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CORRESPONDENCE Open Access

Repurposing existing drugs for COVID-19:
an endocrinology perspective
Flavio A. Cadegiani

Abstract

Background: Coronavirus Disease 2019 (COVID-19) is a multi-systemic infection caused by the novel Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), that has become a pandemic. Although its prevailing symptoms
include anosmia, ageusia, dry couch, fever, shortness of brief, arthralgia, myalgia, and fatigue, regional and
methodological assessments vary, leading to heterogeneous clinical descriptions of COVID-19. Aging, uncontrolled
diabetes, hypertension, obesity, and exposure to androgens have been correlated with worse prognosis in COVID-
19. Abnormalities in the renin-angiotensin-aldosterone system (RAAS), angiotensin-converting enzyme-2 (ACE2) and
the androgen-driven transmembrane serine protease 2 (TMPRSS2) have been elicited as key modulators of SARS-
CoV-2.

Main text: While safe and effective therapies for COVID-19 lack, the current moment of pandemic urges for
therapeutic options. Existing drugs should be preferred over novel ones for clinical testing due to four inherent
characteristics: 1. Well-established long-term safety profile, known risks and contraindications; 2. More accurate
predictions of clinical effects; 3. Familiarity of clinical management; and 4. Affordable costs for public health systems.
In the context of the key modulators of SARS-CoV-2 infectivity, endocrine targets have become central as
candidates for COVID-19.
The only endocrine or endocrine-related drug class with already existing emerging evidence for COVID-19 is the
glucocorticoids, particularly for the use of dexamethasone for severely affected patients. Other drugs that are more
likely to present clinical effects despite the lack of specific evidence for COVID-19 include anti-androgens
(spironolactone, eplerenone, finasteride and dutasteride), statins, N-acetyl cysteine (NAC), ACE inhibitors (ACEi),
angiotensin receptor blockers (ARB), and direct TMPRSS-2 inhibitors (nafamostat and camostat). Several other
candidates show less consistent plausibility. In common, except for dexamethasone, all candidates have no
evidence for COVID-19, and clinical trials are needed.

Conclusion: While dexamethasone may reduce mortality in severely ill patients with COVID-19, in the absence of
evidence of any specific drug for mild-to-moderate COVID-19, researchers should consider testing existing drugs
due to their favorable safety, familiarity, and cost profile. However, except for dexamethasone in severe COVID-19,
drug treatments for COVID-19 patients must be restricted to clinical research studies until efficacy has been
extensively proven, with favorable outcomes in terms of reduction in hospitalization, mechanical ventilation, and
death.
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Background
Coronavirus Disease 2019 (COVID-19) is a multi-
systemic infection caused by the novel Severe Acute Re-
spiratory Syndrome Coronavirus 2 (SARS-CoV-2), from
the coronaviridae family. Some of the specific character-
istics found in SARS-CoV-2, including long periods of
incubation and shedding, large percentage of asymptom-
atic and pre-symptomatic infected subjects that may
transmit the virus, and the prolonged resistance in sur-
faces [1–3], are plausible explanations for the inability to
contain the SARS-CoV-2 spread, resulting in the current
pandemic, although its mechanisms are still not fully
elucidated, and may vary according to mutations that
SARS-CoV-2 undergoes.
Prevailing symptoms in COVID-19 include anosmia,

ageusia, dry couch, fever, shortness of brief, arthralgia,
muscle soreness, fatigue, gastrointestinal symptoms, tes-
ticular and breast pain. However, slight mutations in the
virus and variations in methodological assessments leads
to heterogeneous clinical descriptions of COVID-19.
Besides age, data from regions with distinct epidemio-

logical patterns consistently demonstrated that four
other major factors are correlated with worse prognosis
in SARS-CoV-2: uncontrolled diabetes, hypertension,
obesity, and in-tissue exposure to androgens [3–9].
The unique SARS-CoV-2 characteristics and its unpre-

cedented mechanisms of actions challenge the precise
description of its mechanisms of actions and pathogen-
icity [10–15]. The only aspect of SARS-CoV-2 that has
demonstrated undisputed characterization is its cell
entry, which has shown to be dependent on angiotensin-
converting enzyme-2 (ACE2) receptor and transmem-
brane serine protease 2 (TMPRSS2). While ACE2 is the
site of coupling of the spike protein of SARS-CoV-2,
TMPRSS2 primes the virus spikes and the ACE2 recep-
tor, allowing its cell entry. The distribution of ACE2 ex-
pression in tissues is in fully accordance with the clinical
manifestations of COVID-19, that has demonstrated to
be multisystemic, although predominantly pulmonary,
reinforcing the ACE2-centered hypothesis in COVID-19.
In addition, the vascular system, also largely affected

in COVID-19, also induces pulmonary manifestations,
since vascularity is critical for respiratory function. Con-
versely, to date, the only known regulators of TMPRSS2
expression are androgens, which may explain the pre-
vailing presence of males in severe COVID-19, in par-
ticular those with androgenetic alopecia (AGA), in
which TMPRSS2 expressed seems to be more expressed
than in non-AGA males, due to increased hyperandro-
genic hormones, specially 5-alpha dihydrotestosterone
(5alpha-DHT), enhanced androgen receptor sensibility,
or both [8, 9].
The understanding of the natural course of SARS-

