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Running title 

Vitamin D3 supplementation improves aerobic performance combat sports 
 

  Vitamin D3 supplementation can affect the strength and power of an athlete, however the 

effect on endurance performance remains unclear. Twenty-seven recreational male combat 

athletes with at least 12 months experience within combat sports were recruited (age: 24±4 

years, stature: 176±6 cm, weight: 77±14 kg). Participants completed baseline testing for 

blood haemoglobin and haematocrit, upper and lower body VO2peak and upper and lower 

body Wingate. Following testing participants were stratified to 50000IU (D1), 80000IU (D2) 

or 110000IU (D3) of vitamin D3 per week. They then completed a 6-week placebo period 

followed by a 6-week supplementation period. Retesting was carried out after the placebo 

and supplementation period. There was a significant effect for time for haemoglobin and 

haematocrit, upper and lower body VO2peak and upper body Wingate power (p<0.01) but no 

effect for dose of vitamin D given. Performance data was normalised to vitamin D intake and 

http://crossmark.crossref.org/dialog/?doi=10.1080/17461391.2020.1744736&domain=pdf


there was a moderate effect size between D1 and D2 for lower body VO2peak (d=0.6), upper 

body VO2peak (d=0.13) and upper body average power (d=0.75), with a large effect size 

between D1 and D2 for haemoglobin (d=1.19), haematocrit (d=0.93) and upper body peak 

power (d=0.95). There was a large effect size for D1 compared to D3 for all variables 

(d>0.8). Therefore, there is no additional benefit to increasing dose above 500000IU vitamin 

D per week. Given the endurance adaptations from vitamin D supplementation and the 

importance of endurance for combat performance, recreational combat athletes should 

supplement at 50000IU per week for six weeks. 
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Introduction 

Vitamin D is a secosteroid hormone which affects calcium metabolism and bone health 

(Laird et al., 2010). Vitamin D receptors (VDRs) have been found in almost all human 

nucleated cells (Owens, Allison and Close., 2018). Calcitriol is the biologically active form of 

vitamin D and binds to VDRs, causing the expression of over 900 gene variants (Wang et al, 

2005), some of which may elicit an athletic performance benefit (Dahlquiest, Dieter and 

Koehle., 2016).  Despite this, approximately 15% of the worldwide population has vitamin D 

inadequacy (Pfotenhaur and Shubrook., 2017).  Vitamin D inadequacy may result in 

declining training quality along with increased incidence of injury and illness (Hamilton., 

2011).   

  Vitamin D supplementation has been shown to increase the force and power output of 

skeletal muscle (Ogan and Pritchett., 2013). This is possibly due to an increase in the 

sensitivity of calcium binding sites on the sarcoplasmic reticulum, leading to improved 

crossbridge cycling and muscle contraction (Ainbinder et al., 2015). Supplementation of 

2000IU and 5000IU.day-1 of vitamin D3 improved muscle strength in middle aged patients 



with vitamin D inadequacy who were otherwise healthy (Diamond, Wong and Golombick., 

2013). Likewise, a daily dose of 5000IU vitamin D3 has also been shown to improve 10m 

sprint times and vertical jump performance in professional soccer players compared to 

placebo (Close et al., 2013). A single bolus of 150000IU of vitamin D3 improved hamstring 

and quadriceps concentric contractile ability 8 days after supplementation in judoka athletes 

(Wyon et al., 2016). 

  Although there is limited literature exploring the relationship between vitamin D 

supplementation and aerobic performance, recently Todd et al (2017) administered 

3000IU.day-1 of vitamin D3 for 12 weeks to male and female Gaelic football players. Despite 

serum vitamin D levels rising in those supplementing with vitamin D3, there was no effect on 

VO2max or other performance variables. Jastrzebska et al (2018) supplemented 36 well 

trained soccer players with 5000IU.day-1 of vitamin D3 or a placebo solution while 

undertaking a high intensity interval (HIIT) training protocol for 8 weeks. The vitamin D group 

improved VO2max by 20% while the placebo group improved VO2max by 13%. It was 

suggested that vitamin D3 supplementation elicits a significant, but moderate effect on 

aerobic performance in well trained soccer players. To the authors best knowledge no 

studies exist which explore the influence of vitamin D3 supplementation upon the aerobic 

performance of combat sport athletes. Aerobic performance is one of the key elements of 

fitness required for successful combat sport performance yet is sparsely researched (Barley 

et al, 2019). Combat sports athletes are required to perform repetitive high intensity actions 

such as those seen during striking exchanges (Chaabene et al., 2015). In order to sustain 

the high physiological demands of competition, a well-developed aerobic fitness level is 

required (Chaabene et al., 2015).  

