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Several theories have been proposed to explain the etiology of adolescent idiopathic scoliosis (AIS) until present. However, limited 
data are available regarding the impact of vitamin D insufficiency or deficiency on scoliosis. Previous studies have shown that vitamin 
D deficiency and insufficiency are prevalent in adolescents, including AIS patients. A series of studies conducted in Hong Kong have 
shown that as many as 30% of these patients have osteopenia. The 25-hydroxyvitamin D3 level has been found to positively correlate 
with bone mineral density (BMD) in healthy adolescents and negatively with Cobb angle in AIS patients; therefore, vitamin D defi-
ciency is believed to play a role in AIS pathogenesis. This study attempts to review the relevant literature on AIS etiology to examine 
the association of vitamin D and various current theories. Our review suggested that vitamin D deficiency is associated with several 
current etiological theories of AIS. We postulate that vitamin D deficiency and/or insufficiency affects AIS development by its effect 
on the regulation of fibrosis, postural control, and BMD. Subclinical deficiency of vitamin K2, a fat-soluble vitamin, is also prevalent in 
adolescents; therefore, it is possible that the high prevalence of vitamin D deficiency is related to decreased fat intake. Further stud-
ies are required to elucidate the possible role of vitamin D in the pathogenesis and clinical management of AIS.
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Introduction

Adolescent idiopathic scoliosis (AIS) affects 0.47%–11.1% 
of the general population [1]. As the name suggests, the 
cause of the condition remains unclear. Several theories 
have been proposed, including genetic, neuro-develop-
mental abnormalities, motor control and motor-sensory 
integration dysfunctions, vestibular and proprioceptive 
disorders, biomechanical growth modulation, uncoupled 
spinal neuro-osseous growth, thoracospinal concept, sys-
temic and metabolic disorders [2], and decreased bone 

density [3-5] (Table 1).
Recently, Schlösser et al��������������������������������.������������������������������� ������������������������������[6] in �����������������������2014 performed a struc-

tured review of the literature regarding all the proposed 
and diverse etiologies proposed for the causes of AIS. 
They found that of all the theories, only those related to 
impaired gait control and decreased bone mineral density 
(BMD) had a moderate strength of evidence (Table 2). 
Other theories, including those of different volume of the 
cerebellar regions, asymmetric somatosensory evoked po-
tentials, reduced trunk strength, decreased body weight, 
increased breast asymmetry, and impaired bone quality 
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were only supported by weak evidence [6].
Considering that vitamin D may reportedly play a role 

in the cerebral process of postural balance [7] and that 
serum vitamin D level is positively correlated with the 
BMD of the hip [8,9] and negatively with the Cobb angle 
[10], vitamin D insufficiency or deficiency is speculated to 
influence AIS etiopathogenesis (Table 3).

In this study, we attempted to determine whether there 
is an association between vitamin D and the different cur-
rent and relevant theories regarding AIS. We also assessed 
the impact of vitamin D deficiency or insufficiency on AIS 
development.

Genetics and Vitamin D

It has long been known that hereditary factors play a 
role in the etiology of idiopathic scoliosis (IS) [11-13]. 
In the previous 10–20 years, genetic association studies 
and genome-wide association studies (GWAS) have been 
used to identify single nucleotide polymorphism (SNP), 
namely, the variants of genes associated with AIS [14]. A 
genetic association study examines if one or more genes 
within a population co-occur with a disease more often 
than expected by chance occurrence, while GWAS involve 
the examination of the entire genome [15].

While several GWAS have identified different SNPs as-
sociated with AIS [16], they did not consider the specific 

Table 1. The different proposed theories on the aetiologies of adoles-
cent idiopathic scoliosis

Hereditary factors Content

Biomechanical factors As�ymmetric stiffness of inter-trans-
verse ligaments

Relative anterior spinal growth
As�ynchronous spinal neuro-osseous 

growth
Thoracospinal concept
Do�rsal shear forces and axial rotation 

instability
Flexural-torsional buckling
Intervertebral disc disorder
Deforming 3 joint complex hypothesis

Neurological disorders Motor control disorder
Sensorimotor integration disorder
Sensory integration disorder
Vestibular disorder
Body spatial orientation disorder
Neuro-developmental disorder

S�ystemic and metabolic 
disorders

Platelet calmodulin
Melatonin
Melatonin-signaling defect
Osteopontin and soluble CD44
Oestrogens
Leptin
Osteopenia
Vitamin D deficiency or insufficiency

Developmental instability -

In�trinsic growth plate hy-
pothesis -

D�ouble neuro-osseous theory -

Table 2. Level of evidence of different theories on aetiologies of AIS

Evidence associated with AIS

Moderate evidence Neuromuscular: impaired gait control
Metabolic: decreased bone mineral density

Weak evidence Ne�uromuscular: different vestibular morphology; decreased cortical thickness; different volume of cerebellar regions; 
asymmetric somatosensory evoked potentials; reduced trunk muscle strength

Arthropometric: increased corrected body height; reduced body weight; increased breast asymmetry
Metabolic: impaired bone quality

Modified from Schlosser et al. PLoS One 2014;9:e97461 [6].
AIS, adolescent idiopathic scoliosis.

