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Abstract: Non-alcoholic fatty liver disease (NAFLD) is the first cause of chronic liver disease 

worldwide; it ranges from simple steatosis to steatohepatitis (NASH) and, potentially, cirrhosis and 

hepatocarcinoma. NAFLD is also an independent risk factor for type 2 diabetes, cardiovascular 

diseases, and mortality. As it is largely associated with insulin resistance and related disorders, 

NAFLD has been recently re-named as Metabolic dysfunction-Associated Fatty Liver Disease 

(MAFLD). At present, there are no approved pharmacological treatments for this condition. Vitamin 

D is a molecule with extensive anti-fibrotic, anti-inflammatory, and insulin-sensitizing properties, 

which have been proven also in hepatic cells and is involved in immune-metabolic pathways within 

the gut–adipose tissue–liver axis. Epidemiological data support a relationship hypovitaminosis D 

and the presence of NAFLD and steatohepatitis (NASH); however, results from vitamin D 

supplementation trials on liver outcomes are controversial. This narrative review provides an 

overview of the latest evidence on pathophysiological pathways connecting vitamin D to NAFLD, 

with emphasis on the effects of vitamin D treatment in MAFLD by a nonsystematic literature review 

of PubMed published clinical trials. This article conforms to the Scale for Assessment of Narrative 

Review Articles (SANRA) guidelines. Evidence so far available supports the hypothesis of potential 

benefits of vitamin D supplementation in selected populations of NAFLD patients, as those with 

shorter disease duration and mild to moderate liver damage. 
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1. Introduction 

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide 

and its evolution and consequences massively affect health and economic systems of Western 

countries [1,2]. NAFLD pathogenesis is primarily linked to metabolic impairment and alteration of 

the glucose–insulin homeostasis. For the tight connection between metabolic diseases and NAFLD, 

this condition has been recently re-named as Metabolic (dysfunction)-Associated Fatty Liver Disease 

(MAFLD) [3]; the new acronym MAFLD will be used to replace the term NAFLD throughout this 

review. 

As a vicious circle, once MAFLD is established it increases the hepatic insulin resistance, which, 

in turn, may trigger, in 30–40% of cases, MAFLD evolution towards steatohepatitis (NASH), and 

eventually, cirrhosis, liver failure, and hepatocarcinoma [4,5]. MAFLD also promotes systemic low-

grade inflammation and impairs insulin sensitivity in extra-hepatic tissues [6]. Finally, MAFLD 

increases the risk of type 2 diabetes (T2D) and diabetes’ complications and is an established risk factor 

for cardiovascular morbidity and mortality [7]. Data from four European countries, i.e., France, 

Germany, Italy, and UK, show that, in 2016, there were about 52 million people with MAFLD, with 
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annual direct medical costs of about €35 billion, which were highest in patients in working age [8]. 

Remarkably, although MAFLD is already considered as the most rapidly growing contributor to liver 

mortality and morbidity [9], many reports and real world evidence show that MAFLD is still an 

under-recognized and under-diagnosed condition in both primary and secondary care [9–11]. These 

data point towards urgent need of better risk stratification, earlier diagnosis, and management of 

MAFLD in order to decrease the short- and long-term public health burden of this disease. At present, 

there are no approved pharmacological treatments for MAFLD or steatohepatitis [9]. 

Vitamin D is a pleiotropic hormone with functions that extend far beyond the regulation of 

calcium homeostasis and bone mineralization; in the last decades, experimental evidence has 

definitively proven the involvement of vitamin D in mediating a number of immune-inflammatory 

[11] and metabolic [12] processes. Since then, the axis involving the active form of vitamin D- 1,25-

dihydroxi-vitamin D- and the vitamin D receptor (VDR) has been investigated in relation to 

disturbances of metabolic pathways in several organs and tissues, primarily in those implicated in 

metabolic regulation, as the skeletal muscle [13], adipose tissue [14], pancreas [15], and liver [16–18]. 

The presence of hypovitaminosis D has been associated to the occurrence or development of insulin 

resistance-related diseases, such as T2D [19], metabolic syndrome [20], and MAFLD [16,18,21–23]. As 

for vitamin D and liver diseases, in the last years several clinical trials tried to answer the question 

whether vitamin D supplementation could improve MAFLD, with controversial results. 

