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Joyce KE, Weaver SR, Lucas SJ. Geographic components of SARS-CoV-2
expansion: a hypothesis. J Appl Physiol 129: 257–262, 2020. First published July
23, 2020; doi:10.1152/japplphysiol.00362.2020.—The emergence of COVID-19
infection (caused by the SARS-CoV-2 virus) in Wuhan, China in the latter part of
2019 has, within a relatively short time, led to a global pandemic. Amidst the initial
spread of SARS-CoV-2 across Asia, an epidemiologic trend emerged in relation to
high altitude (HA) populations. Compared with the rest of Asia, SARS-CoV-2
exhibited attenuated rates of expansion with limited COVID-19 infection severity
along the Tibetan plateau. These characteristics were soon evident in additional HA
regions across Bolivia, central Ecuador, Nepal, Bhutan, and the Sichuan province
of mainland China. This mini-review presents a discussion surrounding attributes of
the HA environment, aspects of HA physiology, as well as, genetic variations
among HA populations which may provide clues for this pattern of SARS-CoV-2
expansion and COVID-19 infection severity. Explanations are provided in the
hypothetical, albeit relevant historical evidence is provided to create a foundation
for future research.

COVID-19; high altitude; hypoxia; SARS-CoV-2

INTRODUCTION

The emergence of COVID-19 infection (caused by SARS-
CoV-2) in Wuhan, China in the latter part of 2019 has, within
a relatively short time, led to a global pandemic (13, 39, 81).
Amidst the initial outbreak of COVID-19 and its expansion
throughout mainland China, an epidemiologic trend emerged
relative to high altitude (HA) populations. Lower transmission
rates and reduced severity of COVID-19 infections were ini-
tially noted on the Qinghai-Tibetan plateau during the virus’s
rapid spread across Asia (49, 85). Growing evidence in support
of similar trends have now been shown in Bolivia (1); Peru,
Argentina, and Chile (24); HA regions of central Ecuador (1,
63); remote villages in Papua (78); the Sichuan province of
mainland China (46, 91); Nepal and Bhutan (3); and Himala-
yan regions of India including Arunachal Pradesh and Ladakh
(24). While it is acknowledged the pandemic is still in its early
stages in some of these regions, the disproportionate spread of
SARS-CoV-2 deserves further attention. The objective of this
short review is to examine environmental and physiological
factors associated with HA in regards to the disparate incidence
and severity of COVID-19 infections between high- and low-
altitude populations. The discussion is presented in the hypo-
thetical, albeit historical evidence is provided with the inten-
tion of creating a foundation for future epidemiologic investi-
gations of COVID-19 among HA populations.

PHYSIOLOGICAL FACTORS

HA is associated with a reduced partial pressure of oxygen
and concomitantly reduced arterial oxygenation. HA popula-
tions exhibit greater respiratory function evident in their supe-
rior ventilatory responses to hypoxia (71) and greater vital and
total lung capacities (26). They display improved oxygen
transport across the alveolar-arterial gradient and also utilize
oxygen more effectively within cardiac tissue (44). Taken
together, HA natives’ ability to resist SARS-CoV-2 could be
attributed to superior responses to hypoxemia with consequen-
tially less strain on the heart in acute respiratory distress, which
is critical if infection progresses (29, 81).

Hypoxic conditions have also been associated with down-
regulation and suppression of several RNA and DNA viruses
(e.g., adenovirus and influenza), which are often culprits of
respiratory infections (45, 79). Mechanisms by which hypoxia
inhibits viral replication can vary between viruses and require
further investigation with regards to SARS-CoV-2. Neverthe-
less, adaptations associated with HA acclimatization have been
linked to viral infection resistance and attributed to reductions
in citric acid buildup that are believed to reduce viral synthesis
in lung tissue (8). Similarly, associations between altitude-
hypoxia and the restriction of Mycobacterium tuberculosis
growth in whole blood and the augmentation of anti-mycobac-
terial cellular immunity (28) have been identified. Such effects
are consistent with the HA-induced amplifications in cell-
mediated immunity (increased PHA-blasts, lymphocyte migra-
tion index, and DNCB response) observed over 30 years earlier
(17) and parallel the lower prevalence and reduced severity of
tuberculosis (TB) infections at HA (62, 74).Correspondence: K. E. Joyce (kej764@student.bham.ac.uk).
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SARS-CoV-2 may encounter similar immune challenges in
hosts at HA which could explain the higher proportion of
asymptomatic COVID-19 cases at HA (46, 49), as well as, the
overall lower incidence and attenuated severity of symptomatic
cases at HA (1, 63, 91). Genetic differences between the
immunologic or inflammatory responses of lowlanders and
highlanders (22, 90) may also be of interest given the apparent
variability in immune and inflammatory responses to SARS-
CoV-2 and the associated severity of COVID-19 infection (36,
39, 50, 65).