Table 3. Definition of vitamin D insufficiency, deficiency and sufficiency varies with experts

Organization                                  Vitamin D level

American Academy of Pediatrics Deficiency <20 ng/mL (50 nmol/L)

Sufficiency >20 ng/mL (50 nmol/L)

US Endocrine Society Deficiency <20 ng/mL (50 nmol/L)

Insufficiency 21 and 29 ng/mL (52.5–72.5 nmol/L)

Sufficiency 30 ng/mL (>75 nmol/L)
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mechanisms of how genes function within biological 
networks [14]. Pathway analysis has subsequently been 
developed to perform statistical tests on the lists of genes 
involved in the biological pathways for a significant rela-
tionship with a particular phenotype or observable trait 
[17].

Favaro [14] in 2017 reported the results of a pathway 
analysis of a list of genes affected in AIS. He found that 
the multiple pathways were significantly affected in AIS, 
including those of cancer; the endocrine system; the lung 
and heart stress response and repair; stem cell differentia-
tion; as well as skeletal tissue growth, development, and 
repair.

It is noteworthy that vitamin D was involved in some 
pathways, including the spinal cord injury pathway, the 
lung fibrosis pathway, the endochondral ossification path-
way, and the endocrine resistance pathway [14].

1. Spinal cord pathway and lung fibrosis pathway

Spinal cord injury and lung fibrosis pathways involve glial 
scar formation and focal adhesion in response to spinal 
cord injury [18]. Vitamin D and its analogs have been 
established to have an association with fibrosis regulation. 
Vitamin D has been used to treat fibrosis in multiple or-
gans, including the lung, bone, and liver [19-23]. Early vi-
tamin D supplementation significantly reduced the sever-
ity of bleomycin-induced pulmonary fibrosis in mice [21]. 
In bones, a 3–9-month treatment course of calcifediol 
significantly decreased bone marrow fibrosis [19]. Simi-
larly, sufficient vitamin D levels (> 50 nmol/L) decreased 
the occurrence of rapid fibrosis progression in chronic 
hepatitis patients [20]. It is possible that in a subset of AIS 
patients, tethering of the nerve roots may occur follow-
ing spinal injuries. Fibrosis of the paravertebral muscles is 
observed after injury [24]. Moreover, compression of the 
sciatic nerve in rats induced fibrosis near the lesions and 
the ipsilateral dorsal root ganglion. This occurred 3 weeks 
after the compression using the Silastic tube [25].

2. Endochondral ossification pathway

Genetic pathway analysis also showed that genes related 
to the endochondral ossification pathway were over-repre-
sented [14]. The pathway described genes involved in the 
replacement of the cartilaginous tissue by the bone tissue. 
Although the regulation of this process includes growth 

hormones, thyroid hormones, and transcription factors, 
among other molecules, vitamin D is also essential for the 
regulation of endochondral ossification [26,27].

3. Endocrine resistance pathway

The endocrine resistance pathway describes the underly-
ing biological mechanisms for resistance to the treatment 
of hormonal-responsive breast cancer [14]. Problems 
in regulating and responding to hormones could be the 
underlying cause of AIS [14]. Women with AIS are more 
likely than men to develop a spinal curve that progresses 
in severity. This indicates that a manifestation of the prob-
lems in estrogen regulation may be an underlying cause of 
AIS, given that women tend to have higher estrogen levels 
than men [28,29].

Several factors affect estrogen production, and vitamin 
D is a significant factor. Vitamin D deficiency report-
edly reduces estrogen production [30]. This has been 
reported by Kinuta et al. [30] in 2000 who studied the 
role of vitamin D in the regulation of estrogen synthesis, 
using the vitamin D receptor (VDR) in null mutant mice. 
The authors reported that the mutant mice had gonadal 
insufficiencies that were normalized by estrogen supple-
mentation and were partially normalized by calcium 
supplementation [30]. They concluded that vitamin D 
contributed to the regulation of estrogen synthesis [30] 
and that its deficiency reduced estrogen production. Fe-
male rats with severe vitamin D deficiency had impaired 
fertility [31]. However, a study demonstrated that 4-week 
supplementation of vitamin D3 to women aged 18–22 
years reduced the estradiol levels by 3% [32]. It is possible 
that the healthy volunteers had low normal vitamin D lev-
els (55 nmol/L) at baseline [32] and saturating the VDR 
receptors with additional vitamin D3 did not increase es-
trogen production.

Central Nervous System and Vitamin D

Abnormalities in the morphology and function of the 
central nervous system have long been implicated in the 
etiopathogenesis of AIS. Cervicothoracic syrinx [33,34], 
low-lying cerebellar tonsils [35-37], and morphological 
abnormalities in the midbrain [38], pons medulla [39], 
and vestibular system [40] have all been reported in sub-
groups of AIS subjects.

Functionally, AIS patients are reported to have a 
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range of abnormalities in postural balance, propriocep-
tive disturbance [41,42], oculo-vestibular function [43], 
vestibular-evoked postural response [44], somatosensory 
functions [45-47], and motor control [48]. Beaulieu et al. 
[47] in 2009 and Haumont et al. [49] in 2011 both showed 
that postural balance dysfunction is related positively to 
the severity of curvatures. AIS patients with greater cur-
vatures and poorer balance control use fewer anticipatory 
strategies to stabilize body oscillations [49].