This review aims to provide an overview of the most recent evidence on pathophysiological 

pathways connecting the vitamin D/VDR axis to MAFLD development and will focus on new data 

from clinical trials exploring the safety and efficacy of vitamin D supplementation on liver outcomes 

in individuals with MAFLD. 

This narrative review provides an overview of the latest evidence on pathophysiological 

pathways connecting vitamin D to NAFLD and describes results from a nonsystematic literature 

review of published clinical trials on vitamin D treatment in MAFLD. The reporting of this study 

conforms to the Scale for Assessment of Narrative Review Articles (SANRA) guidelines, a brief 

critical appraisal for the assessment of nonsystematic articles [24]. 

A literature search was performed up to October 2020 with database of Pubmed. “Non-alcoholic 

fatty liver disease” (NAFLD), “non-alcoholic steatohepatitis” (NASH), “fatty liver”, “hepatic 

steatosis”, “metabolic-associated fatty liver disease” (MAFLD) were paired with “vitamin D”, 

“cholecalciferol”, “calcitriol”, “ and vitamin D receptor” (VDR) as search terms. Moreover, manual 

search was also conducted by scrutinizing the reference lists of original articles, meta-analyses, and 

recent reviews. Inclusion criteria to identify relevant studies were: studies conducted worldwide on 

adult humans aged ≥18 years with a diagnosis of MAFLD treated with oral or bolus cholecalciferol 

or calcitriol supplementation in comparison to MAFLD individuals supplemented with placebo. Pilot 

studies without comparators were also included. Outcome measures were changes of (i) hepatic fat 

content, as estimated by abdomen ultrasound (US), magnetic resonance imaging (MRI), magnetic 

resonance spectroscopy (MRS), and liver biopsy; and (ii) hepatic enzymes (aspartate 

aminotransferase (AST), alanine aminotransferase (ALT), and gamma glutamyl transpeptidase 

(GGT)), fibrosis markers and scores (cytokeratin-18 (CK-18), procollagen III amino terminal 

propeptide (PIIINP), Fibrosis-4 Index for Liver Fibrosis (FIB-4), and Enhanced Liver Fibrosis (ELF) 

score). Study design was randomized clinical trial (RCT) with parallel or cross-over design. Articles 

published in languages other than English were excluded. For each study, we report surname of first 

author, published year, region/nation, sample-size and control to intervention ratio, endpoints, types 

of intervention, doses, and duration of intervention. Data are presented in the manuscript and 

summarized in a table. 

2. Vitamin D/VDR Axis in the Pathophysiology of MAFLD 

The potential involvement of the vitamin D/VDR axis in the pathogenesis and progression of 

MAFLD has been suggested by experimental studies linking vitamin D-mediated pathways to key 

processes leading to liver steatosis, inflammation, and fibrosis. Indeed, vitamin D may influence 
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MAFLD development in both direct and indirect manner [25]. Figure 1 summarizes potential 

pathways linking vitamin D/VDR axis to the development MAFLD. 

 

Figure 1. Potential pathways linking vitamin D/vitamin D receptor (VDR) axis to Metabolic 

dysfunction-Associated Fatty Liver Disease (MAFLD). AT—adipose tissue; ↑—increase; ↓—decrease. 

Vitamin D and liver homeostasis: Vitamin D displays systemic and tissue-specific anti-

inflammatory properties [26] that have been experimentally demonstrated also at the hepatic level. 

In MAFLD rat models, treatment with active vitamin D reduced liver inflammation and oxidative 

stress by inhibiting the p53-p21 signaling pathway and associated cell senescence [26]; vitamin D also 

protected against high fat diet-induced fatty liver by promoting the nuclear translocation of the anti-

oxidant molecule nuclear factor erythroid 2-related factor 2 (NFE2L2) [27], decreasing toll-like 

receptors [28] or repressing sirtuin [29]. Furthermore, in a recent investigation, vitamin D improved 

hepatic insulin resistance and ameliorated liver steatosis in rodent models via the VDR-mediated 

activation of the hepatocyte nuclear factor 4α (HNF4α) [30]. 

On the other side, vitamin D deficiency exacerbates liver inflammation [28]. In humans, hepatic 

VDR expression inversely correlated with steatosis severity and lobular inflammation at the liver 

histology [31]. In addition, the activation of VDRs in hepatic macrophages by vitamin D ligands 

ameliorated liver inflammation, steatosis, and insulin resistance in experimental studies [32]. 