  Vitamin D inadequacy is especially prevalent amongst combat sports athletes in northern 

latitudes such as the United Kingdom and becomes more frequent and severe during the 

winter months (Magee et al., 2013). This is due to limited sun exposure from training 

indoors, coupled with the northern latitude reducing the effect of the sun to stimulate 



exogenous vitamin D production (Ogan and Pritchett., 2013). Weight cutting practices are 

commonplace in combat sports at all levels with 60-80% of athletes reporting engagement in 

weight cutting (Barley, Chapman and Abbiss, 2019). Techniques employed include 

exercising in heavy clothing and dietary restriction (Barley, Chapman and Abbiss, 2019). 

Exercising in heavy clothing will limit exposure to the sun, lowering exogenous vitamin D 

production (Ogan and Pritchett, 2013).   

  The potential mechanisms for possible improvements in aerobic performance remain 

unclear. It is possible that the CYP enzymes involved in the activation of vitamin D to the 

biologically active 1,25-dihydroxyvitamin D3 contain heme proteins which may affect the 

affinity of oxygen to bind to haemoglobin, improving oxygen transport and aerobic 

performance (Sugimoto and Shiro, 2012). Vitamin D may also play a role in the iron 

regulation of the body, promoting more iron to be biologically available for haemoglobin 

production (Bacchetta et al, 2014). Vitamin D also may improve mitochondria function in 

deficient adults (Sinha et al, 2013). This implies that potential changes in aerobic 

performance may be attributed to improvements in cellular respiration and improved oxygen 

carrying capacity. 

  Therefore, the purpose of this study was to evaluate if supraphysiological doses of vitamin 

D3 can improve aerobic performance in male combat sports athletes in conjunction with their 

normal training and if so, which of the evaluated doses would be most effective. It is 

hypothesised that a larger dose of vitamin D will evoke greater aerobic performance 

benefits.   

Methodology 

Participants: 

  27 male recreational combat sport athletes who were not actively competing (MMA n=11; 

Brazilian Jiu-jitsu (BJJ) n=10; boxing n=5) were recruited with a minimum 1 year combat 

sports training who trained twice per week in their sport (mean±SD; age: 24±4 years, 



stature: 176±6 cm, weight: 77±14 kg). Participants were excluded if they had any injury over 

the past six months, were lactose intolerant or recently holidayed in climates promoting high 

endogenous vitamin D production. Participants were informed of the study both verbally and 

in writing prior to giving informed consent. The study was approved by Abertay University 

ethics committee and completed in accordance with the Declaration of Helsinki. 

Study Protocol: 

  A single-blind cross-over design was used with a placebo period, followed by a vitamin D 

intervention. Participants were blinded to supplementation throughout the protocol with the 

placebo period being administered first to negate the necessity of a washout period. This 

was done as a single dose of vitamin D may improve vitamin D status by as much as three 

months post-supplementation (Kearns, Alvarez and Tangpricha, 2014). Testing and 

supplementation was completed over the winter months (October-April) when exogenous 

vitamin D production would be negligible at a latitude of 57ºN due to limited UVB radiation 

exposure (Wacker and Holick, 2013).  Participants completed a familiarisation session prior 

to testing commencement. Participants refrained from consuming caffeine, alcohol or 

engaging in strenuous exercise for 24 hours and fasted for 4 hours prior to testing. 

Participants verbally confirmed they completed their own training weekly and did not 

undertake any new training stimuli. 

   Testing Session 1: Stature was measured using a stadiometer (SECA) and weight with 

bioimpedance scales (Tanita MC-780, Tokyo, Japan). To measure haematocrit and 

haemoglobin levels a fingerprick blood sample was obtained which was placed into a 

haematocrit analyser to give a reading of haematocrit and haemoglobin (Hemo Control, EKF 

Diagnostics, Cardiff United Kingdom). 

