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Abstract: Objectives: The novel coronavirus infection (COVID-19) conveys a serious threat globally 

to health and economy because of a lack of vaccines and specific treatments. A common factor for 

conditions that predispose for serious progress is a low-grade inflammation, e.g., as seen in 

metabolic syndrome, diabetes, and heart failure, to which micronutrient deficiencies may 

contribute. The aim of the present article was to explore the usefulness of early micronutrient 

intervention, with focus on zinc, selenium, and vitamin D, to relieve escalation of COVID-19. 

Methods: We conducted an online search for articles published in the period 2010–2020 on zinc, 

selenium, and vitamin D, and corona and related virus infections. Results: There were a few studies 

providing direct evidence on associations between zinc, selenium, and vitamin D, and COVID-19. 

Adequate supply of zinc, selenium, and vitamin D is essential for resistance to other viral infections, 

immune function, and reduced inflammation. Hence, it is suggested that nutrition intervention 

securing an adequate status might protect against the novel coronavirus SARS-CoV-2 (Severe Acute 

Respiratory Syndrome - coronavirus-2) and mitigate the course of COVID-19. Conclusion: We 

recommended initiation of adequate supplementation in high-risk areas and/or soon after the time 

of suspected infection with SARS-CoV-2. Subjects in high-risk groups should have high priority as 

regards this nutritive adjuvant therapy, which should be started prior to administration of specific 

and supportive medical measures.  

Keywords: COVID-19; corona virus; nutritional; therapy; micronutrients; selenium; zinc; vitamin 

A; vitamin D; coenzyme Q10 

 

1. Introduction  

The novel coronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome-coronavirus-2) , 

causing COVID-19, is by far the most dangerous coronavirus ever identified, capable of infecting not 

only animals, but also humans across the globe. The severity of the COVID-19 pandemic has 
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dramatically surpassed the prevalence of acute respiratory syndrome coronavirus (SARS-CoV) and 

Middle East respiratory syndrome coronavirus (MERS-CoV), which were distributed to more limited 

regions in 2003 and 2012, respectively. A single-stranded RNA comprises the genomic structure of 

SARS-CoV-2 [1]. In severe cases, COVID-19 is accompanied by excessive activation of the innate 

immune system with progressive inflammation and a cytokine storm from activated cells, 

particularly in the airways [2], leading to the cytokine release syndrome [3,4]. Unfortunately, in spite 

of their anti-inflammatory effects, corticosteroids have been observed to worsen the clinical status of 

patients with SARS or related virus infections [5,6]. Use of convalescent plasma has been tried as a 

possible approach, but the experiences with this strategy are limited [7]. Except for the use of 

convalescent plasma, there is at present no approved treatment or vaccine for COVID-19. Therefore, 

it is an urgent need for public health measures, not only to limit the spread of the virus, but also to 

implement preventive approaches to alleviate severe COVID-19, e.g., by reduction of the excessive 

inflammation. The metabolic status of the host, as influenced by advanced age, current medical 

condition, and lifestyle, appears to determine the clinical severity of COVID-19 [8]. In critically ill 

patients, coexisting diseases include type 2 diabetes, hypertension, and heart disease [9]. The elderly 

are more prone to severe respiratory infection than young people, apparently due to connections 

between old age and deficient nutrition and immunity [10]. Clinical and subclinical micronutrient 

deficiencies common in older adults are known to contribute to decreased immune function and age-

related diseases [11], implying that nutritional management is essential to reduce the risk of severe 

infection [12]. In view of a lack of clinical data on preventive and/or therapeutic efficiency of the 

nutritive adequacy of selenium, zinc, and vitamin D in COVID-19, we, in the present narrative 

review, discussed recent clinical data on the role of these micronutrients in the protection against 

bronchopulmonary infections, as well as the existing indications of their impact on COVID-19. 
Although the status of other nutrients, such as vitamins C and A, may also play a role, they were not 

focused upon in the present article. We did a literature search for the period 2010–2020 on PubMed, 

Medline, and Google Scholar with the keywords of SARS, SARS-CoV-2, COVID 19, coronavirus, 

micronutrients (zinc, selenium, vitamin D), immune system, inflammation, prevention, and 

treatment. Based on the information retrieved, we here discussed the role of the nutritional status of 

certain trace elements and vitamin D in the perspective of principles for implementing preventive 

measures against RNA viruses.  