1. ‌�Central nervous system morphological changes and 
vitamin D

The morphologic changes observed in the brain of AIS 
subjects may be related to vitamin D deficiency or insuffi-
ciency. Growing evidence is showing that vitamin D is in-
volved in brain development in rats and mice [50-52] be-
cause VDRs are expressed widely in the temporal, orbital, 
and cingulate cortices; in the thalamus; midbrain-pontine 
central grey and spinal cord in rats and mice [50,53-55]. 
Hawes et al. [51] in 2015 determined the influence of vita-
min D deficiency during pregnancy on brain development 
in mice. Female albino house mice that did not have vita-
min D3 receptors were placed on either a vitamin D (con-
trol) or a vitamin D-deficient diet for 5 weeks prior to and 
during pregnancy [51]. Fetal brains were then examined 
morphologically, and gene expression was analyzed. Vita-
min D deficiency during pregnancy reduced fetal crown–
rump length and head size [51]. Other similar studies 
showed that the offspring of vitamin D3-deficient rats 
were heavier than the control animals, although there was 
no difference in the ratio of brain to body weight between 
the groups [50]. They had larger lateral ventricles [56,57], 
double the size of those in controls even when corrected 
for the increased hemispheric volume [50]. The mice also 
had a thinner cortex [56]. Similarly, Caucasian elderlies 
deficient in 25-hydroxyvitamin D (25[OH]D) (<50 nmol/
L) had larger ventricles than those of subjects with normal 
25(OD)D levels (>50 nmol/L) [58]. Vitamin D depletion 
is reportedly associated with lower brain volume [59].

In addition, McGrath et al. [50] in 2004 and Eyles et al. 
[60] in 2005 have shown that the VDR is also expressed 
in the human brain. They reported the presence of 
1α-hydroxylase, the enzyme responsible for the forma-
tion of the active vitamin D in the human brain [60]. The 
distribution of VDR in the human brain is similar to that 
reported in rodents [60]. VDR is found in the hippocam-

pus; cortex; limbic systems; and the olfactory, visual, and 
auditory systems in the human brains (Fig. 1) [50,61,62]. 
This may suggest that vitamin D can modulate brain func-
tion in health and disease [52].

Further, Kuether and Piatt [63] in 1998 described a case 
of marked vitamin D deficiency. The patient presented 
with vitamin D-resistant rickets that involved the base of 
the cranium and precipitated the development of Chiari 
malformation and associated syringomyelia [63], features 
observed in some AIS patients. It is possible that vitamin 
D3 deficiency in some AIS patients causes similar subclin-
ical changes. Further, Zhang et al. [64] in 2016 reported 
spinal cord abnormalities in 18.7% of the ‘presumed’ in-
fantile and juvenile IS patients. Of these, 65% had Arnold-
Chiari malformation with or without syringomyelia.

2. Postural balance, motor performance, and vitamin D

Vitamin D deficiency causes poorer balance or posture 
control in mice and humans [7,65-67]. Kalueff et al. [68] 
in 2004 have shown that mice with VDR ablation had 
impaired motor performance. Therefore, it is possible 
that VDR deficiency affects the modulation of brain neu-
rotransmitters, such as acetylcholine and catecholamines, 
and disrupts the vitamin D-VDR signaling pathways, re-
sulting in impaired motor performance [68].

Minasyan et al. [65] in 2009 also examined the balance 
functions in VDR deficient mice. They found that the 
VDR deficiency in mice was associated with decreased 
balance functions. These findings may be relevant to 
poorer balance and posture control in humans with low 
vitamin D levels [65]. Beauchet et al. [66] in 2011 studied 

Fig. 1. The possible interaction of melatonin and vitamin D. Symbol (R) 
refers to the sites in which vitamin D receptor are strongly expressed 
in the brain. It was speculated that the 25-hydroxyvitamin D3 acted as 
mediator, bringing the ‘message of light’ from the retina to the pineal 
glands, resulting in decreased melatonin synthesis.
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the association between the stride-to-stride variability of 
stride time (STV) and serum 25(OH)D levels in adults 
>65 years old. Results showed that subjects with serum 
25(OH)D <10 ng/mL representing severe vitamin D de-
ficiency had a low lower limb proprioception score and a 
high STV (worse performance) [66]. A similar study by 
Krause et al. [67] in 2014 evaluated the impact of vitamin 
D level on postural body sway (PBS) in 342 elderly sub-
jects. They evaluated the different PBS parameters on a 
force plate with feet in close stance or hip-width stance 
with eyes open or closed [67]. Patients with significant vi-
tamin D deficiency (<10 μg/mL) had significantly higher 
PBS and hip-width stance than those with normal serum 
vitamin D levels (>30 μg/L) [67]. In another study, pa-
tients who were >60 years old and whose serum 25(OH)
D levels were <50 nmol/L had a lower stability index than 
those with normal serum 25(OH)D [7]. Patients with se-
rum 25(OH)D level >50 nmol/L had significantly better 
standing balance, gait, and chair stand performance com-
pared to those with serum 25(OH)D <50 nmol/L [7].