CoV-2 is imperative to provide hypotheses for potential

therapeutic targets for COVID-19. Currently, COVID-19
can be divided into three stages, although further find-
ings may lead to changes in the understanding of
COVID-19 natural history of the disease. The first stage
encompasses the period of SARS-CoV-2 viral infection,
usually takes between five and ten days, and is
dependent on ACE2 attached to surfaces, which seems
to regulate the viral cell entry and infectivity, while free
circulating ACE2 may preclude from viral infectivity by
coupling with SARS-CoV-2 [16–19]. In this stage, since
TMPRSS2 facilitates virus cell entry, its expression is
also directly correlated with SARS-CoV-2 infectivity.
Unlike the first stage, common to all infected subjects,

the second and third stages of COVID-19 are not obliga-
torily present, and depend on individual characteristics
and predisposition. The second stage corresponds to the
exacerbated inflammatory reactions to SARS-CoV-2.
The second stage typically begins after the downregula-
tion of membrane ACE2 due to its endocytosis that oc-
curs in the first stage. Oppositely to what has been
hypothesized for the first stage, increased attached ACE2
during the second stage is likely correlated with favor-
able outcomes, since ACE2 may limit the cytokine storm
that underlies the Acute Respiratory Distress Syndrome
(ARDS) in COVID-19.
In addition to the downregulation of attached ACE2 ex-

pression, the overexpression of the pro-inflammatory
angiotensin II-angiotensin receptor type 1 (AT1) axis and
the under-expression of the anti-inflammatory angiotensin
1–7 – G-coupled Mas receptor axis may contribute to the
abnormal responses that lead to the cytokine storm, that
determines the progression to the third phase, that corre-
sponds to acute lung injury and related dysfunctions.
From the learnings on SARS-CoV-2 mechanisms of in-

fection and disease, the complex relationship between
ACE2 and SARS-CoV-2 has been demonstrated to be
key to predict COVID-19 severity: while increased circu-
lating ACE2 may provide protection by inhibiting SARS-
CoV-2 coupling to attached ACE2, a dual correlation be-
tween lung membrane-attached ACE2 and COVID-19
has been demonstrated, since during the viral replication
the ACE2 expression may enhance viral infectivity,
whereas afterwards ACE2 becomes crucial to avoid
over-inflammatory and over-immunologic responses,
preventing the occurrence of ARDS.

SARS-CoV-2: endocrinological and clinical risk factors
related to endocrine-related disorders
While multiple mechanisms have demonstrated to par-
ticipate in COVID-19 pathogenesis, the regulation of the
Renin-Angiotensin-Aldosterone System (RAAS) has
been demonstrated to be critical for the COVID-19
pathogenesis, since angiotensin 1–7 (Ang 1–7), ACE2
and AT1, that participate in the RAAS, are three of the
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four key modulators of SARS-CoV-2 infection patterns.
The fourth key regulator of SARS-CoV-2 infectivity is
TMPRSS2, which is largely and solely modulated by spe-
cific androgens, and depends on androgenic metabolo-
mic profile and androgen receptor (AR) sensibility. In
common, all major key mechanisms of SARS-CoV-2
interaction with organism are dependent on overall
endocrine functions.
Abnormalities in the RAAS and ACE2 expression as

being determinants of COVID-19 severity provide
mechanistical substantiation for the overrepresentation
of hypertension and obesity as risk factors for COVID-
19. Conversely, TMPRSS2 overexpression may justify
the higher occurrence of COVID-19 complications in
males, particularly in those with androgenetic alopecia
(AGA), in which TMPRSS2 is likely more activated com-
pared to non-AGA males [8, 9]. In addition, up to 40%
of patients with severe SARS-CoV-2 may present under-
lying silent congestive heart failure (CHF), leading to re-
duced pulmonary capacity and easier decompensation of
cardiovascular and respiratory systems [20]. Together,
dysfunctions in the RAAS, ACE2 and TMPRSS2 under-
lie all major risk factors for severe COVID-19.
In particular for obesity, the most remarkable risk factor in

COVID-19, particularly among those below 50 y/o, multiple
mechanisms have been proposed to justify the severity of
COVID-19, including multiple sites of disruption in the
RAAS system, ACE2 expression and activity, associated to an
imbalance towards the hypertensive and pro-inflammatory
angiotensin II- AT1 axis observed in obese subjects.
Since the RAAS, ACE2 and TMPRSS2 expression en-

compass virtually all tissues, and their biological actions
are not restricted to endocrine regulation, one expects
that manifestations related to their dysfunctional expres-
sion and activity would not be restricted to endocrine
functions. Indeed, the pro-thrombotic state notably
present during COVID-19, as well as hematological, kid-
ney, hepatic, cardiovascular, neurological and gastro-
intestinal manifestations extensively reported in COVID-
19 [21–47], are largely mediated by abnormalities in the
RAAS, ACE2, and TMPRSS2.
In summary, the demonstration that overexpression of at-

tached ACE2 compared to circulating, aberrancies in ACE2
expression and activity, predominant pro-inflammatory
angiotensin II-AT1 over angiotensin 1–7-Mas receptor
axis, and increased TMPRSS2 expression as keys to deter-
mine COVID-19 severity [48–53] allows the hypothesis that
regulation of endocrine system may be central for improve-
ment of COVID-19 related outcomes in clinical practice.

Main text
Strategies against SARS-CoV-2
The identification of effective treatments to reduce
COVID-19 clinical outcomes, mortality and post-

COVID manifestations is highly desired while definitive
solutions like effective and safe vaccines are not univer-
sally available. Targets that address SARS-CoV-2 mecha-
nisms of infection and risk factors allow proposals of
more precise therapies to be potentially effective against
COVID-19.
In the current lack of evidence on effective therapies, a

major challenge is to identify or discover drugs that de-
livers high effectiveness, strong safety profile, and afford-
ability for public health systems. In this regard, more than
400 novel drugs including more than 30 biological agents
are undergoing clinical trials, among which some may
show effectiveness, but will still lack long-term safety pro-
file and is unlikely to be affordable for massive use.
Repurposing existing drugs for COVID-19 should be