2. Nutritional Interventions as a Preventive Approach 

Clinical or subclinical micronutrient deficiencies, such as deficiencies of zinc, selenium, and 

vitamin D, which frequently occur in old age groups, contribute to age-related diseases including 

diabetes, hypertension, and coronary heart disease [13–15]. These diseases, which in a substantial 

fraction of the cases are related to the metabolic syndrome [16], are characterized by signs of low-

grade inflammation, which may also result from ageing [17]. Pre-infectious signs of inflammation, 

such as elevated values for CRP (C-reactive protein), represent a common aggravating factor in 

COVID-19 [9]. Adequacy of zinc, selenium, and vitamin D is essential for adequate 

immunocompetence, which to some extent may counteract an inflammatory aggravation. Dietary 

advice alone may not be sufficient to secure adequacy for these nutrients in certain conditions, 

including in elderly subjects [18], involving the need for supplements in susceptible segments of 

populations.  

2.1. Zinc 

Being an essential component of numerous enzymes, such as superoxide dismutase 1 and 3 [19], 

the trace metal zinc is important for the development and maintenance of immune and other cells 

[20]. Zinc deficiency is known to result in dysfunctional humoral and cell-mediated immunity [21]. 

In the elderly, low Zn status (serum Zn values <0.7 mg/L) has been found to represent a risk factor 

for pneumonia [22]. Long-term zinc deficiency is known to increase inflammations and inflammatory 

biomarkers [23]. Most facets of the immune system are affected by zinc deficiency, particularly the T-

cell function. Zinc deficiency also drives a Th17 response, which is associated with increased 
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inflammation [24]. In elderly subjects, reduced concentrations of circulating zinc correlated with 

increased levels of the cytokines IL-6 (interleukine-6), IL-8, and TNF-α (Tumour necrosis factor-α) 

[25].  

In a case report, four COVID-19 outpatients 26–63 years of age were treated with lozenges of 

zinc salts [26]. They took the lozenges several times each day, up to doses between 115 to 184 mg 

Zn/day for 10 to 14 days, and all of these patients recovered. In another case report, three COVID-19 

patients 38–74 years of age with additional gut manifestations received zinc sulphate (220 mg Zn 

daily for 5 days), together with hydroxychloroquine and azithromycine [27]. The latter patients 

recovered. Being case reports, it was not possible to conclude on the efficacy of zinc.  

With regard to other infectious diseases, many studies show that zinc status may impact the 

outcome. Several randomized control trials (RCTs) showed that zinc given during an acute episode 

of diarrhea reduces the duration and risk of persistent disease [28]. The World Health Organization 

therefore changed their recommendations for the treatment of childhood diarrhea to include oral zinc 

medication. Zinc also plays a role in acute respiratory infections [29]. Routine zinc supplementation 

reduces the incidence of acute lower respiratory infections in young children in low- and middle-

income countries [30]. Several recent studies used zinc as an adjunct treatment for lower respiratory 

infections, although with mixed results [31]. In one large RCT from India enrolling young infants 

with signs of severe bacterial illness, it was investigated whether zinc could reduce the risk of 

treatment failure [32]. The authors found that children assigned to the zinc group had a 40% reduction 

in treatment failure and mortality compared with the placebo group. Many RCTs examined the role 

of zinc supplementation in common colds, the results from these showing that, when given early in 

the illness, zinc had the potential to reduce the duration by 1 to 3 days [33–35]. Furthermore, a positive 

effect of zinc supplementation was observed in several studies on hepatitis C, which is induced by 

infection with a single-stranded RNA virus [36]. In this context, it is of interest that raising the 

intracellular concentration of zinc with zinc-ionophores like pyrithione or chloroquin could directly 

reduce the replication of a variety of RNA viruses in cells in vitro through inhibition of their RNA 

polymerase activity [37]. Combined administration of zinc and pyrithione, even at low 

concentrations, inhibited the replication of SARS coronavirus (SARS-CoV) in vitro [38]. 

Consequently, zinc supplement may have effects, not only on the COVID-19-associated over-active 

inflammation, but presumably also on the SARS-CoV-2 agent itself [39]. As for the preventive doses 

used, it was noted that, on a long-term basis, an intake ≤25 mg/day was recommended, as a high 

intake of zinc may disturb copper balance [40]. 

2.2. Selenium 

Selenium is an essential trace element for mammalian redox biology by occurring as 

selenocysteine in catalytical centers of many selenoproteins [41,42]. An adequate supply of the amino 

acid serine is required for the synthesis of selenocysteine, which is incorporated into selenoproteins 

[43]. Nutritional deficiencies of selenium may impact, not only the immune response, but also the 

pathogenicity of a virus [44–46]. 