Patients with vitamin D3 deficiency who were supple-
mented with vitamin D3 showed improved postural bal-
ance [69-71]. Anek et al. [69] in 2015 examined the effect 
of short-term supplementation of vitamin D3 on the 
balance ability of 52 women aged 45–55 years old. They 
found that the balance ability of 26 women supplemented 
with 20,000 IU/wk vitamin D2 for 4 consecutive weeks 
was significantly improved compared with that at baseline 
and compared with that of the control group who had not 
received any supplementation. Similar findings were re-
ported by Cangussu et al. [70] in 2016 in younger (50–65 
years) postmenopausal subjects with vitamin D deficiency. 
They supplemented one group with 1,000 IU/day vitamin 
D3 orally; the other group received no supplementation. 
After 9 months, the 25(OH)D level of the supplemented 
group increased; no such increase was observed in the 
control group [70]. The balance of the supplemented group 
improved, and they exhibited a reduction in body sway, as 
measured with stabilometry. In contrast, there was no im-
provement in the balance of the control group [70].

Thus, it is clear that vitamin D may play a role in the 
cerebral process of postural balance [7]. However, the un-
derlying mechanism remains unknown. Sanyelbhaa and 
Sanyelbhaa [72] �����������������������������������������in ��������������������������������������2015 reported a high prevalence of ab-
normal ocular vestibular-evoked myogenic potentials and 
cervical vestibular-evoked myogenic potentials in patients 
with vitamin D deficiency, suggesting possible otolith dys-

function that affected both the utricle and saccule. Thus, 
it is possible that vitamin D deficiency may affect postural 
balance through disturbance of the vestibular system, 
which has been found to be dysfunctional in AIS patients 
[44].

Skeletal Growth, Menarche, and  
Vitamin D Status

Several studies have reported that the skeletal growth pat-
tern in AIS subjects is disturbed [73-77]. This has been at-
tributed to the age of onset of menarche [76,77], reduced 
serum vitamin D level, and/or polymorphism or varia-
tions in the VDRs [78].

AIS subjects are reportedly taller than healthy controls 
[73-77]. However, after the age of 13 years, the height 
difference between AIS and control subjects disappeared 
[77,79]. With respect to the sexual maturity, Siu King 
Cheung et al. [80] in 2003 reported that girls with AIS 
were shorter before menarche; however, they grew taller 
and had a longer arm span during the growth spurt com-
pared to healthy controls. Studies have shown that there 
are insignificant differences in the height between patients 
and controls at the end of the growth period, and the 
growth pattern of AIS patients has thus far been regarded 
as essentially normal [76,77]. In fact, in a recent review, 
Schlösser et al. in 2014 stated that there was only weak 
evidence in support of corrected body height changes as 
an etiological factor of AIS [6].

These different findings may be related to the age of 
onset of menarche reported in different studies [76,77,80]. 
Ylikoski [76] in 2003 and Goldberg et al. [77] in 1993 
reported that AIS girls experience earlier menarche with 
an earlier growth spurt. Other authors have reported 
contradictory findings [81-84]. Warren et al. [81] in 1986 
reported a higher prevalence of scoliosis in ballet danc-
ers, all of whom had delayed menarche. Mao et al. [82] in 
2011 found that the average age of onset for menarche in 
Chinese girls with AIS girls was significantly later than in 
normal controls. Yim et al. [83] in 2012 also reported that 
Chinese AIS girls had an average delay of 0.49 years in the 
age of onset of menarche compared to healthy controls.

Many factors influence the age of onset of menarche. 
These include genetics, estrogen level, vitamin D status, 
polymorphism of VDR, and latitude [78,85] (Table 4). 
Twin studies have shown that as much as 68% of the vari-
ance in age at menarche may be genetically determined 
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[85]. A decrease in the estrogen level is related to a delay 
in menarche [82]. Likewise, vitamin D deficiency and 
VDR polymorphism affect the timing of menarche [78,86]. 
Villamor et al�������������������������������������������.������������������������������������������ �����������������������������������������[86] in ���������������������������������2011 showed that vitamin D3 defi-
ciency is associated with an early onset of menarche by as 
much as 9 months. Latitude reportedly affects the time of 
onset of menarche, possibly through its influence on mel-
atonin secretion and vitamin D synthesis [87-89]. Girls 
who live at higher latitudes appear to experience men-
arche later than girls who live closer to the equator [87-89]. 
Grivas et al. [87] in 2006 attributed the differences in the 
age of onset of menarche in different latitudes to the pos-
sible differences in melatonin secretion [87]. However, it 
is also possible that the differences in menarche onset are 
related to the serum vitamin D level. At higher latitudes 
where the ultraviolet radiation is less intense, the cutane-
ous synthesis of vitamin D is decreased [88,90]. This may 
also be related to the delay in menarche onset. Dossus 
et al. [88] in 2013 showed that on a continuous scale, an 
increase of 1° latitude was associated with 0.04 years older 
age of onset of menarche, whiles a 1-kJ/m2 increase in the 
annual ultraviolet radiation dose resulted in a 0.42 years 
younger age at menarche. Hagenau et al. [90] in 2009 
showed that there was a 25(OH)D level decrease with 
latitude in European Caucasians; however, this was not 
observed in non-Caucasians. Studies have shown that an 
increase in the serum vitamin D level is associated with 
earlier menarche onset and vice versa [88,90].