preferred over the development of new molecules due to
four major reasons inherent to long used molecules [53–
57]: 1. Well-established short- and long-term safety pro-
file, risks, and contraindications, allowing directed moni-
toring and lower costs of follow-up and avoiding their
use in formally contraindicated populations; whereas
newly released drugs require longer studies, thorough
monitorization and strict follow-up of special popula-
tions, due to the undetermined effects in large popula-
tions, since safety profile, detailed risk assessment and
detection of uncommon adverse effects and complica-
tions can only be obtained in long-term large-scale stud-
ies; 2. Mechanisms of action tend to be better
elucidated, allowing more precise predictions of clinical
effects in COVID-19; 3. Clinicians are more likely famil-
iarized with the clinical management of already existing
drugs, including posology, effects, and complications,
which is of great importance since the number of in-
fected subjects does not allow COVID-19 to be managed
within specialized centers; and 4. For COVID-19, pat-
ented drugs will unlikely have sufficient cost-
effectiveness to justify their use in large scale, once the
majority of infected subjects will cure without major
clinical complications, irrespective of any treatment.
Thus, the number necessary to treat (NNT) will be un-
conditionally high, which does not support expensive
therapeutic options.
In this context, the clinical use prior to specific evi-

dence of efficacy against COVID-19 has been accepted
in the current lack of therapeutic options, particularly
when risks of complications are high [55–57]. However,
the off-label use, termed as compassionate, should be re-
stricted to those steadily safe drugs, as learned from the
harms caused by the unrestricted spread use of hydroxy-
chloroquine [58] – which does not hamper from its po-
tential effectiveness, particularly in the first stage of the
disease, to be further elucidated.
Considering the current evidence, the employment of

currently existing long used drugs should target SARS-
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CoV-2 infectivity, inflammatory response, or both, by ad-
dressing at least one of the following: ACE2 timing of ex-
pression in the lungs and balance between circulating and
membrane-attached ACE2, enhancement of the angioten-
sin 1–7 axis, inhibition of TMPRSS2 actions, specific anti-
inflammatory or immune-modulator effects, direct or in-
direct anti-viral activity, or blockage of harmful effects of
dysfunctional RAAS overtly found in obesity.
In this context, endocrine targets have become central, as

many of the drugs for the prevailing endocrine or
endocrine-related dysfunctions, including anti-diabetics,
anti-hypertensives, hormones and have demonstrated ef-
fects on one or more sites of actions in COVID-19, once
SARS-CoV-2 infectivity and response are highly modulated
by different endocrine pathways with strong interactions.
The characteristics to be present within proposed drugs

should include well-established risks and contraindica-
tions, cardiovascular safety or protection, hematological
and vascular safety or protection, with neutral or prevent-
ive effects of thromboembolic events, favorable effects on
the RAAS and ACE2, neutral or downregulation of the
androgen-mediated TMPRSS2, and inhibition or non-
exacerbation of acute lung injuries. Drugs that address
subclinical CHF and other cardiac dysfunctions may pro-
vide independent additional protection, since CHF and el-
evated cardiac markers are highly prevalent among
hospitalized COVID-19 patients [59–61].
A systematic search of the following terms have been

searched in PubMed database: “(name of the drug)” or
“(name of the drug class)” or “(hormone)” + “COVID” or
“SARS-CoV-2” or “lung injury” or “ARDS” or “viral” or
“renin-angiotensin system” or “renin-angiotensin-aldos-
terone system” or “TMPRSS2” or “ACE2” or” RAAS”. In
clinicaltrials.gov, search was performed using the expres-
sions “COVID” + “(name of the drug)” or “(name of the
drug class)” or “(hormone)”.
Candidates for COVID-19 have been ordered accord-

ing to their likelihood to provide protection for COVID-
19: 1. Of major relevance: more likely to provide clinical
benefits, with preliminary or consistent clinical data on
COVID-19; 2. Of moderate relevance: strong plausibility
but weak evidence on COVID-19; 3. Of minor relevance:
moderate plausibility but solely theoretical; 4. Discour-
age use in COVID-19: those that harmful effects may
overtake benefits on COVID-19; and 5. A summary of
drugs unrelated to the endocrine system with potential
benefits for COVID-19.
Data on each drug class as candidate for COVID-19

has been presented following a specific logical se-
quence: 1. Mechanisms of action that could theoretic-
ally provide benefits for COVID-19; 2. How the drug
could be used to treat COVID-19, including the tar-
get stages of the disease; and 3. Current specific data
on COVID-19, if any.

Candidate drugs against COVID-19
Several different drugs have elicited hypothetical benefits
against COVID-19, including hormones, anti-diabetics
and anti-androgens, although the vast majority remains
only theoretical, and many of these drugs could provide
protection for their regular users, but not necessarily
show clinical benefits in COVID-19 if specifically used
for this purpose.

Of major relevance
The only endocrine-related drug class that currently has
evidence for COVID-19 are the glucocorticoids. Their
use for severe illnesses has dubious and contradictory
data [62, 63], that seems to depend on the etiology and
patterns of lung injury, level of severity, and level of con-
tribution of an overreactive inflammatory response for
the severe state, since the two major actions expected
from glucocorticoids are their strong anti-inflammatory
properties and as enhancers of the physiological re-
sponse to stress. However, specifically for severe
COVID-19, emerged data has been favorable for the use
of glucocorticoids, since it has been demonstrated to re-
duce mortality among hospitalized patients, particularly
those in mechanic ventilation [64], which corresponds to
the third stage of COVID-19, and 10 currently ongoing
clinical trials are testing glucocorticoids in this stage
[65]. Conversely, for mild to moderate COVID-19, al-
though the use of corticoids was initially discouraged
due to potential delay of viral clearance and increase of
viral infectivity [66–68], improvements have been re-
ported when used during the second stage of COVID-
19, before the development of ARDS [69–74], likely due
to glucocorticoid ability to prevent cytokine storm. Since
the majority of glucocorticoids has concurrent mineralo-
corticoid effects, i.e, aldosterone-like actions [75–79],
glucocorticoid may enhance the RAAS and mimic detri-
mental effects of hypertension and obesity in this system,
potentially increasing the risks of complications related
to COVID-19.
Considering the differences in the characteristics of

