acute fluid shifts in the intravascular space may also
be a factor. Additionally, pre-existing vitamin D nutritional status
is also a factor. This latter point leads to the suggestion that cor-
rection of poor vitamin D status may decrease morbidity and
mortality. Christopher and colleagues suggest that very high
doses of vitamin D may be needed to see a benefit in patients
in the intensive care unit.(99) The higher doses may be needed
because acutely ill patients may have secreted stress amounts
of cortisol, which in turn could impair hepatic and renal hydrox-
ylation of vitamin D.(100,101)

Vitamin D requirements during reproduction

There is a lack of consensus on the use of vitamin D during repro-
duction. On the one hand, maternal vitamin D requirements are
not increased during pregnancy or lactation. The achieved
25OHD level is not affected by either reproductive state, and
there is no evidence that women should maintain higher
25OHD levels when pregnant or breastfeeding as comparedwith
the healthy nonpregnant ideal. On the other hand, poor mater-
nal vitamin D status during pregnancy can affect fetal and neo-
natal health; so it certainly makes sense to ensure that
maternal vitamin D status is optimized during pregnancy. This
does not mean that women require “more” vitamin D when
pregnant than when nonpregnant. During lactation maternal
vitamin D status does not matter directly because little vitamin
D gets into milk, and especially because RCTS have shown that
across a range of low to high 25OHD levels, the calcium content
of milk is independent of maternal vitamin D status. Breastfed
babies need supplemental vitamin D, whereas formula-fed
babies get their vitamin D in the supplemented formula.

Although variability exists among different studies, evidence
from RCTs and systematic reviews suggests a benefit of vitamin
D repletion with up to 2000 IU/day for preeclampsia and gesta-
tional DM,(102) as well as for neonatal outcomes.(103–107) It seems
reasonable to recommend that normal vitamin D status should
be ascertained in pregnancy.

The potential for a broad spectrum of cellular and organ
activities under the influence of the vitamin D receptor

The vitamin D receptor (VDR) is present in virtually all cells and
tissues. The 1a-hydroxylase, CYP27B1, is also found throughout
the body and in many cell types.(108) It has been estimated that
3% to 10% of all genes in vertebrates, from zebrafish to mice to
humans, are under the direct or indirect control of 1,25
(OH)2D3.

(109) This evolutionary omnipresence suggests a funda-
mental role for vitamin D in the functioning of all organs. Exper-
iments to delete this gene in a tissue-specific manner in mice
have confirmed this expectation. A sampling of tissue-specific
KO experiments shows that mammary glands are more prone to
breast cancer,(110) cardiac muscle develops cardiac
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hypertrophy,(111) the liver becomes fatty (nonalcoholic fatty liver
syndrome),(112,113) the prostate develops hyperplasia,(114) athero-
sclerosis is accelerated,(115) and mice become resistant to diet-
induced obesity.(116) Conversely, overexpression of the VDR leads
to obesity(117) in the mouse, but not in humans.(118) More work is
needed to understand how these KO and overexpression models
in mice relate to human pathophysiology.

Recent mortality data show an association between low
25OHD and increased risk of all-cause mortality.(119,120) These
findings were also observed in a European consortium.(121) Sev-
eral association analyses of overall mortality and cardiovascular
mortality have shown a U-shaped curve with increases at both
ends.(122) A meta-analysis based on 75,000 patients from 38 sup-
plementation trials also showed a small, but significant reduction
in mortality (relative risk [RR], 0.94; 95% CI, 0.91–0.98).(123)

From Mendelian randomization studies examining the effects
of vitamin D on autoimmune diseases, three independent find-
ings show that decreased vitamin D levels (5% to 7% lower than
normal levels) significantly increased the susceptibility to devel-
oping multiple sclerosis.(124–126) Finally, one Mendelian random-
ization study showed an association with type 1 diabetes
mellitus (T1DM) risk.(127)