Overall, the results are controversial. Studies have 
shown that both low and increased serum vitamin D level 

are associated with an earlier age of onset of menarche 
[86,88]. The contradictory findings may be attributable to 
the confounding effects of childhood obesity and higher 
leptin levels [91]. In obese girls, more serum 25(OD)
D is bound to the adipose tissues. Moreover, the higher 
amount of adipose tissues increases the tissue dilution of 
the vitamin, resulting in lower serum 25(OH)D levels, in-
fluencing the outcome.

Furthermore, the mechanism underlying the associa-
tion of vitamin D with the timing of menarche has not 
been clearly elucidated. It is possible that vitamin D acts 
through estrogen to affect the timing of menarche. The 
deficiency of vitamin D may reduce estrogen synthesis [30] 
and the expression and activity of several enzymes related 
to the production of sex steroids [92]. In addition, the in-
teractions between the signaling pathways of estrogen and 
1,25-vitamin D3 have also been identified [93].

Osteopenia and Vitamin D

Osteopenia is a condition characterized a lower than 
normal BMD. In particular, it is defined as BMD with a 
T-score between −1.0 and −2.5. T-score is the number of 
standard deviations above or below the mean value for a 
healthy 30-year-old adult of the same sex and ethnicity as 
the patient. Recent studies have shown that 29.5% [94] to 
38% of AIS patients have osteopenia [3,95,96]. Burner et 
al�����������������������������������������������������������.���������������������������������������������������������� ���������������������������������������������������������[97] in �������������������������������������������������1982 were the first to report relative osteoporo-
sis in children with IS. Similarly, Velis et al. [98] in 1988 
used the Singh femoral trabecular index, a classification 

Table 4. The non-genetic determinants of age of onset of menarche

Variable Early menarche Late menarche

Ethnicity Black girls Whites as compared to Black girls

Latitude Lower latitude Higher latitude, north of 30o

Arthropometric parameters Higher subcutaneous fat and BMI Low BMI

Nutrition Increased energy-adjusted intake
High animal protein
Caffeinated and artificially sweetened soft drink
Sugar sweetened beverages
Soy based products

Intake of yogurt
Vegetable proteins
Reduced fat intake

Environmental factors High socioeconomic status
High parental education
Absence of biological father
Urban environment
Endocrine-disruptor chemical

Low socioeconomic status
Low parental education
Rural environment

BMI, body mass index.
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system for the bone density of the femoral neck based on 
the visibility of the trabecular types that can be seen in 
the femoral neck to show that scoliosis patients presented 
with early trabecular bone loss in the hips. Thereafter, 
osteopenia in AIS patients has been confirmed in many 
studies [95,99-101] using dual photon-absorptiometry 
and dual energy X-ray absorptiometry. Osteopenia has 
been found not only in the spine [3,99], but also in the 
radius [102], hips [99-101], and tibia; therefore, the de-
crease in bone density is a generalized rather than a local 
phenomenon.

Follow-up studies have also shown that the bone quality 
in AIS patients is also affected [100,102]. Tam et al. [102] 
in 2014 found that the cortical density of the radius of 
the non-dominant hand of AIS patients was significantly 
reduced as compared to that in healthy controls. The tra-
becular density, trabecular number, and thickness also 
reportedly decreased [102], making the patients prone to 
fracture.

Further, the presence of a generalized reduction in 
BMD prompted Cheng et al. [3] in 1999 to suggest that 
osteopenia may have an etiopathogenetic role in AIS. Lee 
et al. [4] in 2005 demonstrated that BMD was inversely 
related to curve severity in 919 girls with AIS during the 
peri-pubertal period. AIS patients with lower BMD gen-
erally had a higher Cobb angle, while those with normal 
BMD had smaller curves [4]. This concurred with the 
findings of Wang et al. [101] in 2017 In fact, Hung et al. 
[5] in 2005 who followed up a cohort of 324 girls with AIS 
until skeletal maturity or progression of curves ≥6° found 
that osteopenia was a significant prognostic factor for 
curve progression.

Lee et al. [4] in 2005 compared the calcium intake and 
time spent in physical activities in 596 girls with AIS girls 
and 302 age-matched healthy controls. They found that 
the median calcium intake of AIS patients did not dif-
fer significantly from that of healthy controls. However, 
the median time spent by the former (AIS patients) in 
physical activities was slightly less than that spent by the 
controls [5]. Other studies have shown that osteopenia 
observed in AIS patients is related to vitamin D insuf-
ficiency and deficiency [10,103,104]. Longitudinal and 
cross-sectional studies have also demonstrated that the 
25(OH)D level positively correlated with BMD in healthy 
children and adolescents [105-108]. The serum 25(OH)
D level of pre-pubertal children at ages 7.6, 9.9, and 11.8 
positively correlated with cortical bone mineral content 

(BMC), cortical thickness, and predicted bone strength 
at the age of 15.5 years [108]. Pubertal girls with lower vi-
tamin D levels were at risk of not reaching the maximum 
peak bone mass, particularly at the lumbar spine [105]. 
Moreover, Balioglu et al. [10] recently demonstrated a 
negative correlation between serum vitamin D levels and 
the Cobb angle. Thus, these results further suggest that 
vitamin D may play an etiopathologic role in AIS develop-
ment.