each corticoid, the specificity of glucocorticoid over min-
eralocorticoid action when selecting the corticoid to be
used should not be despised. In particular, dexametha-
sone exerts powerful and highly selective glucocorticoid
effects, and together with betamethasone, they are the
only exogenous corticoids with no mineralocorticoid ac-
tions [75–79]. Strong glucocorticoid with absence of
mineralocorticoid actions which should be the preferred
corticoid regimen for COVID-19, since mineralocortic-
oid activity may indirectly stimulate viral spread through
imbalance between circulating and membrane-attached
ACE-2, and deteriorate cardiac and pulmonary func-
tions, central in COVID-19. This may explain the super-
ior efficacy of dexamethasone in severely ill patients
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with COVID-19 [64], although direct comparisons with
other glucocorticoids have not been performed.
In summary, glucocorticoids have potential benefits

when used in the second stage and demonstrated bene-
fits in the third stage of COVID-19.

Of moderate relevance
Some drug classes have moderate relevance as candi-
dates for COVID-19 due to their strong plausibility yet
weak or null evidence for COVID-19.
Males have been shown to be overrepresented among

those severely affected by COVID-19, which remained
significant after adjustments for age, body mass index
(BMI), and presence of comorbidities [80, 81]. This con-
sistent observation finds plausibility in the active partici-
pation of the androgen-driven TMPRSS2 to facilitate
SARS-CoV-2 cell entry. However, this correlation is
more complex, as young males had better outcomes
compared to BMI- and disease-matched older ones, des-
pite having higher testosterone levels, Possibly, intracel-
lular conversion from T into more androgenic
hormones, particularly 5alpha-dihydrotestosterone
(5alpha-DHT), may better drive SARS-CoV-2 infectivity,
which is supported by the observation that bald men,
who typically have higher intracellular DHT levels, are at
higher risk of developing severe COVID-19 than their
non-bald counterparts [82, 83].
Anti-androgenic approaches intuitively seem to be

protective from COVID-19 in males. Indeed, prostate
cancer patients receiving androgen-deprivation therapies
(ADT) appear to be partially protected from SARS-CoV-
2 infections [84, 85]. Besides mitigating TMPRSS2 ex-
pression [86], androgen-deprivation or antagonizing
therapies may suppress the RAAS overexpression in-
duced by androgens, which can be observed in post-
pubertal males and hyperandrogenic states in females
[87–89].
Anti-androgenic therapies encompass those that in-

hibit the hypothalamic-pituitary-gonadal axis, including
modulators of the gonadotrophic inhibitory hormone
(GnIH) and Kisspeptin-Kiss1receptor axis and gonado-
trophic releasing hormone (GnRH) agonists (leuprolide,
goserelin, triptorelin) and antagonists (degarelix), andro-
gen receptor (AR) inhibirors (ARi - cyproterone, spir-
onolactone, eplerenone, flutamide) and 5alpha-reductase
inhibitors (finasteride, dutasteride). Among these, AR
and 5alpha-reductase inhibitors deserve attention, since
they provide prompter anti-androgenic actions and some
present additional anti-COVID-19 properties.
The major representatives of ARi are spironolactone

and eplerenone, that also act mineralocorticoid receptor
(MR) antagonists, inhibiting aldosterone actions, which
represents the bioactive RAAS end-product [90–92].
From these, spironolactone is the most widely

commercially available, has an extensive safety profile, is
an effective anti-hypertensive, and has demonstrated
ability to protect and prevent damage in the heart and
kidneys [93–97].
In addition to the protection reported to be provided

by spironolactone, specific actions against SARS-CoV-2
actions have been proposed, including increased avail-
ability of free circulating ACE2 in response to a hyperre-
ninemic state induced by MR antagonism [98–104],
reduction of TMPRSS2 expression due to antagonism of
AR [105–107], reversal of RAAS abnormalities induced
by obesity [108, 109], and possible direct anti-
inflammatory and anti-viral actions that hamper lung in-
juries [110–121]. There are currently three ongoing clin-
ical trials with spironolactone [122–124].
Dutasteride and finasteride are the two major 5alpha-

reductase inhibitors used in clinical practice and studied
for safety and effective profile in the long run [125–127].
The rationale for their use is based on the blockage of
conversion of testosterone into 5alplha-DHT and mitiga-
tion of TMPRSS2 expression [128–130], eventually ham-
pering the overrepresentation of males, particularly bald
ones, in severe COVID-19. Their benefits may be exhib-
ited if used as a preventive strategy or during the first
stage of COVID-19, and has demonstrated correlations
with lower severity, although causality could not be
established [131, 132]. There is one clinical trial cur-
rently testing dutasteride in COVID-19 [133].
Statins (simvastatin, atorvastatin, rosuvastatin, pitavasta-

tin) are inhibitors of the 3-hydroxy-3-methylglutarul-coen-
zyme A (HMG-CoA) reductase that act primarily as
antilipemic agents, with extensive efficacy against cardiovas-
cular events, and pleiotropic anti-inflammatory, antithrom-
botic, anti-oxidative, immunomodulatory, antiarrhythmic,
and direct anti-atherogenic effects [134–136]. From these
pleiotropic actions, statins have been purposed to reduce
the occurrence and severity of ARDS states and the effects
of endotoxin in lung injury [137–141], acting against
COVID-19, particularly in the second and third stages [104,
142–145], in addition to the effects on the RAAS, including
the decrease of angiotensin II synthesis and action, and re-
duction of the RAAS-induced oxidative state [146–148].
There are currently five clinical trials [149–153] and one
observational study [154] with statins for COVID-19.
Vitamin D is an actual hormone with calcium metab-