Vitamin D exerts anti-fibrotic activity in the liver by inhibiting the proliferation of hepatic stellate 

cells and the expression of pro-fibrotic mediators such as the platelet-derived growth factor (PDGF) 

and the transforming growth factor β (TGF-β); similarly, vitamin D suppresses the expression of 

collagen, α-smooth muscle actin and tissue inhibitors of metalloproteinase-1 [16,33]. Mice knocked-

out for the VDR gene spontaneously developed hepatic damage and fibrosis toward to frank cirrhosis 

[34]. However, active vitamin D administration fails to ameliorate experimentally-induced liver 

damage in animal models when cirrhosis is already established [35]. 

Finally, recent clinical evidence pointed towards a role of liver VDR expression in modulating 

intra-hepatic lipid accumulation, potentially by controlling the local levels of the angiopoietin-like 

protein 3 and lipoprotein-lipase [36]. 

In addition to exerting direct insulin-sensitizing, anti-inflammatory, and anti-fibrotic actions in 

the liver parenchyma, the vitamin D/VDR system participates also to the maintenance of systemic 

insulin sensitivity and to the homeostasis of organs involved in MAFLD pathogenesis, such as the 

gut and the adipose tissue [37–41]. 

Vitamin D and insulin sensitivity: The vitamin D/VDR axis regulates metabolic pathways 

associated with insulin sensitivity and glucose-insulin homeostasis [42–44], favors glucose uptake in 
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muscle cells by upregulating the intracellular expression of the insulin receptor substrate IRS-1 [45] 

and promotes the expression of the insulin-dependent glucose transporter 4 (GLUT-4) on adipocytes 

[14]. Moreover, the insulin gene is transcriptionally regulated by VDR in pancreatic β cells, and 

vitamin D deficiency reduces insulin secretory response to carbohydrate loading in experimental 

models [46]. Indeed, vitamin D insufficiency has been independently associated with insulin 

resistance in overweight and obese individuals [20], fostering the risk of MAFLD development. 

Vitamin D and adipose tissue (AT): Among several pathophysiological processes occurring in 

presence of chronically excessive caloric intake and weigh gain, the alterations of the AT structure 

and function represent major determinants of MAFLD development in obesity [37]. In these 

conditions, AT dysfunction is induced by loss of adipocyte plasticity, insufficient storing capacity, 

with subsequent matrix rearrangement, hypoxia, and inflammatory reaction [38,39]. In turn, the 

increased release of fatty acids, pro-inflammatory cytokines, and adipokines [47–50] from stressed 

adipocytes into the bloodstream leads to low-grade chronic inflammation and abnormal fat 

deposition in ectopic sites, mostly into the liver [51]. 

Signatures of AT dysfunction and metabolic impairment are associated to increased intra-

hepatic fat accumulation across different body mass index (BMI) classes, in individuals with and 

without T2D [38,48,52]. 

In addition to representing the main storage site for vitamin D and expressing key enzymes 

involved in vitamin D metabolism, AT is also a primary target of vitamin D action, where this 

hormone modulates insulin-sensitivity, local inflammation, and adipokine secretion. Evidence from 

clinical [53] and experimental studies [54] showed that treatment with vitamin D improved AT 

oxidative stress [53] and local concentrations of pro-inflammatory cytokines, such as the tumor 

necrosis factor α TNF-α and the monocyte chemoattractant protein-1 (MCP-1) [54]. Indeed, vitamin 

D ameliorates AT inflammation and prevents liver steatosis by reducing both AT output of lipid 

droplets and hepatic de novo lipogenesis and fatty acid oxidation [55]. Moreover, treatment with 

calcitriol increases VDR expression in peripheral cells, ameliorates systemic and tissue-associated 

inflammatory profile, reducing AT inflammation and liver steatosis in animal models [56]. In the AT, 

the vitamin D/VDR axis influences both adipogenesis and lipid storage into the adipocytes [57]. Of 

note, AT VDR expression levels are increased in human [58] and experimentally-induced [57] obesity 

independently from overall vitamin D status. Greater VDR expression may potentially represent a 

compensatory response to impaired local activation and/or action in condition of altered AT 

homeostasis. Differential VDR expression in visceral AT may also influence lipid storage and 

adipocytes enlargement though the transcriptional regulation of angiopoietin-like protein 4 and 

lipoprotein lipase, which in turn result in liver impairment in obesity [59]. 