The data on cancer in mice are also of interest. 1,25(OH)2D3-
deficient mice have a greater chance of developing cancer with
increasing age,(128) and an increased rate of proliferation in intes-
tinal and breast cells. Although VDR-null mice usually do not
spontaneously develop more cancers, they are more likely to
develop a range of malignancies, such as breast,(129) colon,(130)

and skin(131,132) cancer, when exposed to oncogenes, loss of anti-
oncogenes, or exposure to carcinogens or UVB light.(133,134) This
is in line with the “cancer hypothesis,” where the risk of cancer
development is associated with multiple events. Although these
mice data appear to be compelling, Mendelian randomized
studies in humans have not been supportive.(135)

Potential links between vitamin D and major human
diseases

Many cross-sectional, observational, and retrospective studies
have associated low vitamin D status with many human
diseases.(136–139) In the aggregate, these reports suggest a perva-
sive influence of vitamin D on the health of most human organ
systems. Preclinical evidence for a role of vitamin D in immune
system regulation is perhaps strongest as the VDR and CYP27B1
are expressed in cells of both the innate and adaptive arms of the
immune system. Moreover, CYP27B1 expression in immune cells
is regulated by a complex innate immune and cytokine
network.(136–141) There is widespread clinical evidence in both
pediatric and adult populations that maintenance of vitamin D
sufficiency should lower the incidence of infections of viral or
bacterial origin.(142) Accumulated evidence suggests that any
role for vitamin D in autoimmune conditions would be preven-
tive rather than therapeutic. One condition for which vitamin D
supplementation may be of benefit is in the treatment of the
inflammatory bowel condition Crohn disease, where meta-
analyses of a series of small-scale trials suggest that supplemen-
tation reduces disease severity.(143,144) It would be important to
conduct a large-scale RCT in patients with Crohn disease to solid-
ify these findings. Large-scale RCTs are essential to determine
whether the relationship between vitamin D deficiency and
disease is causal or simply an association.

Another disorder to which vitamin D deficiency has been
linked is DM. It has been shown that vitamin D prevents insulitis

and the development of experimental DM by acting on the
defective suppressor cellular function or by cytokine-expression
modulation. These observations have been confirmed, in part, by
clinical findings showing that supplementation with vitamin D
during early childhood may decrease the risk of developing
T1DM.(145,146) However, further studies have not shown any sig-
nificant effect of calcitriol supplementation on insulin secretion,
insulin sensitivity, or insulin requirement or improvement in
bone turnover in patients with newly diagnosed T1DM.(147,148)

It is uncertain whether 25OHD levels in pregnancy or at birth
reduce the risk of childhood T1DM. However, when the interac-
tion with genetic variants is taken in consideration, higher
25OHD levels at birth predict a decreased risk of developing
T1D or islet autoimmunity.(149,150) Both child or maternal VDR
SNPs may lower VDR expression, and by consequence, inhibit
T-cell proliferation, thus increasing the risk of autoimmunity.

The recent Vitamin D Assessment (VIDA), Vitamin D and
Omega-3 (VITAL), and Vitamin D and Type 2 Diabetes (D2d) trials
represent examples of attempts to translate these observations
into clinical relevance.(43,151,152)

Cardiovascular disease

The VIDA trial tested the effect of amonthly dose of 100,000 IU of
vitamin D3 compared with a placebo over a mean period of
3.4 years on cardiovascular disease among 5110 subjects.(153)

There was no statistical difference between the two groups. In
the VITAL trial, there were no significant differences between
the vitamin D and placebo groups in any individual cardiovascu-
lar event, such as myocardial ischemia, or in the composite
cardiovascular end point.(145)

Cancer risk and survival

The much larger VITAL trial(151) of 25,871 men and women aged
over 50 years tested the effects of 2000 IU/day of vitamin D3
over 5 years on cardiovascular events and cancer. There was no
significant difference between the vitamin D and placebo groups
on the risk of developing any invasive cancer or individually in
breast, prostate, or colorectal cancer. However, among those
with a BMI <25, there was a significant reduction in any invasive
cancer. Excluding the first 2 years of the study, there was also a
reduction in the incidence of death from cancer. The study by
Lappe and colleagues is noteworthy in this context; they show
that calcium and vitamin D appeared to have an effect to reduce
new cancer risk, but statistical significance was not achieved.(154)