The age of onset of menarche is a determinant factor 
of peak BMD in young girls. Fox et al. [109] in 1993 and 
Tuppurainen et al. [110] in 1995 reported that BMD is 
related to the age of onset of menarche. Early menarche 
is associated with higher circulating estrogen levels dur-
ing and after menarche [111,112] and a high peak bone 
mass [113]. Late menarche is associated with a low BMD 
[109,110,113]. A Chinese cohort study found patients 
aged <40 years who had experienced late menarche (at 
age >14 years) had an approximately two-fold higher risk 
of low areal BMD at the hips [114]. Similarly, a Korea Na-
tional Health and Nutrition Examination Survey (2008–
2011) showed late menarche is associated with a lower 
BMD in the lumbar spine [114]. The age at menarche is 
correlated not only with BMD, but also with bone micro-
structure [115]. Young healthy girls with a higher age of 
onset of menarche displayed lower total volumetric BMD, 
cortical volumetric BMD, and cortical thickness at the 
forearm than those with a lower age of onset of menarche 
[115].

Hormones and Vitamin D

Many hormones and metabolites have been implicated 
in the etiopathogenesis of IS. Among these, estrogen, 
melatonin, and leptin are important [116-121]. Platelet 
calmodulin and osteopontin were possibly of second-
ary importance in AIS pathogenesis. It is possible that all 
these hormones and proteins interact to influence BMD 
and vertebral bone quality, thereby affecting AIS develop-
ment.

1. Estrogen and vitamin D

AIS prevalence is higher in girls than in boys, particularly 
when the Cobb angle is >30° [122]. Further, the associa-
tion of greater curvatures with delayed menarche has 
raised the interest regarding estrogens in the scoliosis 
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communities because estrogens may play a role in the 
etiopathogenesis of IS [29]. The estrogen level in AIS sub-
jects has been extensively studied. Raczkowski [123] in 
2007 found no difference in the estradiol level of 27 girls 
with AIS and age-matched controls. The findings were 
supported by Sanders et al���������������������������������.�������������������������������� �������������������������������[124] in ����������������������2007. In contrast, Ku-
lis et al. [116] in 2006 found that the estradiol level of girls 
with AIS was lower than that of the age-matched controls. 
This was in agreement with the report of Esposito et al. 
[117] in 2009. In addition, Kulis et al. [125] in 2015 found 
that the reduction in estradiol level occurred both pre- 
and post-menarche onset in AIS patients as compared to 
that in healthy controls. The reduction was more signifi-
cant before than after menarche onset [125].

Estrogen has multiple functions. In addition to its re-
productive functions, it regulates skeletal growth and 
development, promotes bone absorption, is involved in 
matrix metabolism, and maintains normal bone den-
sity [29]. It is also involved in the normal closure of the 
growth plates in both sexes [126]. Thus, reduced estrogen 
production delays the development of bone maturity 
[126]. In fact, hypoestrogenism is associated with a higher 
prevalence of AIS [81].

Estrogen does not act alone, it interacts with melato-
nin and vitamin D. This interaction is achieved by the 
modulation of the activity of melatonin; 17-β-estradiol, 
an estrogen, affects the functions of melatonin [127] and 

inhibits its melatonin [128]. The signaling pathways of 
estrogen and melatonin interact (Fig����������������������.��������������������� 2) [127,129]. In ad-
dition, estrogen interacts with vitamin D (Fig. 3). Further, 
estrogen stimulates renal 1α-hydroxylase activity, convert-
ing 25(OH)D to 1,25-dihydroxyvitamin D, a biologically 
more active form of vitamin D [130]. 17-β-estradiol also 
upregulates the expression of the VDR gene [131] and in-
creases intestinal calcium absorption through vitamin D-
dependent mechanisms. Vitamin D is also involved in the 
regulation of estrogen synthesis [30]. Moreover, 1,25(OH)2 
vitamin D3 upregulates the estrogen-binding proteins 
[132]. Further, the estrogen and VDR genotypes interact 
and influence the age of menarche [133] and BMD [134].

2. Melatonin and vitamin D

Melatonin, also known as N-acetyl-5-methoxy trypt-
amine, is a hormone produced by the pineal gland in ani-
mals; it regulates sleep and wakefulness. Melatonin defi-
ciency has been implicated in AIS pathogenesis [135,136]. 
However, subsequent studies did not agree with the 
theory that melatonin deficiency is a primary cause of AIS 
[137-139]. More recent trials, however, show that patients 
with severe AIS have dysfunctional melatonin signaling 
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[118,119,140].
In AIS patients, melatonin possibly exerts its effects 

through its influence on bone growth and development. 
Melatonin induces the proliferation and stimulation of 
type I collagen synthesis in primary human osteoblasts 
[141,142] and enhances osteoid mineralization and os-
teoblast differentiation in mice and rat cell cultures [143]. 
Reduce melatonin secretion may contribute to the devel-
opment of osteoporosis in humans [129]. Epidemiological 
studies on a study sample comprising more than 38,000 
postmenopausal women who worked night shifts for ≥20 
years demonstrated significantly increased risks of wrist 
and hip fractures over an 8-year follow-up period in these 
women as compared to those in women who had never 
worked night shifts [144]. Night shift work disturbs the 
patterns of melatonin secretion with severe circadian 
rhythm disruption [145].