Vitamin D and gut homeostasis: Vitamin D is centrally involved in the regulation of the gut-

adipose tissue–liver axis, which represents a major pathway leading to metabolic complications in 

obesity. In particular, evidence from the last decade underpins a major role of the gut–liver crosstalk 

in the pathogenesis of MAFLD [37]. Indeed, the gut is nowadays considered as a promising target for 

experimental therapies of liver steatosis [60,61]. Of note, in humans the gastrointestinal tract is a 

major site of expression of VDR [62,63] where this receptor mediates the vitamin D action in 

preserving the gut homeostasis [61] via different regulatory activities such as immuno-modulation 

[64,65], preservation of the barrier function [66] and regulation of the gut microbiota [67,68]. 

As an immune adjuvant, vitamin D maintains immune tolerance in the gut microenvironment 

by suppressing adaptive immunity and up-regulating innate immunity [69]. Indeed, vitamin D 

inhibits T helper (Th-) 1 and enhances Th2 cell responses; it also decreases Th17 cell differentiation, 

and increases regulatory T (TReg) cells [70,71]. Th1, Th2, and Th17 cells are known to cause mucosal 

inflammation and tissue injury, whereas Tregs, which are important intermediaries of immune 

tolerance, play anti-inflammatory functions and mitigate mucosal inflammation and stimulate tissue 

repair [72–75]. 

Several studies showed that VDR regulates the expression of the tight junctions zona occludens 

proteins 1 and 2 (ZO-1 and ZO-2) through the up-regulation of claudin 2 and 12 and the down-

regulation of cadherin-17 [76,77] so preserving the adhesive phenotype of intestinal epithelial cells. 
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Moreover, vitamin D repairs tight junctions upon bacterial lipopolysaccharide-mediated injury [78] 

and maintains mucosal barrier integrity by preventing intestinal cell apoptosis in inflammation 

[79,80]. Mice knocked-out for the intestine VDR gene and those with vitamin D deficiency, displayed 

alterations of the tight junctions and increased gut permeability [47]. Vitamin D replacement prevents 

the development of experimentally-induced steatosis, inflammation and fibrosis [81] and restores gut 

dysbiosis [82]. 

Indeed, several studies demonstrated that vitamin D/VDR axis is involved in the modulation of 

gut microbiota [82–91], which in turn impacts on the development of MAFLD in obesity [41]. The 

genetic ablation of VDR in mice induces gut dysbiosis, reducing Lactobacillus and increasing 

Clostridium and Bacteroides concentrations [86]. 

These overall findings warrant further studies evaluating the modulation of vitamin D/VDR 

signaling as a future therapeutic approach to MAFLD. 

3. Vitamin D Supplementation and MAFLD: Evidence from Clinical Trials 

The observations regarding the link between hypovitaminosis D and the presence of MAFLD 

suggest that vitamin D supplementation might represent a potential therapeutic option for MAFLD 

in both children [92,93] and adult populations [18,94,95]. 

However, data from meta-analyses have not confirmed univocally the presence of a relationship 

between hypovitaminosis D and MAFLD, especially in trials where histological-, rather than clinical-

, or biochemical-outcomes of liver damage were considered [96,97]. 

Similarly, controversial findings result from interventional clinical trials investigating the 

efficacy of vitamin D supplementation on parameters of MAFLD and steatohepatitis [98,99] Table 1. 

The first pilot study on NASH was conducted by Kitson MT et al. [100] in patients with NASH 

undergoing liver biopsy before and after six-month 25,000 IU cholecalciferol weekly supplementation 

and showed no effect on liver outcomes as local inflammation, fibrosis, and intrahepatocyte fat 

accumulation [100]. Improvement of non-specific clinical and biochemical markers of liver damage 

after vitamin D supplementation was found in some clinical trials [101–103], whereas no vitamin D 

effect on the same parameters was shown in other reports [104–106]. 