Whether the summation of these factors has significant benefits
in regards to COVID-19 remains to be investigated fully; how-
ever, it is clear that HA populations exhibit unique physiological
and health profiles that may have the potential for protection
against the development and severity of COVID-19 infection.
Investigations surrounding the immune and inflammatory re-
sponses to SARS-CoV-2 among lowlanders and HA natives are
required. The recent emergence of dexamethasone as a successful
treatment strategy for severe COVID-19 infection (38) aligns with
its common use at HA, which targets problematic inflammation
and capillary leak that accompany severe HA illness (e.g., HA
cerebral edema) (43). Dexamethasone therefore presents a unique
method for exploring HA-associated distinctions that may miti-
gate (or exacerbate) inflammatory responses to SARS-CoV-2.

ENVIRONMENTAL FACTORS

Numerous environmental characteristics associated with HA
may also explain physiological findings and may be important
in the future impact of COVID-19. Significant differences
between highlanders and lowlanders are observed among the
most commonly identified comorbidities (10) of COVID-19,
with residence at higher elevation associated with lower inci-
dence of cardiovascular disease and mortality (60), diabetes
mellitus (83), obesity (84), and metabolic syndrome (51),
which have all been linked to higher risk of severe COVID-19
infection and mortality (88). In contrast, hypertension appears
to be higher in HA populations (2, 58, 61), although it is not
possible to determine whether this puts these populations at a
greater risk for COVID-19 infection, as there is still wide
debate about whether the association between hypertension and
COVID-19 embodies a causal relationship, or if it is simply
indicative of the age and wider health status of those who are
worst affected by COVID-19 (32, 70).

Pollution has also been associated with increased risk and
severity of COVID-19 infections in high-pollution lowland
areas (e.g., Lombardy, Italia, and New York, NY) (20, 96), and
may relate to the emerging issue of hypercoagulability among
COVID-19 patients (73). Reduced air pollution at HA (10, 31)
is therefore of particular interest as is HA’s possible mitigation
of hypercoagulability via increases in fibrinolytic activity fol-
lowing two weeks of exposure (18).

Incidence patterns may also be mediated by differences in
the levels of vitamin D, which are elevated at HA (47, 97).
Indeed, the potential role of vitamin D in mortality among
COVID-19 patients is being explored (33, 64). Ultraviolet
(UV) radiation which increases alongside elevation should also
be considered with respect to mortality in COVID-19, as
increased radiation may help to inhibit viral replication (19).

CLIMATIC FACTORS

Similar to other zoonotic viruses (e.g., H1N1 influenza) (23,
52), factors such as temperature and humidity can influence
SARS-CoV-2 infectivity (89) although the links appear to be
quite dynamic (15). Lower temperatures and hypobaric-hyp-
oxia at HA (above ~2,000 m) could, in part, explain the lower
incidence of infections at HA, as they render the environment
uninhabitable to non-human living vectors (e.g., Aedes aegypti
mosquitos, flies, or other pests) (12, 53); however, recent
evidence indicates that Aedes mosquitos do not pose a threat to
SARS-CoV-2 transmission (86). Nevertheless, there has been
evidence of an altitude “cut-off” for COVID-19 infections
(~2,500 m) (1), which echoes the aforementioned insect line
(12, 53). Thus, contributions from other insects whose inhab-
itancy is similarly thwarted at HA (e.g., flies) (75) should be
considered, particularly, given their potentiation of fecal-oral
transmission (67a) and the emerging evidence suggesting fe-
cal-oral spread of SARS-CoV-2 (9, 57, 67, 87). Also of note
are the lower incidences of viruses exhibiting fecal-oral trans-
mission (e.g., gastrointestinal viruses) at HA (4), notwithstand-
ing that fecal-oral transmission can also occur via several
alternate pathways to the mouth (35).

Consistent and specific reporting of COVID-19 infections
(e.g., residence vs. reporting facility altitude or geographic
coordinates) will be important in evaluating links between
HA-related climatic factors and SARS-CoV-2 transmission or
COVID-19 infection severity and, ultimately, to help confirm
or deny altitude protection against SARS-CoV-2.

ANGIOTENSIN-CONVERTING ENZYME 2 (ACE2)
INVOLVEMENT

The relationships between angiotensin-converting enzyme 2
(ACE2) expression and COVID-19 pathogenesis and mortality
are undoubtedly complex with conflicting arguments within
current research. Nonetheless, it has been suggested that
changes in the level and activity of the ACE2 protein can alter
COVID-19 outcomes (92). ACE2, a homolog of angiotensin-
converting enzyme (ACE), is the primary infection route for
SARS-CoV-2 (37, 95). Despite being crucial for viral entry,
upregulation of ACE2 expression appears to confer protection
against SARS-CoV-related lung injury (16, 41). Similarly, pro-
vs anti-inflammatory imbalance (ACE-angiotensin II-ATI im-
balance) associated with low ACE2 expression [e.g., with old
age or in diabetes mellitus, DM (14)] has the potential to
predispose patient’s lungs to acute injury (34, 72) and could
perpetuate the “cytokine storm” (76) observed in COVID-19
(56) that is known to confer poor outcomes, particularly,
among the elderly and those with DM (94).