olism, immunologic and metabolic actions. Preliminary
observations have correlated vitamin D levels and out-
comes in COVID-19, allowing hypotheses on vitamin D
as being protective from COVID-19 due to its potential
benefits antiviral activity [155–167], attenuation of lung
injuries [168–173], and possible slight suppressive al-
though inconsistent effects on RAAS [174–177], and
neutral effects on TMPRSS2 [178, 179], being a potential
candidate to protect from SARS-CoV-2 infectivity, i.e.,
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during its early stage, although only observational studies
have been published to date. Despite preliminary reports
on hypothetical vitamin D actions on decreasing lung in-
jury severity, this is still only theoretical, and should not
be considered as a strong candidate for second and third
stages of COVID-19. Currently, 31 studies are evaluating
vitamin D supplementation and status in COVID-19,
alone or in combination with other therapies [65].
Although used as a nutritional supplement, N-acetyl

cysteine (NAC), a precursor of L-cysteine, enhances
glutathione elevation biosynthesis and acts as a direct
scavenger of free radicals, particularly reactive oxygen
species (ROS) [180, 181]. NAS has demonstrated robust
antioxidant effects both in vitro and in vivo, and has
been successfully employed in a variety of diseases, with
emerging evidence in polycystic ovary syndrome
(PCOS), fertility abnormalities, chronic inflammation,
particularly colitis, acetaminophen intoxication, asthma
and neurodegenerative disorders [182]. NAC exerts mul-
tiple effects on the modulation of the inflammatory and
immunologic responses, including inhibition of the
inflammasome pathways [interleukin-1β (IL1β), IL18,
and tumor necrosis factor-ɑ (TNFɑ)], increase of T cells
activity, and improvement of redox status, particularly
under intense oxidative stress [183–187], has shown
ability to diminish acute lung injuries [188], and may im-
pair ACE2 actions when coupled with SARS-CoV-2
[189, 190]. Collectively, these mechanisms convey the
hypothesis of NAC as a strong candidate against
COVID-19 [191, 192], in particular for the second stage,
aiming to prevent progression to ARDS, and is undergo-
ing six specific clinical trials [193–198], among which
five aim to prevent the occurrence of third stage in
COVID-19.
Aspirin is a potent suppressor of prostaglandins and

thromboxane A2 (TXA2) generation due to its irrevers-
ible inactivation of the cyclooxygenase (COX) enzyme,
yielding anti-inflammatory and anti-thrombotic effects,
respectively [199]. In addition of its regular use to pre-
vent cardiovascular disease in those at high risk, aspirin
may prevent gastrointestinal tract cancers [200–202] and
participate in a wide range of different disorders [203],
although its effects are highly dependent on the timing
and dose administered [204]. While low doses aspirin
may play indirect beneficial effects in the RAAS, includ-
ing suppression of angiotensin II actions, high doses (>
200 mg/day) may hamper cardioprotective and lung-
protective effects of the majority of drugs that address
RAAS [205–207]. In the lungs, AAS may confer protect-
ive effects on the severity of lung injury induced by any
endotoxin, and also lower the risk of ARDS, in particular
in those previously using aspirin [207–209]. Because of
these mechanisms, aspirin has been proposed to protect
from COVID-19 during its second and third stages, in

special under severe manifestations, and is being tested
in ten clinical trials in COVID-19, all aiming to prevent
or treat severely ill patients [65]. Other antithrombotic
agents, in special the direct inhibitors of factor Xa, apix-
aban and rivaroxaban, have also demonstrated ability to
attenuate lung injury [210, 211], could be potential can-
didates for the second and third stages of COVID-19,
and rivaroxaban is being currently tested for COVID-19
in four clinical trials [212–215].
Although the anti-hypertensive classes of ACE inhibi-

tors (ACEi) and angiotensin receptor blockers (ARB)
have been initially correlated with worse outcomes in
COVID-19 due to potential SARS-CoV-2 infectivity by
the increase of lung membranse-attached ACE2 expres-
sion [11, 216, 217] and preliminary observations that
hypertensive patients treated with ACEi or ARB could
be at higher risk to develop ARDS and require mechan-
ical ventilation [3, 218–220], not only these correlations
have found no corresponding data on larger trials [221,
222], but they have been proposed to be protective, once
their direct actions in the RAAS may be clinically helpful
during the second stage, in which increased lung mem-
brane ACE2 expression is crucial to prevent cytokine
storm, for the balance between angiotensin II and 1–7,
and to reduce COVID-19 induced ARDS [223, 224] ei-
ther if introduced in the second stage of COVID-19, or
among those chronic users. The controversy on ACEi,
ARB and COVID-19 still remains, including five clinical
trials still evaluating whether the use of ACEi and ARB
is harmful [124, 225–228], whereas more than 20 clinical
trials are testing these classes to reduce COVID-19 se-
verity [65].
In addition to the anti-androgen actions of androgen

inhibitors and AR antagonists aiming to reduce TMPR
SS2 expression, direct TMPRSS2 blockers through serine
protease inhibition have been proposed as potential
drugs against COVID-19, including nafamostat, camo-
stat, bromhexine, plasma alpha-1-antitrypsin, leupeptin
[229–231]. Among these, nafamostat, a short-action
anti-thrombotic with antiviral activity, and camostat
have been proposed as treatment options for COVID-19,
despite their high costs [230, 231]. There are currently
three and eight clinical trials testing nafamostat [232–
234] and camostat [235–242], respectively.