  An incremental cycling test (Monark Ergomedic 894, Vansboro, Sweden) was used to 

assess lower body (LB) VO2peak via breath by breath gas collection system (Metalyzer®3B 

gas analy-ser, Cortex, Leipzig, Germany). Heart rate (Polar Electro, Kempele, Finland) was 



recorded continuously through-out the test. After a two minute rest participants cycled at 

60RPM against a resistance of 1kg, with 0.5kg resistance added every three minutes until 

volitional exhaustion or they were unable to maintain 60RPM. VO2peak was taken as the 

highest 10 second average and time to exhaustion (TTE) taken as the total time spent 

cycling.  

   Testing Session 2: Participants completed an incremental upper body (UB) VO2peak test 

while connected to the breath by breath analyser (Metalyzer®3B gas analy-ser, Cortex, 

Leipzig, Germany). Participants knelt in front of the arm ergometer with the heels of their feet 

remaining in contact with their buttocks throughout the test. Heart rate was recorded 

continuously throughout (Polar Electro, Kempele, Finland).  After a two minute rest 

participants cycled at 60RPM against a resistance of 1kg, with 0.2kg resistance added every 

three minutes until volitional exhaustion or inability to maintain 60RPM. VO2peak was taken as 

the highest 10 second average and TTE was the total time spent cycling.  

  Testing Session 3: Utilising the LB ergometer, participants sprinted maximally for 30 

seconds against a resistance 7.5% of their bodyweight while remaining seated. Resistance 

was applied once 120RPM was reached. Peak power (PP) and average power (AP) were 

recorded.  

After a 10 minute rest, participants knelt in front of the arm ergometer as previously 

described and completed a 30s sprint against 5% bodyweight. Resistance was applied from 

the start. PP and AP were recorded. Strong verbal encouragement was provided throughout 

both tests. 

  Testing was carried out at baseline, after 6 weeks of placebo supplementation and after 6 

weeks of vitamin D supplementation. Group allocation was randomised, stratified to LB 

VO2peak. 

   Supplementation Protocol: All participants were blinded to supplementation and first 

completed a six week placebo period, reporting to the laboratory once a week to consume 

three capsules totalling 300mg of maltodextrin with 300ml of Jersey full fat milk (Graham’s 



Gold Smooth, United Kingdom) and provided a three day food diary. After six weeks the 

participants then consumed either 50000IU’s (D1) (n=9), 80000IU’s (D2) (n=9) or 

110000IU’s (D3) (n=9) of vitamin D3 with 300ml of Jersey full fat milk once a week for six 

weeks and continued to provide a food diary each week. 

  Statistical Analysis: All data are presented as mean±SD. Statistical analysis was completed 

using jamovi 1.0.0.0 with significance set at P<0.05. All performance tests and body 

composition were analysed with a 3X3 ANOVA with LSD post hoc analysis. Average 

nutritional intake across the placebo and supplement periods were evaluated using Diet Plan 

7.0 with a 3X2 ANOVA with LSD post hoc analysis. Smallest worthwhile change was 

undertaken as outlined by Swinton et al (2018) with the change in performance normalised 

to total vitamin D3 supplemented throughout the study. Cohens D effect size was calculated 

for each smallest worthwhile change to determine the most effective dose with effect size 

defined as; d = 0.2-0.49 representing a small effect size, d = 0.5 -0.79 representing a 

medium effect size and d > 0.8 representing a large effect size.  

Results 

  VO2peak: There was no significant group x time effect for LB (P=0.292; Table 1) or UB 

VO2peak  (P=0.794 ;Table 1) but there was a significant time effect for LB and UB VO2peak 

(P<0.001 ; Table 1). 

  TTE: There was no significant group x time effect for LB (P=0.576) or UB TTE (P=0.538; 

Table 1) with no time effect for LB TTE (P=0.164; Table 1) and a significant time effect for 

UB TTE (P<0.001; Table 1).  

  Haemoglobin and Haematocrit: There was no significant group x time effect for either 

haemoglobin (P=0.471; Table1) or haematocrit (P=0.648; Table 1) but there was a 

significant time effect for both (P<0.001; Table 1). Haemoglobin and haematocrit was 

unchanged across the placebo period but both increased post-intervention by approximately 

5-8% (Table 1). 



