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Abstract

The negative outcomes of COVID-19 diseases respiratory distress (ARDS) and the damage to other 

organs are secondary to a “cytokine storm” and to the attendant oxidative stress. Active hydroxyl-

forms of vitamin D are anti-inflammatory, induce anti-oxidative responses, and stimulate innate 

immunity against infectious agents. These properties are shared by calcitriol and the CYP11A1-

generated non-calcemic hydroxyderivatives. They inhibit the production of pro-inflammatory 

cytokines, downregulate NF-κΒ, show inverse agonism on RORγ and counteract oxidative stress 

through the activation of NRF-2. Therefore, a direct delivery of hydroxyderivatives of vitamin D 

deserves consideration in the treatment of COVID-19 or ARDS of different etiology. We also 

recommend treatment of COVID-19 patients with high dose vitamin D since populations most 

vulnerable to this disease are likely vitamin D deficient and patients are already under supervision in 

the clinics. We hypothesize that different routes of delivery (oral and parenteral) will have different 

impact on the final outcome.
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Background

The COVID-19 is currently the foremost health issue in the world. SARS-CoV-2 (severe acute 

respiratory syndrome coronavirus) is an enveloped positive strain RNA virus in the family 

Coronaviridae, which also includes the virus SARS-CoV-1 (which was another outbreak in 2002-

2003)1. COVID-19 has a fatality rate up to ~5%, which is several times higher than influenza2,3. The 

leading cause of death in the patients is due to acute respiratory distress syndrome (ARDS)2 induced 

by proinflammatory responses and oxidative stress (Fig. 1A). 

Vitamin D is a fat-soluble prohormone, which after production in the skin or oral delivery affects 

important physiological functions in the body including regulation of the innate and adaptive 

immunity4-6. Vitamin D can be activated through canonical and non-canonical pathways (Fig. 1A). In 

the former, it is metabolized to 25-hydroxyvitamin D3 (25(OH)D3) by CYP2R1 and CYP27A1 in the 

liver with further metabolism in the kidney to the biologically active 1,25-dihydroxyvitamin D3 

(1,25(OH)2D3 ) by CYP27B17-9. This metabolism also occurs in a variety of organs, including skin and  

the immune system7,9.     

An alternative pathway of vitamin D activation by CYP11A1 leads to production  of more than 10  

metabolites some of which are non-calcemic even at high doses8,10,11. These hydroxyderivatives, 

including 20(OH)D3 and 20,23(OH)2D3, are produced in humans12-15. In addition, 20(OH)D3 has been 

detected in the honey, which defines it as a natural product16. CYP11A1 is expressed not only in 

adrenals, placenta and gonads but also in immune cells and other peripheral organs17.

Both 1,25(OH)2D3 and non-calcemic CYP11A1 derived metabolites use various, although partially 

overlapping,  mechanisms in enacting their anti-inflammatory and anti-oxidative effects (Figure 1B). 

1,25(OH)2D3 mediates many of its anti-inflammatory and anti-microbial effects through the vitamin 

D receptor (VDR)6,9. 1,25(OH)2D3 can also inhibit the mitogen-activated protein kinase (MAPK) and 

NF-kB signaling4,9. 
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The non-calcemic CYP11A1-derived vitamin D compounds also have their own methods to fight 

inflammation (Fig. 1B). 20(OH)D3  and their downstream hydroxyderivatives  act on  VDR as biased 

agonists11,18,19. They also act as inverse agonists on the retinoic acid-related orphan receptors, RORα 

and RORγ, transcription factors with critical roles in several immune cells and immune responses20-23 

(Fig. 1B). In addition, CYP11A1-derived derived vitamin D3 derivatives and classical  1,25(OH)2D3 can 

act as agonists on aryl hydrocarbon receptor (AhR)24. Although binding pocket of this receptor can 

accommodate many different molecules, we believe that secosteroidal signal transduction can be 

linked to detoxification and anti-oxidative action11 or down-regulation of pro-inflammatory 

responses25. 

Premises 

ARDS and other adverse effects of COVID-19 are induced by cytokine storm

A leading cause of ARDS is “cytokine storm”, a hyperactive immune response triggered by the viral 

infection (Fig. 1A)2,26. It is initiated when the pattern recognition receptor of the innate immune cells 

recognize the pathogen-associated molecular pattern from a pathogen such as bacteria or virus26,27. 