In 2016 our group published the results from the first randomized, double-blind, placebo-

controlled clinical trial conducted in individuals with T2D and MAFLD, where intrahepatic fat 

content was measured by magnetic resonance imaging (MRI) [106]. In this study, participants 

underwent 24-week high-dose oral cholecalciferol supplementation (2000 IU a day) and no effect was 

shown on either hepatic fat percentage or markers of hepatic injury and/or fibrosis, i.e., serum 

transaminases, CK-18 and PIIINP levels. Moreover, no beneficial effect was reported for any 

metabolic parameter, such as body adiposity, glycemic control, estimated insulin resistance, blood 

pressure or endothelial dysfunction [106]. 

Conversely, results from a clinical trial conducted by Geier et al. [107] showed that 48-week 

vitamin D3 treatment (2100 IU vitamin D3 daily) leads to significantly decreased serum ALT and CK-

18 levels in twenty individuals with biopsy-proven NASH. Pre- to post-intervention histological 

changes were investigated in a sub-cohort of seven individuals, finding no significant modification 

[106]. 

Dabbaghmanesh et al. [108] published results from a randomized, double blind, placebo 

controlled trial investigating the effect of three-month high dose oral vitamin D3 (50,000 IU/week) or 

calcitriol (0.25 mg per day) supplementation in over 100 non-diabetic vitamin D deficient individuals 

with ultrasound-diagnosed NAFLD and normal transaminases. Neither vitamin D3 nor calcitriol 

supplementation significantly modified liver enzymes in comparison to placebo; no data on liver fat 

content and/or indirect indexes of hepatic fibrosis were available in this study [108]. 

A similar investigation was conducted by Naderpoor et al. [109] aiming to explore the effects of 

vitamin D supplementation (100,000 loading dose of cholecalciferol followed by 4000 IU daily for 16 

weeks) on liver enzymes in 54 overweight/obese individuals with vitamin D deficiency at the time of 

the study enrolment and no history of liver disease, without finding any change [109]. 
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Table 1. Characteristics of clinical trials evaluating vitamin D supplementation on MAFLD. Abbreviations: US—Ultrasound, MRI—Magnetic Resonance Imaging, 

ELF—Enhanced Liver Fibrosis score, IU—International Units. 

Author Year Country 

No. 

(Control/Intervention) 

Endpoint 

Duration 
Dose of 

Vitamin D 
Type of Intervention Results 

Foroughi M. [104] 2014 Iran 60 (30/30)  
Hepatic steatosis (US), 

enzymes 
10 weeks 50,000 IU per week Vitamin D3 No effect 

Sharifi N. [105] 2014 India 53 (26/27)  Hepatic enzymes 4 months 50,000 IU per 14 days Vitamin D3 No effect 

Kitson M.T. [100] 2016 Australia 12 Liver histology 24 weeks 25,000 IU per week Vitamin D3 No effect 

Lorvand Amiri H. [102] 2016 Iran 120 (36/74) Hepatic enzymes 12 weeks 1000 IU day Calcitriol Significant effect 

Lorvand Amiri H. [103] 2016 Iran 73 (36/37) Hepatic steatosis (US) 12 weeks 1000 IU day Calcitriol Significant effect 

Barchetta I. [106] 2016 Italy 55 (29/26) 
Intrahepatic fat content 

(MRI) 
24 weeks 2000 IU day Vitamin D3 No effect 

Sakpal M. [101] 2017 Iran 81 (30/51)  Hepatic enzymes 6 months 
600,000 IU i.m./6 

months 
Vitamin D3 Significant effect 

Geier A. [107] 2018 Switzerland  18 (10/8)  Liver histology 48 weeks 2100 IU day Vitamin D3 No effect 

Dabbaghmanesh M.H. 

[108] 
2018 Iran 63 (32/31) Hepatic enzymes 12 weeks 50,000 IU per week Vitamin D3 No effect 

Naderpoor N. [109] 2018 Australia 54 (28/26) Hepatic enzymes 16 weeks 4000 IU day Vitamin D3 No effect 

Javed Z. [110] 2019 UK 37 (18/19) 
Hepatic enzymes, ELF 

score 
3 months 3200 IU day Vitamin D3 Significant effect 
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A recent randomized, double-blind, placebo-controlled trial explored the effect of vitamin D 

supplementation (3200 IU daily for three months) on cardiovascular risk factors, hormones, and liver 

markers in women with polycystic ovary syndrome, finding modest improvement of ALT and 

enhanced liver fibrosis (ELF) score, along with a trend towards reduced insulin-resistance-estimated 

by the Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) index—in the actively 

treated group versus placebo [110]. 