  Wingate Performance: There was no significant group x time effect for lower or upper body 

PP (P=0.315; P=0.302; Table 1) and AP (P=0.454; P=0.726 ;Table 1) but there was a 

significant time effect for LB PP (P=0.004; Table 1) and UB PP (P<0.001; Table 1) and AP 

(P<0.001; Table 1). 

  Dietary Intake: There was no significant group x time effect (P=0.824 ; Table 1) for total 

energy intake but there was an effect of time (P=0.005 ;Table 1). Calcium intake was higher 

across all groups during the intervention period (P<0.001; Table 1). Zinc and magnesium 

intake increased during the intervention period for D1 and D2 (Table 1). Vitamin D intake 

was similar for each group across the placebo period but increased significantly with 

intervention (P<0.001 ; Table 1).  

  VO2peak smallest worthwhile change: The smallest worthwhile change for LB VO2peak when 

normalised to total mg vitamin D3 supplemented over the study protocol was 0.086 ml.min-

1.kg-1.mgVitD-1 with a moderate effect size for LB VO2peak between D1 and D2 with a large 

effect size between the D1 and D3. (d=0.60 D1 v D2; d=0.97 D1 v D3; d=0.23 D2 v D3; 

Figure 1A). The smallest worthwhile change for UB VO2peak was 0.1 ml.min-1.kg-1.mgVitD-1 

(d=0.13 D1 v D2; d=0.5 D1 v D3; d=0.7 D2 v D3; Figure 1B). 

  Time to exhaustion: The smallest worthwhile change for lower body TTE was 3.2 s.mgVitD-

1 and for upper body TTE was 2.2 s.mgVitD-1. There was a small effect size for LB TTE 

between D1 and D3 (d=0.06 D1 v D2; d=0.25 D1 v D3; d=0.20 D2 v D3; Figure 1C). UB TTE 

saw a large effect size for both D1 and D2 against D3 (d=0.16 D1 v D2; d=0.86 D1 v D3; 

d=1.06 D2 v D3; Figure 1D). 

  Haemoglobin and haematocrit: The smallest worthwhile change for haemoglobin was 0.01 

mmol.l-1.mgVitD-1 with a large effect size between D1 against both D2 and D3 (d=1.19 D1 v 

D2; d=1.32 D1 v D3; d=0.15 D2 v D3; Figure 1E). The smallest worthwhile change for 



haematocrit was 0.05 %.mgVitD-1. There was a large effect size between D1 and both the 

D2 and D3 groups (d=0.93 D1 v D2; d=1.31 D1 v D3; d=0.46 D2 v D3; Figure 1F). 

  Wingate peak power: The smallest worthwhile change for LB PP was 0.02 W.kg-1.mgVitD-1 

with a small effect size between D1 and D3 seen (d=0.03 D1 v D2; d=0.26 D1 v D3; d=0.36 

D2 v D3; Figure 2A). Smallest worthwhile change for UB PP was 0.01 W.kg-1.mgVitD-1 with a 

large effect size between D1 against D2 and D3 (d=0.95 D1 v D2; d=0.83 D1 v D3; d=0.40 

D2 v D3; Figure 2B).   

  Wingate average power: The smallest worthwhile change for LB AP was 0.01 W.kg-

1.mgVitD-1 with a small effect size for LB AP between D1 and D2 with a moderate effect size 

between D1 and D3 (d=0.41 D1 v D2; d=0.58 D1 v D3; d=0.22 D2 v D3; Figure 2C). The 

smallest worthwhile change for UB AP was 0.02 W.kg-1.mgVitD-1 with a moderate effect size 

between D1 and both D2 and D3 (d=0.75 D1 v D2; d=0.71 D1 v D3; d=0.19 D2 v D3; Figure 

2D). 

Discussion 

  The major findings of this study are that supplementation with vitamin D3 improves LB and 

UB VO2peak with a concurrent improvement in haemoglobin concentrations and haematocrit. 

A small increase in LB PP was seen with D2 and all groups improved UB PP and AP (Table 

1). Findings were consistent, regardless of dose. This suggests that there is no additional 

benefit to vitamin D supplementation above 50000IU’s per week. In light of the 

improvements in aerobic performance, combat athletes should seek to supplement their 

dietary intake of vitamin D3. 