The immune cells then release all types of cytokines (interferons, interleukins 1, 6 and 17, 

chemokines, colony stimulating factors, and tumor necrosis factor (TNF)) leading to 

hyperinflammation and organ damage27-29.  In the lungs, alveolar cells are targeted leading to  acute 

lung injury and subsequently ARDS27,30. In severe cases of CoVID-19 other organs and systems are 

also damaged2,3. Thus, it is crucial to find ways to prevent the “cytokine storm” from going out of 

control. Although different drugs have been suggested to fight the cytokine storm26,27, they have 

mixed results and in certain cases can even worsen the disease27. Thus, there is a great need for 

alternative therapies.

Oxidative stress is also involved in the development of ARDS through action of reactive oxygen 

species (ROS) and nitrogen species (NRS)31-33. The production of ROS and RNS can be triggered by 

pathogens promoting the secretion of cytokines, which stimulate ROS production thereby producing 

a positive feedback loop (Fig. 1A)31,33-35. Nuclear factor erythroid 2p45-related factor 2 (NRF-2) is a A
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transcription factor that plays a role in the detection of excessive ROS and RNS and induction of 

mechanisms counteracting the oxidative damage36. NRF-2 loss due to ROS can lead to elevation in 

proinflammatory cytokine levels and stronger inflammatory responses to stimuli31,36. 

Anti-inflammatory and antioxidative activities of active forms of vitamin D

There is a strong experimental evidence that active forms of vitamin D including the classical 

1,25(OH)2D3, and novel CYP11A1-derived hydroxyderivatives8,11 exert potent anti-inflammatory 

activities including inhibition of IL-1, IL-6, IL-17, TNFα and INFγ production or other proinflammatory 

pathways (Supplemental table 1) 11,18,20,37,38. The mechanism of action includes downregulation of 

NF-κΒ involving action on VDR and inverse agonism on RORγ leading to attenuation of Th17 

responses (Fig 1B)11,18,20,37-39. These compounds also induce antioxidative and reparative responses 

with mechanism of action involving activation of NRF-2 and p5311,39-41. 

Antiviral effects of active forms of vitamin D

Low vitamin D status in winter permits viral epidemics and vitamin D supplementation could reduce 

the incidence, severity, and risk of viral diseases42-45. In addition, several reports have found a strong 

association between vitamin D deficiency/insufficiency and enhanced COVID-19 severity and 

mortality45-53 with the most recent study defining low plasma 25(OH)D3 as an independent risk factor 

for COVID-19 infection and hospitalization54. Therefore, we retrospectively analyzed microarray data 

of human epithelial cells treated with 20,23(OH)2D3 and 1,25(OH)2D3
24. We found the 

downregulation of pathways connected with influenza infection and viral RNA transcription, 

translation, replication, life cycle and of host interactions with influenza factors with 20,23(OH)2D3 

expressing higher anti-viral potency (Table 1).  

While 1,25(OH)2D3 has the limitation imposed by the toxicity that includes hypercalcemia7,9, 

CYP11A1-derived 20(OH)D3, 20(OH)D2 and 20,23(OH)2D3 are not toxic and non-calcemic at very high 

doses (3-60 µg/ kg) at which 1,25(OH)2D3 and 25(OH)D3 are calcemic55-59.
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Hypothesis 

The hyperinduction of proinflammatory cytokines production (cytokine storm), further magnified by 

oxidative stress induced by the viral infection or cytokines themselves, acting reciprocally in self-

amplifying circuitry, gradually damage/destroy the affected organs leading to death in the severe 

cases of COVID-19 infection (Fig. 1A). A solution to the problem fulfilling above premises, are active 

forms of vitamin D including the classical 1,25(OH)2D3 and 25(OH)D3 (precursors to  

1,25(OH)2D3)5,7,9,45,60 and novel CYP11A1-derived hydroxyderivatives including 20(OH)D3 and 

20,23(OH)2D3
8,11,61. The former are FDA approved and can immediately be used in the clinic, while 

the latter are still not approved yet although they fulfill the definition of natural products.  They 

would both terminate “cytokine storm” and oxidative stress with possible anti-viral activity to rescue 

the patient from the death path (Fig. 1). Their preferable routes of delivery are listed in Fig. 1C to 

reach immediately the most affected organs. In this context, active hydroxyforms of vitamin D2 

should also be considered59,62-64.