It is noteworthy that vitamin D and melatonin report-
edly interact with each other. In multiple sclerosis patients 
treated with interferon β (IFN-β), natural cell-signaling 
proteins produced by the body that have antiviral, immu-
nomodulatory, and antiproliferative properties, melatonin 
secretion was negatively correlated with alterations in the 
serum 25(OH)D levels [146]. In a randomized control 
study, 3-month supplementation with a high dose of vita-
min D to 40 IFN-β treated multiple sclerosis patients sig-
nificantly decreased the overnight secretion of melatonin 
[146]. The reduction in the serum 25(OH)D levels was 
accompanied by an increase in the nighttime secretion of 
melatonin [146].

It is possible that 25-hydroxyvitamin D is a mediator in 
melatonin production [146]. Melanin production from 
the pineal gland is stimulated by darkness and inhibited 
by light. Photic stimulation from the retina is transmitted 
to the pineal gland via the suprachiasmatic nucleus of the 
hypothalamus [147]. VDR is strongly expressed in the 
supraoptic nucleus of the hypothalamus; therefore, Golan 
et al (2013) speculated that 25(OH)D acted as mediator, 
transmitting the ‘message of light’ to the pineal glands, 
leading to decreased melatonin synthesis (Fig. 1) [146].

3. Leptin and vitamin D

Leptin is an adipocyte-derived hormone; once synthe-
sized, it is released into the blood stream to stimulate the 
brain for the regulation of appetite and energy consump-
tion. In obese subjects with a large fat mass, leptin secre-

tion is increased. In contrast, it is reduced in lean indi-
viduals.

Leptin primarily suppresses appetite and maintains the 
energy homeostasis. It also affects bone metabolism [148] 
and the production of gonadal hormones by its effects on 
the hypothalamus [149]. Several girls with AIS girls have 
low leptin levels with other risk factors associated with 
AIS, including a low body mass index (BMI), reduced 
bone mass, and delayed puberty [80,150,151]; thus, low 
leptin levels are believe to be a cause of AIS [120,121].

Leptin primarily influences bone metabolism via two 
different pathways, the central and peripheral pathways 
that favor the breakdown and formation of the bones, 
respectively. In mice, the intracerebroventricular infusion 
of leptin stimulates hypothalamic leptin receptor expres-
sion and the sympathetic nervous system, enhancing 
bone resorption [151,152]. However, peripherally, leptin 
promotes the differentiation of bone marrow stromal cells 
into osteoblasts and decreases the breakdown of bones, 
thus encouraging bone formation [153,154]. Thus, skeletal 
bone mass depends on the interplay of these two mecha-
nisms [153]. Low leptin levels are reportedly associated 
with abnormal bone microarchitecture [149].

Leptin may also possibly influence AIS pathogenesis 
via its effects on puberty, although the results are contro-
versial. Leptin plays a significant role in the maintenance 
of the hypothalamic-gonadal-pituitary axis; it acts on the 
hypothalamus, pituitary gland, and gonadal glands as if 
they form a single entity acting collaboratively. Matkovic 
et al. [155] in 1997 demonstrated that leptin levels were 
inversely correlated with age of onset of menarche in girls 
with and without AIS. Low leptin levels are associated 
with delayed puberty [149,150]. The replacement of leptin 
in deficient individuals restored puberty and fertility [156].

Burwell et al. [121] in 2016 recently postulated that a 
reduction in the serum leptin levels plays a role in the 
cascade of AIS pathogenesis. Clinical studies have shown 
that serum leptin concentration is proportional to the to-
tal body weight, fat mass, [148] and vitamin D level [157]. 
Elevated serum leptin levels are observed in obese indi-
viduals, while reduced levels are seen in those with a low 
body weight [148]. Clark et al. [120] in 2014 investigated 
the relationship of BMI at the age of 10 years and the 
presence of scoliosis at the age of 15 years. They found a 
negative association between the BMI/body weight at the 
age of 10 years and scoliosis at the age of 15 years, with a 
20% reduced risk of scoliosis per one standard deviation 
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increase in the BMI. This suggested that girls with a lower 
BMI are at a higher risk of scoliosis [120].

Leptin levels are also associated with serum vitamin D 
levels. Menendez et al. [158] in 2001 and Kim et al. [159] 
in 2013 have shown an inverse relationship between leptin 
levels and 25(OH)D levels. A reduction in the 25(OH)D 
level is associated with an increase in the leptin level and 
vice versa. In obese subjects, leptin is secreted by the adi-
pose tissue to induce satiety. In the presence of abundant 
adipose tissue, more vitamin D is absorbed into the tissue, 
reducing the circulating vitamin D level. In contrast, in 
lean individuals who have less adipose tissue, less leptin 
is secreted. Moreover, less vitamin D is absorbed into the 
adipose tissue. This increases the circulating vitamin D 
levels [158]. Thus, it is clear that 25(OH)D negatively and 
powerfully controls leptin secretion by the human adipose 
tissue [158].