  Aerobic Performance: Following 6 weeks of supplementation both LB and UB VO2peak were 

increased compared to the post-placebo period (Table 1). However, only D1 increased both 

LB and UB VO2peak compared to the pre-placebo time point (Table 1). The magnitude of 

change was greater than the smallest worthwhile change in all groups (Figure 1A & B), with 

a moderate to large effect in lower body VO2peak for D1 compared to the other two groups. In 



D1 we see a 14-16% increase in both LB and UB VO2peak and an 11-16% increase in UB in 

the other groups. The size of adaptation in lower body VO2peak is similar to that reported in 

rowers following 8 weeks of supplementation at 42000IU.week-1 when combined with high 

intensity training (Jastrzebski., 2014.) but smaller than those reported in soccer players who 

ingested 5000IU.day-1 (Jastrzebska et al., 2018). However, it should be noted that 

Jastrzebski (2014) and Jastrzebska et al (2018) both reported increases in VO2max and not 

VO2peak which is an important distinction to establish between this current study and their 

previous work as the two terms are not interchangable. Nevertheless, it is suggested that 

vitamin D3 intake may positively benefit aerobic performance in athletes. Improvements in 

VO2peak can come from either peripheral changes or changes in oxygen delivery (Daussin et 

al., 2007). Adrestani et al (2011) suggested that vitamin D3 inadequacy may lower cardiac 

output and increase peripheral arterial resistance, decreasing aerobic performance. In 

clinical populations vitamin D3 has been suggested to have a role in erythropoiesis (Zughaire 

et al., 2014). In the current study we report an increase in both haemoglobin and haematocrit 

regardless of dose of vitamin D (Table 1, Figure 1). When supplemented at a lower dose 

(24000 IU.week-1) no change in haemoglobin and a small increase in haematocrit have been 

reported (Mielgo-Ayuso et al., 2018) As such, it is possible that there needs to be a large 

excess of vitamin D3 to switch on erythropoiesis. The improvement in VO2peak may reflect, to 

some extent, the greater oxygen capacity associated with increased red blood cell mass. 

Increases in VO2max of 7% has been seen in well trained men who experienced increases in 

haemoglobin and haematocrit via erythropoietin injection (Durussel et al., 2013).  

  Wingate Performance: Six weeks of vitamin D3 supplementation saw an 8% improvement 

in LB PP in D2. Improvements in UB PP by 4-13% and AP by 5-12% from post-placebo 

testing were seen across all groups (Table 1). The magnitude of change was highest in D1 

for all measures (Figure 2). The change in LB AP was less than the smallest worthwhile 

change for D3 (Figure 2C) and the change in UP AP was less than the smallest worthwhile 

change for D2 (Figure 2D). A small effect was seen for LB PP which corroborates the work 



of Fitzgerald et al (2015), who demonstrated that a small correlation exists between vitamin 

D status and LB PP. For the first time we observed positive improvements in UB Wingate 

performance with vitamin D3 supplementation. It has been suggested that vitamin D3 

insufficiency leads to an atrophy of type II fibres but not type I fibres (Hamilton., 2010). 

Supplementation of 4000IU.day-1 of vitamin D3 lead to a 30% increase in intramuscular VDR 

concentration and a 10% increase in total muscle fibre size with a greater effect on type II 

fibres than type I fibres in elderly females (Ceglia et al., 2013). It is not clear if supplementing 

with vitamin D3 affects type II or type I fibres in a younger, healthy cohort. A correlation 

exists between LB and UB power measures in boxers although UB power can vary, 

potentially due to lower muscle mass (Giovani and Nikolaidis., 2012). As vitamin D3 can 

affect type II fibres in elderly participants with a low muscle mass (Ceglia et al, 2013), it is 

possible that the lower muscle mass of the UB compared to the LB, coupled with the large 

doses of vitamin D3 provided, may result in greater adaptation in UB Wingate performance.  