Acute upregulation of ACE2 appears possible with hypoxic
exposures (21, 93). Likewise, prevention of ACE2 downregu-
lation seems plausible (59). By limiting SARS-CoV-2-induced
ACE2 depletion that ensues following receptor binding (92),
ACE2 upregulation may thereby attenuate associated pulmo-
nary inflammation and lung damage (41, 77). Clinical recom-
mendations for the continuance of ACE inhibitor and angio-
tensin receptor blocker (ARB) therapies (30), which both
upregulate ACE2, are consistent with ACE2-upregulation be-
ing beneficial. Whether hypoxia directly or indirectly translates
into a definitive physiological advantage over SARS-CoV-2
via ACE2 involvement remains unclear. Careful evaluations of
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pulmonary ACE2 in humans in response to various durations
and intensities of hypoxic exposures would be helpful in
determining the relevance of ACE2 in this context.

GENETIC FACTORS

Genomic ancestry supports genetic links between the anti-
COVID-19 display among HA populations. In HA regions
such as Ladakh, Arunachal Pradesh, Manipur, and Mizoram,
the Tibeto-Burman genetic composition predominates and
COVID-19 infections have been limited (24). Similarly, higher
fractions of Paleo-Eskimo ancestry in HA regions of Peru and
Mexico have been accompanied by considerably lower death
rates (24). Together with the genetic differences known to exist
between HA populations (Andean vs. Tibetan) (5), it is con-
ceivable that evolutionary components may also exist with
regards to anti-COVID-19 displays. Analyses of existing ge-
netic data from various HA populations would be useful to
further investigate this.

Population and ethnic differences in a number of genes
related to ACE2 have also been suggested as having a potential
role in COVID-19. Support can be provided by the differences
in relative binding affinities for SARS-CoV-2 between ACE2
allelic variants (40), as well as in gene-variant dependent
effects on viral internalization processes that appear to influ-
ence susceptibility to SARS-CoV-2 (7). Ethnic variations in
the expression of ACE2 (11) have also been highlighted.
Genetic variability in ACE2 among HA populations may help
to modulate resistance and susceptibility to viral infection;
however, investigations into the dynamics of pulmonary ACE2
expression across a range of genetic profiles in response to
SARS-CoV-2 are required to better understand the significance
of ACE2 genetic variation as it relates to COVID-19 infection.

Relative frequency of the ACE gene’s deletion allele (D; vs.
the insertion allele, I) parallels reductions in ACE2 expression
and has been implicated in the pathogenesis of acute respira-
tory distress syndrome (ARDS) (55) and SARS-CoV-1 (48).
Consistent with this are the higher numbers of COVID-19
cases among black populations (27, 66), who exhibit relatively
low I allelic frequency (68), as well as the lower incidence and
severity of infections among HA populations, who exhibit high
I allelic frequency (82). In contrast, Delanghe and colleagues
suggest that a higher I allele frequency may actually be
detrimental to COVID-19 outcomes within European popula-
tions (25). These conflicting epidemiologic data emphasize the
complexity of the relationships between COVID-19 and ACE
genotype or ACE2. Nevertheless, given the potential impact of
ACE polymorphisms on resultant ACE2 and COVID-19 out-
comes, it is clear the duo warrant further exploration.

Alternative gene variants also differ between ethnic groups
(42), such as angiotensin II type 1 receptor (or the AGTR1
gene), and thus deserve attention; notwithstanding that SARS-
CoV-2 infection is distinctly different from existing pathophys-
iological variability between AGTR1 gene variants (54). Genes
related to vascular inflammation (69) may also be worthy of
investigation, although a complex relationship between com-
ponents of the vasoregulatory axis and SARS-CoV-2 is likely.

LIMITATIONS AND CONSIDERATIONS

We acknowledge there are a number of limitations to this
perspective. Underreporting in HA regions is possible, al-

though unlikely for symptomatic infections as low notifications
for other severe respiratory infections have accurately reflected
actual cases (80). Disparities in tracking and tracing capacities
between high- and low-altitude regions may allow the higher
proportion of asymptomatic cases at HA (46) to go undetected;
however, this would further support the argument for reduced
case severity at HA. Actions that aid testing and reporting
efforts in HA regions could improve comparisons (high vs. low
altitude) related to COVID-19 infections.

It is also acknowledged that HA can exacerbate certain
respiratory infections (4) and may be contraindicated in those
with severe existing disease (54). Under no circumstances is
the presented evidence intended to justify HA exposure for
prophylactic use or treatment against COVID-19.

CONCLUSIONS

The transmission of SARS-CoV-2 and severity of CO-
VID-19 infections may embody a clinal pattern specifically
related to HA with subsequent physiological advantages over
COVID-19 being possible among HA populations. Future
research could benefit from utilizing existing genetic and
physiological data pertaining to HA populations to evaluate
presented theories related to the prevalence of SARS-CoV-2
and severity of COVID-19 among HA populations.
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