Of note, a recent study from China reported an association between the cure rate of CoV-2-

infected patients and selenium status, as deduced from city population hair selenium from cities 

outside Hubei, reflecting regions with poor and adequate selenium intakes [44]. In a study, selenium 

status (selenium and SELENOP) were significantly higher in surviving COVID-19 inpatients (n = 27) 

compared with non-survivors (n = 6) [45]. Further studies with control of confounding and clinical 

trials are necessary to confirm this association. Of particular interest is the finding that a main 

protease of SARS-CoV-2 responsible for the viral replication, interacts with the essential seleno-

enzyme glutathione peroxidase1 (GPX1) [46,47], which is strongly dependent on adequate selenium 

supply. It is notable that the GPX mimic ebselen (a synthetic selenium compound) is a potent inhibitor 

of the SARS-CoV-2 main protease [48]. Bioinformatic screening of the SARS-CoV-2 gene signatures 

provided further evidence of protein interactions and antisense transcript mRNA–mRNA 

interactions occurring at selenocysteine-related insertions in RNA viruses [49].  
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Dietary selenium deficiency, together with increased oxidative stress in the host, can alter a viral 

genome from a normally mildly pathogenic virus into a highly virulent agent after its entrance into 

the host, which occurred with the Coxsackie 3B virus in Keshan disease in a selenium-deficient area 

in China [50]. It was proposed that Se deficiency could play a substantial role in the genesis of SARS-

CoV [51]. The potential protective effect of selenium is explained by its role as an essential cofactor 

in a group of enzymes that, in concert with vitamin E, works to reduce the formation of reactive 

oxygen species (ROS). ROS in excess may trigger oxidative changes both in invading microorganisms 

and in the cells in the host [52].  

A failing antioxidant defense might also be accompanied by an exaggerated inflammatory 

response in the host, even in the absence of an active infection [53]. Among the most potent 

antioxidative selenoenzymes are the glutathione peroxidases (GPXs) and the thioredoxin reductases 

(TXNRDs), which need an intake of at least 100 µg Se/day to function optimally.  

Other selenoproteins, i.a., selenoprotein K (SELENOK) and selenoprotein S (SELENOS), also 

appear to play a role in the regulation of immune responses [54].  

In a variety of infectious diseases selenium appears to play a significant role in protecting the 

respiratory system, in particular toward viral infections [54]. Beck et al. found that Se deficiency 

significantly increased the susceptibility to influenza-induced lung pathology associated with the 

overexpression of pro-inflammatory cytokines [55]. An analogous effect was observed in benign 

Coxsackie virus infection, which resulted in the development of myocarditis in Se-deficient mice [56]. 

These findings corresponded to the observation of lower interferon-γ (IFN-γ) and TNF-α levels, as 

well as reduced survival rate in Se-deficient mice infected with the influenza virus as compared to 

Se-adequate controls [57]. In turn, selenium treatment was shown to up-regulate the expression of 

genes for interferons (IFN-α, IFN-β, and IFN-γ) in response to the avian influenza (H9N2) virus [58].  

In older adult humans, Se treatment was shown to modulate response to the influenza 

vaccination, being accompanied by increased IFN-γ levels after vaccination [59]. Therefore, selenium 

supplementation to populations with suboptimal status has been considered a safe adjuvant therapy 

in preventive measures against viral infections [60]. The selenium status varies widely between 

different areas in the world. Compared with levels in Northern America [61], selenium levels in 

populations in large parts of Europe are well below a threshold of about 100 µg/L required for 

adequate expression of selenoproteins. The insufficient selenium intake is caused by low selenium 

content in soil and, consequently, in cereals and other food plants, as well as in fodder for grazing 

farm animals [41,62]. 

2.3. Selenium Plus Cofactors 

The optimal function of the GPXs also depends upon adequate intracellular levels of the cofactor 

glutathione (GSH), explaining the importance of adequate intakes of proteins containing the sulfur 

component of this tripeptide, viz. cysteine or methionine. Reduced GSH is associated with senescence 

in several species, including humans [63]. Apparently healthy elderly people in the age group 60–79 

had significantly lower erythrocyte GSH than younger individuals [64]. Moreover, individuals with 

chronic diseases, including hypertension, have a deficit of the active form of GSH [65,66]. In cases of 

marginal intakes of sulfur amino acids, supplementation with acetylcysteine will restore intracellular 

GSH levels, which is of crucial importance in bronchial and pulmonary cells [67]. N-acetylcysteine is 

already an approved and extensively used drug in obstructive bronchitis [68], and it has proven 

beneficial against severe influenza infection [69]. Administration of glutathione has been shown to 

relieve dyspnea associated with COVID-19 pneumonia [70].  