Of minor relevance
Drug classes and hormones with merely theoretical
plausibility have been listed as of minor relevance for
COVID-19.
While males, in particular those affected by androge-

netic alopecia (AGA), have been correlated with worse
prognosis in COVID-19, this could be explained by AR
sensibility and DHT concentrations, rather than testos-
terone per se, since young males, with the highest
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testosterone levels, are not at higher risk when compared
to age-matched young females. Indeed, on the opposite
direction, one single study suggested that with lower tes-
tosterone concentrations could predict worse outcomes in
COVID-19 [243], although low testosterone is more likely
a consequence than a cause of COVID-19 severity, since
its acute reduction due to suppression of the
hypothalamic-pituitary-gonadal (HPG) axis may be dir-
ectly correlated with level of severity, the hypothalamic
hypogonadism that typically occurs in metabolic and in-
flammatory diseases, including cardiovascular and obesity,
corresponds with those at higher risk for severe COVID-
19 manifestations, which means that hypogonadotrophic
hypogonadism and severe COVID-19 are both conse-
quences of a same root cause (inflammatory and meta-
bolic diseases), and indicates that testosterone could be
potentially used as an indirect marker, but not necessarily
as a candidate as a therapeutic agent for COVID-19.
A potential use of testosterone as a muscle anabolic

agent for those recovering from severe COVID-19 could
be a matter of discussion, since COVID-19 leads to a
sort of muscle hypercatabolic state that leads to dispro-
portionate muscle loss and consequent difficulties in
performing basic personal activities, such as raising arms
to eat, walking, or even inspiring, in a worse extent than
the expected for the time spent in unconscious and in
mechanic ventilation. However, while proposed and
tested for other cachectic states [244–246], there are no
reports on testosterone use for muscular recovery after
COVID-19 or ongoing clinical trials on COVID-19.
Estrogens have demonstrated beneficial actions against

viral infections and respiratory complications, as clinic-
ally observed by better outcomes in women during re-
productive age [159, 247–259], due to their protective
effect on endothelial function, vasodilation in the pul-
monary vasculature, stimulation stimulate of the
humoral response to viral infections [159, 247–253], and
modulation of inflammatory responses [248, 249], lead-
ing to improved outcomes in acute lung injuries of any
etiology [254–259]. Estrogens favorably modulates the
RAAS in females [260–262], whereas the androgen-
mediated TMPRSS2 expression has dual correlation with
estrogens [248, 263, 264].
However, while COVID-19 has been extensively corre-

lated with thrombotic events of different natures
through a range of underlying mechanisms [265–267],
and has become a major player in the COVID-19 patho-
genesis [267], estrogens have been historically correlated
with increased thromboembolic events, which could be a
limiting argument for its use in COVID-19. Nonetheless,
while endogenous estradiol is only correlated with this
nature of events when associated with increased free tes-
tosterone and decreased se hormone binding globulin
(SHBG) [268], the correlation of exogenous estrogens

and thromboembolism is largely justified by the route of
administration, orally administered estrogens lead to in-
creased hepatic production of pro-coagulants induced by
its first liver first-passage effect, that does not occur in
non-oral regimens. Indeed, large observational studies
and a meta-analysis have shown no increased risk of
thromboembolism among women taking non-oral estro-
gen replacement therapies [269–271].
Collectively, the prevailing possible protective effect of

estradiol against COVID-19 indicates this as a potential
therapeutic target for the first and second stages of
COVID-19 to prevent more severe complications, al-
though oral regimens must be avoided to prevent syner-
gistic effects with the pro-thrombotic stage inherent to
COVID-19.
Type 2 diabetes mellitus (T2DM) has been recognized

as a major independent risk factor for severe COVID-19,
while the level of glucose control on T2DM may be one
of the drivers of severity of COVID-19, particularly be-
fore hospitalization, through glucose and non-glucose
mediated [272–274]. Overall, in addition to the glucose
lowering effects, anti-diabetic drugs may exhibit add-
itional pleiotropic effects specific to each class, that offer
unspecific and viral-specific protection patterns, and
have been hypothesized as potential agents against
COVID-19.
Metformin, the first-line therapy for T2DM with un-

disputed efficacy and safety and additional antineoplas-
tic, antiaging, anti-inflammatory, immunomodulatory,
cardio-, neuro-, hepato-, and nephroprotective actions
[275, 276], has been proposed as a multi-action protec-
tion drug candidate for COVID-19 [277–283], particu-
larly due to its strong systemic reparatory and
modulatory mechanisms. While its effects on RAAS
seem to be neutral, lung injury can be efficiently pre-
vented and relieved by metformin, specially by the pro-
motion of microvascular repairing actions [284–289],
and has also exhibited antiviral activity, enhanced
lymphocyte B function and enhanced innate immunity
[290–294]. Conversely, metformin has formal contra-
indication for severe conditions due to the risk of lactic
acidosis [295]. For these reasons, metformin could be a
candidate for the second stage of COVID-19, before the
development of severe respiratory manifestations, al-
though no specific clinical trials are being currently
conducted.
Sodium-glucose Co-transporter 2 inhibitors (SGLT2i)

(dapagliflozin, empagliflozin, canagliflozin, ipragliflozin,
ertugliflozin) are a newly developed anti-diabetic drug
class that promotes glycosuria through inhibition of
renal glucose reabsorption, alleviating hyperglycemic
states. Unexpected improvements of cardiovascular
events, overall mortality, liver metabolic dysfunctions,
kidney function, and pancreas activity observed in larger
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and longer randomized clinical trials (RCTs) and real-
life studies were not completely justifiable by its glu-
cose-, body weight-, and blood pressure-lowering effects
[296–298]. Although effects on overall viral replication
or lung injury are yet to be unraveled, SGLT2i’s have
shown active suppression of the overall RAAS due to the
negative water balance induced by its concurrent natri-
uresis, and additional selective mitigation of the angio-
tensin II-AT1R axis [299–302]. Among SGLT2i,
dapagliflozin has been proposed as a protective tool
against COVID-19, particularly in the first and second
stages, and is currently undergoing two specific clinical
trials [303–305].
Analogues of the glucagon-like peptide-1 (GLP-1)