Overall, clinical trials conducted so far have adopted non-homogenous inclusion criteria, 

recruited population with broad range of MAFLD severity and selected non-comparable outcome 

measures; this inhomogeneity has inevitably led to conflicting results. 

4. Potential Pitfalls and Future Directions 

Vitamin D and VDR regulate numerous mechanisms associated with inflammatory responses, 

insulin function and overall immune-metabolism. Accumulating data from mechanistic studies 

confirm a major involvement of vitamin D in both liver homeostasis itself and in the gut–adipose 

tissue–liver axis, and many observational studies have reported the existence of a close relationship 

between hypovitaminosis D and MAFLD. However, some other investigations have not found any 

correlation between vitamin D status and liver damage at the histological examination. 

In the last years, several clinical trials have tested potential benefits of vitamin D on MAFLD in 

in cohorts of individuals with different extension of liver damage, comorbidities and comedications, 

producing inconsistent findings. The latest meta-analysis which has explored the effects of vitamin 

D supplementation on cardio-metabolic and hepatic outcomes in patients with MAFLD, including 

data from almost 550 participants [99], concluded that vitamin D supplementation may have 

beneficial effects on glucose–insulin metabolism, ALT, and triglycerides in the youngest sub-group 

of patients (<45 years old) [99]. Moreover, based on the clinical trials published so far, longer exposure 

to vitamin D dose less than 3500 IU per day, seems to exert the best effect on transaminases reduction 

in MAFLD patients [99]. 

In the light of the available evidence, a major role behind successful vitamin D supplementation 

on liver parameters is played by the improvement of blood glucose and insulin levels [100–112]. 

Indeed, in individuals without established diabetes and antidiabetic therapies, vitamin D may 

positively impact on glucose tolerance and insulin resistance and reduce directly and indirectly liver 

impairment in MAFLD. Conversely, once diabetes is established, vitamin D may not be sufficient to 

remodulate glucose homeostasis and/or its potential effects may be hidden by concomitant therapies. 

Indeed, in dysmetabolic individuals undertaking multiple treatments, as those with frank metabolic 

syndrome and diabetes, a certain effect of comedications on liver status, as intended as either 

damage-in addition to MAFLD itself, or potential benefit as for some new antidiabetic agents [113], 

cannot be definitively ruled out. 

Differently from what reported in terms of potential benefit of vitamin D supplementation on 

glucose–insulin profile, evidence of efficacy on liver fibrosis and inflammation is still lacking. 

These overall findings may support the hypothesis that vitamin D supplementation may exert 

beneficial effects mostly in younger individuals, with shorter disease duration and mild to moderate 

liver damage [114] and/or in addition to anti-fibrotic agents [115]. 

5. Conclusions 

Convincing experimental data show that the vitamin D/VDR axis is directly involved in the 

modulation of metabolic and inflammatory pathways associated with the development of MAFLD 

in overweight and obesity. Indeed, vitamin D and VDR take part not only in intra-hepatic regulation 

of insulin sensitivity, fat accumulation, and immune-inflammatory responses, but also in the 

homeostasis of organs that are primarily involved in the pathogenesis of NAFLD and NASH, such 

as gut and adipose tissue. 

Clinical trials do not report unequivocal beneficial effects of vitamin D supplementation on 

markers of liver impairment in individuals with MAFLD. Moreover, the investigations conducted so 
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far involved small populations and were markedly heterogeneous in terms of inclusion criteria, study 

design and outcome measures. 

Nonetheless, the evidence available shows positive effects of long-term low-dose vitamin D 

treatment in the youngest populations of MAFLD subjects, without hepatic fibrotic damage and 

clinically overt complications and comorbidities, such as T2D. Vitamin D is a molecule with beneficial 

effects on a large number of organs and systems, primarily the skeleton and immune system [11–13], 

and its supplementation is considered a highly cost-effective strategy for disease prevention, i.e., 

fractures’ risk reduction [116]. 

Further studies on larger populations of individuals, selected in relation to criteria emerging 

from available clinical trials, may be needed before drawing general conclusions on the benefit of 

vitamin D supplementation in patients with fatty liver disease. 
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