Another factor co-operating with selenoenzymes appears to be coenzyme Q10 (CoQ10). In a 

Swedish randomized placebo-controlled study, healthy elderly subjects low in selenium were given 

selenium supplementation combined with coenzyme Q10. This supplementation was shown to reduce 

the non-specific inflammatory response as measured by plasma CRP [71] and other biomarkers of 

inflammation [53], and also cardiovascular mortality [72]. As severe coronavirus infections are 

characterized by an overactive inflammation, this relief in inflammatory response by optimizing the 

selenium status is of considerable interest [62]. It is also relevant that CoQ10 supplements, even when 
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given alone, can exert an anti-inflammatory effect [73]. An anti-inflammatory effect of exogenous 

CoQ10 may appear clearer in old age when its endogenous production is significantly reduced [74].  

Selenium treatment given alone, without combination with acetylcysteine or CoQ10, in critical ill 

patients admitted to the intensive care unit (non-septic and septic patients) has been used [75]. In 

patients with advanced infections, Manzanares and coworkers [76], in a meta-analysis, did not find 

a consistent beneficial effect on mortality, but, in a subgroup analysis, they found a reduction in the 

infections in non-septic patients. When considering the positive effects of selenium on immune 

regulation and inflammation in populations low in selenium, it appears justified to conclude that an 

adequate pre-infectious status of selenium would represent a protective measure against the 

hyperinflammation characterizing corona viral infections. Thus, in subjects with suboptimal status 

(plasma selenium <100 µg/L), supplementation at a dose of 100–200 µg Se/day, with or without 

cofactors, to achieve rapid saturation of vital selenoproteins, should represent an adjuvant approach 

to prevent aggressive SARS-CoV-2 infection. However, a total long-term intake of selenium from 

food and supplements ≤300 µg Se/day is recommended, as higher intakes may be associated with 

toxicity [77].  

2.4. Vitamin D 

It is well-known that cholecalciferol (vitamin D3) can be synthesized from cholesterol in the 

body skin upon exposure to sunlight. Its biological activity is dependent on successive 

hydroxylations by the liver and the kidneys to 1,2-(OH)2-D3, which binds to vitamin D receptors. 

Beyond its roles in calcium homeostasis and the maintenance of bone integrity, it also stimulates the 

maturation of immune cells. Epidemiological studies suggested an inverse association between 

circulating levels of 25(OH)-D3, a biomarker of vitamin D status, and inflammatory biomarkers, 

including CRP and IL-6 [78]. Suboptimal levels of vitamin D, particularly at the end of the winter 

season, have been reported in a substantial number of otherwise healthy adults [79]. People with 

limited access to sunlight, and elderly with reduced synthesizing capacity, may have vitamin D 

deficiency [80].  

Vitamin D has been suggested to play a role in COVID-19, as two ecological studies indicated 

that the rate of infection was higher in countries at higher latitudes and/or lower vitamin D status 

[81,82]. In a non-peer-reviewed study from Los Angeles, vitamin D deficiency was identified as a risk 

factor for positive COVID-19 tests [83]. A recent study on COVID-19 inpatients (n = 134) found that a 

significantly smaller fraction of patients in intensive care units had 25-OH-D above 50 nmol/L (19%) 

compared with those in conventional medical wards (39.1%) [84]. In a non-peer-reviewed study from 

Cincinnati, the authors found associations between vitamin D deficiency and hospital admission, 

disease severity, and also with death, among patients from primary care and specialized clinics (n = 

691) [85]. 

Vitamin D was shown to be an essential factor for protection against respiratory infectious 

diseases [86]. Severe vitamin D deficiency is frequently seen in critically ill patients and appears to 

be related to poor prognosis [87]. In older patients, severe vitamin D deficiency has been considered 

an independent predictor for community-acquired pneumonia [88], being also associated with 

increased risk of admission to an intensive care unit [89], and associated with mortality [90]. 

Moreover, vitamin D deficiency is shown to be associated with aggravation of lung inflammation, 

leading to acute respiratory distress syndrome (ARDS) with respiratory epithelium damage and 

hypoxia [91]. An inverse association between 25-OH-cholecalciferol levels and risk of acute 

respiratory failure in critically ill patients has been observed, being most convincingly significant for 

subjects with 25-OH-cholecalciferol <25 nmol//L [92].  