  Most Effective Dose: The change in performance measures when normalised to vitamin D3 

intake was consistently larger for D1 compared to both D2 and D3 and so may be 

considered the most effective dose evaluated to exert an ergoegenic benefit (Table 1; Figure 

1 and Figure 2). Owens et al (2017), states that high doses of 70000IU.week-1 of vitamin D3 

was detrimental to athletic performance as excessive circulating vitamin D is converted to 

24,25[OH]2D. 24,25[OH]2D then may act as a blocking molecule by binding to VDRs (Curtis 

et al., 2014). Other sources state that supplementing with 50000IU.week-1 of vitamin D3 are 

effective at correcting vitamin D insufficiency and improving strength training adaptations 

with aerobic training adaptations not investigated (Magee et al., 2013; Alimoradi et al., 

2019). As a result, the International Olympic Committee recommend that 50000IU.week-1 of 

vitamin D3 supplementation be administered to athletes who decide to supplement weekly 

(Maughan et al., 2018). 

  No serum vitamin D levels were recorded during the study. Given the unreliability of 

assay’s for measuring serum vitamin D levels (Binkley et al., 2004) and the fact that serum 



levels do not reflect tissue levels of vitamin D (Ross., 2011), it was decided not to measure 

serum levels. However, all supplementation was observed, ensuring full compliance and 

weekly diet data was recorded. This means we can be confident that intake of vitamin D3 

increased performance measures. Although training was not recorded, participants verbally 

confirmed no changes in training. This allowed us to ascertain the effect of vitamin D 

supplementation with full fat milk in isolation without the addition of training stimuli. It is 

possible that no significant differences in aerobic performance were seen between testing 

sessions one and two due to martial artists and combat sports athletes engaging in similar 

training weekly (Toskovic, Blessing and Williford, 2004). This may lead to inadequate 

training overload stimuli which will result in no training adaptations due to specific genes and 

molecular pathways not being activated (Coffey and Hawley, 2007). Future studies should 

aim to evaluate the effect of training upon the measured parameters when supplemented 

with vitamin D. In addition, research into the effect of high dose vitamin D supplementation 

on trained and competitive athletes in a competition phase of training would be valuable to 

ascertain if training status alters the response of high dose vitamin D on aerobic 

performance. A significant limitation of this work was the use of a single-blind crossover 

design. As stated previously this was done to negate the necessity of a washout period, 

however it leads to the possibility that a learning effect may exist with respect to the exercise 

tests. However, participants were blinded to supplementation and their performance results 

until the study was completed which adds confidence that the obtained results are accurate 

to reduce the risk of participants altering their behaviours and efforts during the tests 

(Karanicolas et al, 2010). Nevertheless, future studies must now implement more robust 

protocols which assess the impact of vitamin D on the aerobic performance of combat sport 

athletes using randomised double-blind designs.     

  We demonstrate for the first time the impact of supraphysiological supplementation with 

vitamin D3 on aerobic performance outcomes in combat sports. The most effective dose 

examined is 50000IU.week-1 and there is no advantage to increasing dose on performance 



measures. Given the magnitude of improvements seen in this study for both upper and lower 

body performance then supplementation with high dose vitamin D3 should be recommended 

to recreational combat athletes. However, vitamin D toxicity, although rare, can be life 

threatening with symptoms including apathy, vomiting, polyuria, polydipsia, gastrointestinal 

cramps, elevated blood calcium and kidney damage (Marcinowska-Suchowierska et al, 

2018). As such, supplementation should be undertaken under the guidance of a trained 

dietician. Nevertheless, it appears that six weeks of supplementation of up to 110000IU’s is 

safe and causes no adverse effects with six weeks of 50000IU’s of vitamin D 

supplementation recommended as optimal to reverse deficiency (Maughan et al, 2018) and 

convey performance benefits to recreational combat sport athletes.  
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Table 1: Table of results. *= significantly different from baseline. ⱡ=significantly different from 
post-placebo. a= significantly different from 50000IU Group. b= significantly different from 
80000IU Group. c= significantly different from 110000IU Group 

 

 50000IU Group 80000IU Group 110000IU Group 

 Baseline Placebo Intervention Baseline Placebo Intervention Baseline Placebo Intervention 

Nutritional 
Analysis 

         

Daily Energy 
(kcal) 

 1987±47c 2102±357*bc  1969±272c 2076±365*ac  2218±494ab                          2288 ± 446*ab 