 

As relates to the vitamin D precursor it is reasonable to propose that patients being admitted with 

COVID-19 infection to receive as soon as possible  200,000 IU of vitamin D2 or vitamin D3  followed 

by 4,000-10,000 IU/day, if justifiable45,65. Vitamin D3 at 200,000IU orally has been used to attenuate 

inflammatory responses induced by the sunburn66. It must be noted that application of 250,000–

500,000 IU of vitamin D was reported  be safe in critically ill patients and was associated with 

decreased hospital length of stay and  improved ability of the blood to carry oxygen (reviewed 

in67,68)

Relevance and perspective

Different routes of delivery of vitamin D precursor can have a profound effect on the final panel of 

circulating in the body vitamin D derivatives (Fig. 1C). Vitamin D delivered orally during the passage 

through the liver is hydroxylated to 25(OH)D7,  which is not recognized by CYP11A that only acts on 

its precursor, vitamin D itself69. This likely results in 30 times lower concentration of 20(OH)D3 in 

serum in comparison to 25(OH)D3
14. However, its levels are higher than that of 25(OH)D3 in the A
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epidermis, a peripheral site of vitamin D3 activation14. Therefore, adequate systemic (adrenal gland) 

or local (immune system) production of CYP11A1-derived vitamin D hydroxyderivatives would 

require parenteral delivery of vitamin D. These routes of vitamin D precursor delivery could include 

sublingual tablets, intra-muscular, subcutaneous or intravenous injections as well as its aerosolized 

form of delivery to the lung (Fig. 1C).   As relates CYP11A1-derived products these would be 

predominantly generated in the adrenal gland for systemic purposes. However, they can also be 

generated in peripheral organs expressing CYP11A1 including skin and immune system17,70.  

Since vitamin D is readily available, easy to use and relatively nontoxic, it can represent an 

immediate solution to the problems at relatively high doses, since populations most vulnerable to 

negative outcome of COVID-19 disease are likely vitamin D deficient and the patients are already 

under supervision in the hospital environment and are monitored for adverse effects.  Vitamin D 

toxicity is typically not observed until extremely high doses of vitamin D in the range of 50,000-

100,000 IUs daily for several months or years71.  Doses up to 500,000 IUs have been routinely given 

to nursing home patients twice a year in Scandinavian countries to reduce risk for fracture without 

any evidence of vitamin D intoxication including hypercalcemia, hyperphosphatemia and soft tissue 

calcification71.

In addition, we believe that routes of delivery are likely to impact the final outcome, because 

bypassing liver vitamin D3 will also be accessible to CYP11A1 for metabolism in organs expressing 

this enzyme.
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Figures Legend

Figure 1. Vitamin D as the solution to the COVID-19 illness.

A. Hydroxy-derivatives of vitamin D3, by inhibition of cytokine storm and oxidative stress, will 

attenuate ARDS and multiorgan failure induced by  COVID-19 .

B. Mechanism of action of canonical and non-canonical vitamin D-hydroxyderivatives.

Vitamin D signaling in mononuclear cells downregulates inflammatory genes and suppresses 

oxidative stress.  VDR- vitamin D receptor; RXR- retinoid X receptor; ROR – retinoic acid orphan 

receptor, RORE- retinoid orphan response element; ARE- antioxidant response element; VDRE- 

vitamin D response element; Nrf2 - transcription factor NF-E2- related factor 2.

C. Different routes of vitamin D delivery will impact vitamin D activation pattern.
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Table 1.  Gene Set Enrichment Analysis (GSEA) of the microarray data deposited at NCBI GEO 

(GSE117351)).*NES – Normalized Enriched Score; †FDR – False Discovery Rate; (¨) – the effect is 

absent

ANTIVIRAL PROPERTIES OF VITAMIN D3-HYDROXYDERIVATIVES

                                                             GSEA for 20,23(OH)2D3 GSEA for 1,25(OH)2D3

Reactome Pathway NES* P-value FDR† Direction NES P-value FDR Direction

Viral mRNA Translation -2.818 0.00 0.012 Down -3.601 0.00 0.00 Down

Viral Messenger RNA Synthesis -2.513 0.00 0.013 Down -2.405 0.00 1.860 Down

Influenza Infection -3.171 0.00 3.907 Down ¨ ¨ ¨ ¨

Influenza Viral RNA Transcription & Replication -3.206 0.00 3.434 Down ¨ ¨ ¨ ¨

Host Interactions with Influenza Factors -2.249 0.00 0.018 Down ¨ ¨ ¨ ¨

HIV Life Cycle -2.070 0.00 0.023 Down -2.503 0.00 7.788 Down

Late Phase of HIV Life Cycle ¨ ¨ ¨ ¨ -2.658 0.00 2.614 Down

Host Interactions with HIV factors -3.340 0.00 1.354 Down ¨ ¨ ¨ ¨
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