Increasing experimental data on cells in vitro demonstrated beneficial effects of vitamin D as to 

pathogenetic mechanisms of respiratory viral infections. Thus, vitamin D treatment was shown to 

reduce respiratory syncytial virus (RSV) and rhinovirus (RV) replication in epithelial cells through 

enhancement of virus-induced interferon-stimulated genes [93] and synthesis of the antiviral protein 

LL-37 [94]. Treatment with 1,25(OH)-D improved respiratory-induced antiviral immune response to 
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RV infections characterized by up-regulation of IL-8 and CXCL-10 (C-X-C motif chemokine ligand 10 

also known as Interferon gamma-induced protein 10) production [95].  

In addition, it was demonstrated that vitamin D is capable of reducing inflammatory response 

without alteration of antiviral activity and viral clearance in airway epithelial cells infected with RSV 

[96]. Furthermore, in view of high incidence of lung fibrosis as a characteristic sequela of COVID-19 

[97], it is important to note that vitamin D prevented a TGF-β1-induced profibrotic phenotype of lung 

cells [98]. 

However, no preventive effect of vitamin D supplementation on pneumonia was observed in 

three independent case-control studies [99], but the interpretation of these results should take into 

account the apparent lack of pre-existing vitamin D deficiency. Furthermore, the benefit of vitamin 

D replacement in an advanced stage of critical illness is controversial, as some studies do not show a 

benefit when it is administered late in the critical disease [100].  

Vitamin D status can easily be determined as 25-OH-cholecalciferol in plasma. It follows that, in 

case of low status, <50 nmol/L in plasma, vitamin D supplementation (40 µg D3/day) could work as 

an approach for prevention of an aggressive course of the inflammation induced by this novel 

coronavirus. As for the preventive doses used, it is recommended that, on a long-term basis, the 

intake of vitamin D should be ≤100 µg D3/day to avoid hypercalcuria with risk of renal stones, and 

also hypercalcemia [101]. 

3. Discussion and Conclusions 

The direct evidence that the micronutrients zinc, selenium, and vitamin D might be involved in 

the course and outcome of the COVID-19 disease is observational and weak. However, based on 

experiences from treatments of SARS and other viral infections, we here underscored observations 

showing that nutritive supplements administered at an early stage of the infection were important 

for enhancing host resistance against RNA viral infections, which might also include severe COVID-

19. We hypothesized that, in particular, increased resistance toward escalation of COVID-19 into the 

life-threatening cytokine release syndrome might be obtained (Figure 1). The nutritional status of the 

host has yet not been considered a crucial factor in severe viral infections, because the efficacy of 

nutrient supplementation when administered at the stage of advanced illness has been disappointing. 

Nevertheless, it is conceivable that a good nutritional status, if achieved in vulnerable population 

segments before escalation of the disease, would have immuno-enhancing and anti-inflammatory 

effects [102]. We are aware of the alleged therapeutic role of megadoses of vitamin C (6–8 g/day) in 

viral infections [103,104], but, as this would be a pharmacological approach, we did not further 

discuss this in the present article. We considered the proposed intervention with, i.a., proteins and 

multivitamin solutions, given immediately after hospital admission to relieve the COVID-19 infection 

[105] to represent an interesting modification of our approach. However, further research and clinical 

trials are requested both on therapeutic and preventive roles of nutritive supplements. Based on the 

available literature, a reasonable presumption is that the pre-infectious status of zinc, selenium, and 

vitamin D might be of especial importance for the resistance against a progressive course of COVID-

19.  

Our recommendations are early outpatient nutritional intervention in SARS-CoV-2 exposed or 

high-risk subjects, preferably before specific and supportive treatment. It is tempting to suggest that 

that early nutritional interventions will be of particular significance for vulnerable segments of 

populations in developing countries. Such an approach is simple, cheap, and harmless. While high 

doses of the micronutrients might be needed to restore deficiencies, it is advisable to follow 

recommended upper tolerable intake levels for long-term intakes of the micronutrients. Parallel to 

any of the nutritional approaches, controlled studies on the efficacy of anti-viral and anti-

inflammatory measures are of importance. To obtain general immunity, a COVID-19-related vaccine 

is highly warranted.  
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Figure 1. Hypothesized effect of supplements (Zn, Se, and vitamin D) on intensity of inflammation in 

patients with COVID-19: A severe course of the disease, which may occur in cases with pre-infectious 

low-grade inflammation and inadequate status of micronutrients, is characterized by an escalation of 

the inflammation into a cytokine storm (dotted line). Supplementation with Se, Zn, and vitamins 

when given at an early stage after infection is anticipated to act protectively by improving immune 

reactivity and supporting adequate inflammatory response, leading to lower risk of cytokine storm 

and less severe course of COVID-19, as indicated by the dashed line. 
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