class B G-protein-coupled receptor (GLP-1Ra) (lixisena-
tide, liraglutide, exenatide, dulaglutide, semaglutide)
have been first developed to act as glucose-lowering
agents. GLP-1Ra have further demonstrated to address
obesity, neurodegenerative disorders, have elicited a
range of pleiotropic actions due to the wide and hetero-
geneous distribution of GLP-1R, and have shown to re-
duce major cardiovascular events, which, cannot be fully
justified by improvements in glucose and body weight.
GLP-1Ra may exert beneficial effects by controlling glu-
cose levels during infection [306], possibly attenuating
lung injury under different circumstances - at least in
animal models [307–309] - and restoring lung function
in ARDS [310]. GLP-1Ra have also favorable effects on
the RAAS by inhibiting angiotensin II while maintaining
circulating ACE2 levels [311–315]. Hence, GLP-1Ra has
theoretical potential to act in the second stage against
COVID-19, although there is no currently ongoing clin-
ical trials for COVID-19.
Dipeptidyl peptidase-4 inhibitors (DPP4i) are anti-

diabetic drugs that act indirectly enhances incretin hor-
mone actions in a diffuse manner, leading to positive ac-
tions in the inflammatory, immunologic, and vascular
systems, and consequently has been proposed to be po-
tential candidates against COVID-19 [306, 316–318],
currently being tested in two clinical trials. Besides the
attenuation of angiotensin II activity [318], DPP4i may
also prevent acute lung injury in response to different
stressors [319–324] and has shown inhibitory effects on
other coronaviruses, including the Middle East Respira-
tory Syndrome Coronavirus (MERS-CoV) [325–327],
which could play protective role in the first and second
stages of COVID-19 [328]. Currently, there are four clin-
ical trials testing DPP4i for COVID-19, including two
with sitagliptin and two with linagliptin [329–331].
Thiazolidinediones, also termed as glitazones, cur-

rently represented by pioglitazone, are nuclear receptor
peroxisome proliferator-activated receptor gamma
(PPARγ) and partial PPARα agonists with anti-diabetic
and other beneficial metabolic properties. Once PPAR-α

and -γ agonism exerts multiple metabolic, inflammatory
and immunologic benefits, pioglitazone has been pro-
posed as a candidate against COVID-19 [282, 332], des-
pite the lack of current clinical trials to date.
Pioglitazone may exert beneficial effects in the RAAS,
including marked raise of serum ACE2 levels, which
couples with SARS-CoV-2 and preclude viral coupling
with attached ACE2 and consequent cell entry, and sub-
stantial increase of angiotensin- [1–6] and angiotensin-2
receptor (AT2) concentrations [333–336], undermining
angiotensin II actions, may abolish acute lung injury by
acting in a range of actions, including positively modula-
tion of macrophage activity, reduction of neutrophil re-
cruitment in response to endotoxin, and reduction of
inflammation during sepsis [337–341], and also has dir-
ect anti-viral effects [342–345]. Due to its multiple pleio-
tropic effects, glitazones could theoretically be
candidates for all stages in COVID-19 [332], and is cur-
rently being tested in one clinical trial [346].
Isotretinoin, a 13-cis-retinoic acid, is a drug extensively

used to treat moderate-to-severe acne with vitamin-A
like actions, while its metabolites act as retinoic acid re-
ceptor (RAR) and retinoid X receptor (RXR) agonists,
with pro-apoptotic effects, although its exact mecha-
nisms of actions are not fully elucidated [347, 348]. Des-
pite the lack of reports on prevention or attenuation of
lung injury, viral replication, specific immunologic or
anti-inflammatory actions, and meaningful actions in the
RAAS, isotretinoin has been proposed for the second
stage of COVID-19, de due to its anti-inflammatory and
immunomodulatory effects, and is being tested in five
clinical trials for COVID-19 [349–353].
Rimonabant acts in the endocannabinoid (CB) system,

a highly preserved mammalian system that exerts ubi-
quitous and diverse regulatory actions, including those
in metabolism, central nervous system (CNS), inflamma-
tory and immunologic pathways, as a selective CB-1
(cannabinoid receptor subtype 1) antagonist. Rimona-
bant has been first approved for obesity due to its strong
anorexigenic effects [354, 355], but an unacceptable sui-
cide rate has been detected during its post-market clin-
ical trial (CRESCENDO), being withdraw from the
market [356]. However, learnings from the CB system
encouraged further investigations for the development of
improved drugs without psychiatric effects, and has
demonstrated mitigation of low-grade inflammation typ-
ically observed in obesity [357, 358], beneficial effects on
the RAAS [359, 360], and immunomodulation [361–
363], which allowed to propose rimonabant as a candi-
date for first and second stages in COVID-19 [364, 365],
although it could only be tested for strict experimental
purposes, since it has been banished since 2010.
Phosphodiesterase 5 (PDE5) inhibitors (PDE5i), in-

cluding sildenafil, tadalafil, vardenafil and avanafil, are
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drugs that block the cyclic GMP-specific phospho-
diesterase type 5 located in smooth muscle cells, that
consequently line vessels in a variety of tissues, leading
to tissue-specific vasodilatations. Sildenafil, the first
PDE5i, has been first approved to treat erectile dysfunc-
tion [366], and has been further extended to primary
pulmonary hypertension. In the RAAS, sildenafil has
shown to enhance circulating ACE2 concentration and
to exert dual effects on the angiotensin II-AT1-
angiotensin 1–7-AT2 balance, with uncertain effects on
COVID-19 [367], while sildenafil may provide protective
effects for acute lung injuries due to its abilities to in-
hibit neutrophilic actions within the lungs and release of
pro-inflammatory cytokines, reduce oxidative stress, in-
hibit apoptosis of epithelial cells, prevent lung edema
formation, and improve respiratory parameters [368–
370]. Positive effects of sildenafil treatment have also
been observed with its effects on immunomodulation,
angiogenesis, and platelet regulation [370]. The potential
benefits of sildenafil on respiratory, inflammatory, vascu-
lar, and immunologic parameters based its proposal as a
potential drug against COVID-19 [371] that would
hypothetically protect in second and third stages, and is
being tested in one clinical trial [372].