A subsequent meta-analysis by some of the invesitigators
from the VITAL trial is noteworthy.(155) Whereas VITAL appreci-
ated a “signal” of improved survival in the vitamin-D–
supplemented group, the meta-analysis of VITAL and several
additional studies found a highly significant benefit on survival
in the vitamin-D–supplemented subjects, but again no benefit
on risk of developing cancer. For total cancer incidence, 10 trials
were included (6537 cases; 3 to 10 years of follow-up;
54–135 nmol/L of attained levels of circulating 25OHD in the
intervention group). The summary for cancer risk remained null
across the subgroups tested, including when attained 25OHD
levels exceeded 100 nmol/L. For total cancer mortality, five trials
were included (1591 deaths; 3 to 10 years of follow-up; 54 to
135 nmol/L of attained levels of circulating 25OHD in the inter-
vention group). The summary RR was 0.87 (95% CI, 0.79–0.96;
p = 0.005), which was largely attributable to interventions with
daily dosing (as opposed to infrequent bolus dosing). Thus, this
updated meta-analysis of RCTs showed that vitamin D
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supplementation significantly reduced total cancer mortality,
but did not reduce total cancer incidence. In the Torfadottir
study, the goal was to explore whether prediagnostic circulating
levels of 25OHD among older individuals were associated with
overall and cancer-specific survival after diagnosis.(156) They
used data from the AGES- (Gene/Environment Susceptibility-)
Reykjavik study on participants (n = 4619) without cancer at
entry, when blood samples were taken for 25OHD standardized
measurements. The association with cancer risk and all-cause-
and cancer-specific mortality was assessed among those later
diagnosed with cancer, comparing four 25OHD categories, using
50 to 69.9 nmol/L (20–28 ng/mL) as the reference category. Can-
cer was diagnosed in 919 participants on average 8.3 years after
initial sampling. No association was observed between the refer-
ence group and other 25OHD groups and total cancer incidence.
Mean age at diagnosis was 80.9 (� 5.7) years. Of those diag-
nosed, 552 died during follow-up: 67% from cancer. Importantly,
low prediagnostic levels of 25OHD <30 nmol/L (<12 ng/mL)
were significantly associated with increased total mortality (haz-
ard ratio [HR], 1.39; 95% CI, 1.03–1.88) and not significantly with
cancer-specific mortality (HR, 1.33; 95% CI, 0.93–1.90). Among
patients surviving more than 2 years after diagnosis, higher pre-
diagnostic 25OHD levels (≥70 nmol/L) were associated with
lower risk of overall (HR, 0.68; 95% CI, 0.46–0.99) and cancer-
specific mortality (HR, 0.47; 95% CI, 0.26–0.99). It appeared that
among elderly cancer patients, low prediagnostic serum
25OHD levels (<30 nmol/L [<12 ng/mL]) were associated with
increased overall mortality.

Diabetes mellitus

The D2d trial examined the effect of vitamin D3 at 4000 IU/day
on the development of overt DM among 2423 men and women
aged >30 years, who had risk factors for DM. There was no differ-
ence in the probability of developing DM over this period
between the vitamin D and placebo groups. However, a post
hoc analysis in participants with a baseline 25OHD <12 ng/mL
(or < 30 nmol/L) showed a 62% reduction in DM in the vitamin
D group.