Daily Zinc (mg)  10.4±3.1 10.7±3.1*  10.3±3.7 10.2±4.1   9.8±1.9  10.3±1.9*  

Daily PUFA (g)  12.4±4b 12.7±4.2b  8.7±3.5ac  8.6±3.3ac  13.4±5.5b 13. ±5.5b 

Daily Calcium 
(mg) 

 786±318.3 887.1±328.9*  754.8±485.5 836.5±495.2 *  636.8±179.3  800.2±200.3* 

Daily 
Magnesium 
(Mg) 

 244±80.3  256±81.5*  216.7±74.7c  211.4±72c  274.7±87b  286.4±86.7*b 

Weekly Vitamin 
D (mg) 

 26.1±11.1 1275.4±12.4*bc  26.4±20.3 2028.2±20.5*ac  26.4±11 2779.8±11.3*ab 

Daily Iron (mg)  12.1±2.6 12±2.9b   10±3.4 9.6±0.3a  11±2.5  11±2.5 

Haematological 
Analysis 

         



Haemoglobin 
(mmol.l-1) 

9.5±0.6 9.6±0.7 10.3±0.6* ⱡ 10.1±0.6  10.1±0.5 10.6±0.4* ⱡ c 9.6±0.6 9.4±0.6 10±0.5* ⱡ b 

Haematocrit 
(%) 

45±3 45±3 49±3* ⱡ 48±3 48±3 51±2* ⱡ c 46±3 45±3 48±2* ⱡ b 

Body 
Composition 

         

Body Fat % 16.2±6.9 16.4±6.7 17.4±7.1 17.5±7.3 17.7±6.6 16.6±6.3 17.6±16.6 17.3±6.3 17.7±6.8 

Body Mass 
(kgs) 

74±17.2 73.6±16.8 74±17.2 76.8±11.2 76.6±11.7 76.7±11.6 80.9±13.3 80.2±12.6 80.6±12.6 

Performance 
Analysis 

         

LB VO2peak 
(ml.min.kg-1) 

45±6 45±7 50±5* ⱡ 46±5 43±7* 48±4* ⱡ 47±7 43±6* 47±7 ⱡ 

UB VO2peak 
(ml.min.kg-1) 

35±7 35±7 39±6* ⱡ 36±6 33±6 39±2 ⱡ 37±8 34±8 39±8 ⱡ 

LB TTE (s) 1090±180 1089±184 1108±298 1082±174  1050±140  1094±287 1099±279 1119±135 1226±154 

UB TTE (s) 679±208  802±196  929±253* 914±361  910±312 1141±335* ⱡ 751±357  893±188* 1021±223* 

LB Peak Power 
(W.kg-1) 

10.8±1.2 11±1.1 11.6±1.5 11.4±1.9 11.3±1.8 12.2±2 ⱡ 11.7±1.7 11.3±1.7 12.1±1.2 

LB Average 
Power (W.kg-1) 

7.8±0.5  7.7±0.7 8±0.7 7.8±0.8 7.6±0.7 7.8±0.8 7.8±1 8±0.8  8.1±0.6 

UB Peak 
Power (W.kg-1) 

5.6±0.7  5.5±0.7  6.2±1 ⱡ 5±0.7  5.8±1* 6±1.1* 5±1.2 5.6±1  6.3±0.6* ⱡ 

UB Average 
Power (W.kg-1) 

4.3±0.6  4.3±0.6 4.8±0.8* ⱡ 3.6±0.7 4±1.1  4.2±1* 3.5±0.7 4±0.8* 4.5±0.5* 

 

 



 

 

Figure 1: Change in aerobic performance normalised to total vitamin D3 intake. Dotted line 
signifies smallest worthwhile change. *= small effect size between 80000IU group. **= 
moderate effect size between 80000IU group. ***= large effect size between 80000IU group. 
†= small effect size between 110000IU group. ††= moderate effect size between 110000IU 
group. †††= large effect size between 110000IU group  

 

 



 

Figure 2: Change in lower and upper body wingate performance normalised to total vitamin 
D3 supplemented over the intervention. Dotted line signifies smallest positive and negative 
worthwhile change in all figures. *= small effect size between 80000IU group. **= moderate 
effect size between 80000IU group. ***= large effect size between 80000IU group. †= small 
effect size between 110000IU group. ††= moderate effect size between 110000IU group. 
†††= large effect size between 110000IU group 

 