Discourage use in COVID-19
Some drug classes not only may show few or no benefits
for COVID-19, but may also exhibit deleterious effects
that may overcome specific benefits, if any.
While estrogens may present protective effects from

COVID-19, their actions in alpha and beta ERs are more
complex. Specific selective estrogen receptor modulators
(SERMs), including tamoxifen and raloxifene, could the-
oretically be an additional target to be attempted in
COVID-19, despite the lack of any specific data. While
raloxifene has been researched for systemic actions,
showing to be neutral in the RAAS [373, 374] potentially
protective against lung injury [375], and neutral in the
cardiovascular system [376], tamoxifen may increase risk
of thromboembolic events and stroke when administered
orally [377], and does not present any non-oral formula-
tion. Despite the increased risk for thrombosis, which is
particularly concerning in the pro-thrombotic state of
COVID-19, tamoxifen, not raloxifene, is being currently
studied in one clinical trial [350].
Aromatase inhibitors, including anastrozole, letrozole,

and exemestane, mitigate testosterone conversion into
estrogens, as per its inherent mechanisms of action. Aro-
matase inhibitors have exhibited harmful effects in the
RAAS [378] and indirectly increase of 5alpha-reductase
activity and DHT levels [379, 380], enhancing TMPRSS2
expression. Since these effects in the RAAS and TMPR
SS2 may potentialize SARS-CoV-2 infectivity and

increase risk of thromboembolic events, aromatase in-
hibitors should be discouraged as candidates for
COVID-19.
Unlike estrogens, progestogens lack demonstration of

any mechanism of protection from COVID-19, has sup-
pressive effects on both innate and cell-mediated im-
mune responses, in particular inducing T-lymphocyte
cell death [381], apparently do not have any major effect
in the RAAS [382–384], although hormones with pro-
gesterone activity compete with aldosterone in the MR.
Because of the suppressing effects on T-lymphocyte,
progesterone should be discouraged for COVID-19, des-
pite being currently evaluated for COVID-19 in hospital-
ized men [385].

Drugs unrelated to the endocrine system
The present review focused on the potential of endo-
crine drugs and targets as candidates to protect from
COVID-19. However, non-endocrine drugs have shown
strong effect and evidence as direct or indirect anti-viral
activity [386]. Drug classes unrelated to the endocrine
system that have been proposed and are being currently
tested for COVID-19 include antiviral drugs (lopinavir/
ritonavir, remdesivir, darunavit/umifenovir, favipiravir,
nelfinavir and oseltamivir), broad-spectrum anti-
parasitic drugs (nitazoxanide, ivermectin), antimalarics
(mefloquine, chloroquine and hydroxychloroquine), the
anti-alcohol addiction drug disulfiram, and anti-
inflammatory drugs to modulate immunologic response,
including interferons, tocilizumab, and other biological
molecules and monoclonal antibodies (baricitinib, suniti-
nib – AAK1/GAK inhibitors, upadacitinib, tofacitinib –
JAK inhibitors, and belinostat – HDAC inhibitor) [386].

Final discussion
Figure 1 summarizes the theoretical potential candidates
according to the stages of COVID-19 that they may pro-
vide benefits, as well as the list of reasons the support
the testing of existing drugs for COVID-19.
Collectively, current understanding shows that SARS-

CoV-2 infection is enhanced by abnormally high and
low attached and circulating ACE2 expression respect-
ively, increased pro-inflammatory angiotensin-II-AT1
axis, reduced anti-inflammatory angiotensin- [1–6]-Mas
receptor axes, and increased TMPRSS2 activity. These
abnormalities are able to justify obesity, hypertension,
and AGA males as being major risk factors of COVID-
19 complications. Multiple endocrine-related drugs, in-
cluding hormones, anti-diabetics, anti-androgens and
other types of molecules exhibit actions in one or more
sites that may inhibit SARS-CoV-2 infectivity, replica-
tion, or inflammatory or immunologic overreaction and
consequent ARDS.
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Except for dexamethasone in severe COVID-19, while
effective and safe drugs for SARS-CoV-2 lack, researches
should be encouraged to consider testing existing drugs
with well-established safety profile, known risks and
contraindications, notorious clinical management, favor-
able cost-effectiveness, and promising results in COVID-
19. Specific combination of some of the candidates for
COVID-19 may exhibit synergistic effects for COVID-
19, and should also be considered for clinical trials.
Besides tested in clinical trials for COVID-19, drug

classes listed as candidates for COVID-19 should also be
evaluated in patients using these drugs regular- and
chronically for original purposes, before COVID-19 is
installed, since acute and chronic use of overall drugs
may present distinct effects [387].
Finally, it must be emphasized that regardless of theor-

etical potential to protect from COVID-19 or prelimin-
ary favorable outcomes, drug treatment for COVID-19
patients must be prescribed only after consistent demon-
stration of efficacy in randomized clinical trials. After
proven efficacy, use of drug must be restricted for pa-
tients in the specific stage of COVID-19 for which drug
has demonstrated efficacy, since drugs can lead to op-
posite results, as demonstrated with dexamethasone,
which while reduced mortality in critically ill patients,
subgroup analysis suggested that its use in mild and
non-hospitalized patients led to increased mortality [64].
Drugs must prove efficacy in terms of reduction of
hospitalization, need of intensive care, mechanical venti-
lation, and death, and prevention of long-term pulmon-
ary, musculoskeletal, and other physical and mental
consequences, in order to be clinically used.

Conclusions
In the current lack of solid evidence for any specific drug
against COVID-19, researchers should consider testing
existing drugs with robust long-term safety profile, ab-
sence of major risks or life-threatening complications,
known contraindications, familiarity in medical commu-
nity and health care, and plausibility to exhibit protective
effects from COVID-19. However, it is mandatory that
these drugs are only prescribed in case their efficacy has
been proven in clinical trials, and specifically for those
patients in the COVID-19 stage for which efficacy has
been proven.
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