Pulmonary, blood pressure, and other effects

Additionally, from the VIDA trial, central blood pressure was sig-
nificantly reduced in patients taking vitamin D supplementation
(−7.5 mmHg, p = 0.03),(157) and the number of patients taking
NSAIDs was significantly reduced (RR, 0.87, p = 0.01).(158) Further-
more, giving vitamin D to the normal population and to the vita-
min D-deficient population improves lung function,(159) in line
with a meta-analysis,(160) as well as reducing age-related bone
loss.(161,162) In an individual participant data meta-analysis of
15 RCTs, daily or weekly supplementation in individuals with
vitamin D deficiency, defined as a serum 25OHD level <10 ng/
mL, reduced risk of acute respiratory infection by 30% (odds
ratio, 0.30; 95% CI, 0.17–0.53).(142)

Methodological Issues

Unfortunately, what VIDA, VITAL, and D2d studies share is that
baseline 25OHD levels were not deficient in the majority of par-
ticipants. Mean baseline levels from VIDA (24.2 ng/mL or
60.5 nmol/L), VITAL (30.8 ng/mL or 77.0 nmol/L), and D2d
(28.2 ng/mL or 70.5 nmol/L) were all within the normal range
as defined by the Institute of Medicine. Levels below 20 ng/mL

(50 nmol/L) were seen in only 33% of the VIDA, 12.7% of the
VITAL, and 20.7% of the D2d populations. One important conclu-
sion from these studies is that they did not show that a vitamin
D-deficient population would benefit by vitamin D repletion
because the populations were already replete. As noted earlier,
if subjects are already above the level for a threshold nutrient,
giving more will not necessarily lead to beneficial effects. There-
fore, it is not evidence-based to claim, based on these studies,
that vitamin D has no effects on cancer, the cardiovascular sys-
tem, or the development of DM. A clue to the importance of this
statement is the post hoc analysis of the D2d study in which sub-
jects who were frankly vitamin D deficient, namely with levels of
25OHD <12 ng/mL (30 nmol/L) at baseline, were at reduced risk
of developing DM (HR, 0.38; 95% CI, 0.18–0.80) if they were in the
vitamin-D–supplemented group (Fig. 3). Other clues are noted
above with regard to blood pressure and pulmonary infections
in which vitamin D did appear to have beneficial effects.

Another methodological issue is the duration of the studies.
One has to consider how long prior to the development of can-
cer or cardiovascular disease or DM must an intervention have
to influence the development of overt disease. For example,
the Torfadottir study had a mean duration of 8.3 years from no
sign of cancer to the cancer diagnosis.(156) Is it likely that giving
a vitamin D supplement for 5 years or less will alter the time
course of cancer becoming apparent? Carcinogenesis is usually
a slow process that proceeds undiagnosed in a stepwise fashion,
perhaps for many years prior to the diagnosis. Thus, the finding
that vitamin D supplementation can improve survival once the
cancer is apparent, even if it does not reduce the risk of develop-
ing cancer over a 5-year period of intervention, is nevertheless a
major factor demonstrating the benefit of maintaining adequate
levels of vitamin D.

Rigorous studies of vitamin D supplementation in subject
cohorts deficient in vitamin D compared with adequate levels
are needed to resolve the controversy surrounding potential/
purported nonskeletal effects of vitamin D. For endpoints like
cancer and cardiovascular disease, studies need to be carried
out for longer duration than 5 years to clearly demonstrate the

Fig 3. Threshold value of 25OHDwhere positive effects can be observed.
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presence or absence of a benefit on risk. The benefit on cancer
survival seems to be solidly demonstrated.

Conclusions

In this review, we have highlighted areas of consensus and
uncertainty with regard to vitamin D as a nutrient and regulator
of cellular action. Although nutritional rickets is well-defined and
highly prevalent worldwide, a concerted global effort is required
to eradicate this eminently curable condition. A better under-
standing of the endogenous production of vitamin D and the
regulation of its metabolism along with the development of uni-
versally useful assays with proper quality control remain worthy
goals. Although animal data provide a useful backdrop to
hypotheses arguing for nonskeletal effects of vitamin D, human
studies both in terms of several meta-analyses, as well as recent
RCTs, have not been designed to permit any definitive conclu-
sions. We look forward to future well-designed studies that can
clearly establish the extent to which vitamin D’s actions are
pervasive and extend beyond the skeleton.
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