The Role of Vitamin D in the Etiopathogenesis 
of Adolescent Idiopathic Scoliosis

Currently, AIS is considered a multifactorial heteroge-
neous disease [160], with genetic and environmental fac-
tors influencing its etiopathogenesis [161,162]. Vitamin 
D deficiency and osteopenia were prevalent among AIS 
patients [10] and were positively correlated with the Cobb 
angle. Therefore, we speculated that vitamin D deficiency 
may play a role in AIS development, possibly by influenc-
ing fibrosis regulation [163], postural control, and regula-
tion of bone metabolism [10] (Table 5).

In children with vitamin D deficiency, spinal cord or 
spinal column injury in children may be repaired by fi-
brosis, setting the background for the tethering of the 
nerve roots. Abe et al. [24] in 2017 injured the right side 
of the paravertebral muscles of 30, 8-week-old male rats. 
Thereafter, they performed histological examination and 
comparison of the muscle fibers and dorsal root ganglia 

on both the sides 1–3 weeks post-intervention. They 
found the cicatrix formed after the injury may sensitize 
the dominant nerve in the dorsal root ganglia [24]. Li et 
al. [25] in 2016 studied the effects of compression of the 
sciatic nerve in rats to investigate the pathological altera-
tions in the neurons of the dorsal root ganglia [25]. They 
reported at 3 weeks after the compression, collagen fibers 
accumulated around the compressed sciatic nerve, and at 
8 weeks, excessive collagen formation with muscle atrophy 
was observed [25]. The volume of collagen gradually and 
significantly increased following sciatic nerve compres-
sion. The amount of collagen I fibers surrounding the ip-
silateral dorsal root ganglion was higher than that on the 
contralateral side [25], suggesting that injuries to the para-
vertebral muscles and nerve roots are healed with fibrosis. 
It is possible that in a subset of AIS patients with vitamin 
D deficiency, spinal injury in childhood is healed by fi-
brosis, with resultant nerve root tethering. As per clinical 
reports, fibrosis and scar tissue formation after surgery in 
childhood may be associated with AIS [164,165]. Lebel 
and Lebel [164] in 2016 reported a case of a female pa-
tient with AIS who underwent surgical excision of a 4-cm 
benign ganglioblastoma from the left posterior rib cage at 
the age of 3 years. Post-surgical radiographs at the age of 
8 years showed fusion of left 4th and 5th ribs. The patient 
was diagnosed with AIS at 11 years of age [164]. Similarly, 
Brooks et al. [165] in 2009 reported a case of AIS, possibly 
secondary to right inguinal herniorrhaphy performed 
before 6.25 years of age. By the age of 6.5 years, an asym-
metric posture was apparent in a casual photograph, and 
after puberty, a marked deformity was evident [165].

Artaza and Norris [163] in 2009 exposed mesenchymal 
multipotent cells to the active form of vitamin D. They 
found that vitamin D decreased the expression of trans-
forming growth factor β 1 and the plasminogen activator 
inhibitor, both of which are profibrotic factors, leading to 
reduced collagen deposition.

Vitamin D deficiency is also found to reduce postural 
control; supplementation of vitamin D improves the pos-
tural control in elderly individuals with vitamin D defi-
ciency [69-71]. Whether this has any implications in AIS 
subjects warrants further investigation.

Insufficiency and deficiency of vitamin D may also play 
a role in AIS pathogenesis through its effects on bone 
metabolism. Vitamin D possibly interacts with estrogen, 
melatonin, and leptin to affect the BMD and BMC of the 
bones, including the vertebrae [3,9,10,30,131,146,158]. 

Table 5. Factors that contribute to decreased serum vitamin D level

Factors

Decrease in fat intake
Decrease in cholesterol intake
Decrease in sun exposure
Staying in-door
Higher latitude
Insufficient magnesium intake
Gut absorption problems
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Recently, vitamin K2 was also found to be important 
for regulating bone metabolism. Vitamin K2 facilitates 
the deposition of calcium in the bones by the carboxyl-
ation of osteocalcin, the synthesis of which is induced by 
1,25-(OH)2D3 [166]. Vitamin D deficiency reduces the 
carboxylation of osteocalcin and reduces the BMC of the 
total body and the lumbar spine [167]. It is noteworthy 
that many peri-pubertal healthy adolescents have subclin-
ical deficiency of vitamin D [105,168-170] and vitamin K2 
[167,171,172]. This may be attributable to the high bone 
turnover in children [105,172] and the fat-restricted diet 
that is commonly enforced by the parents, given the fact 
that both vitamin D and K2 are fat-soluble vitamins. Defi-
ciency of vitamin D, vitamin K2, estrogen, melatonin, and 
leptin levels is associated with a reduction in the BMD 
[8,9,129,150,173]. It is possible that the resultant osteope-
nia from the deficiencies make the vertebrae susceptible 
to wedge deformity in the early stages of AIS [174-181], 
contributing to the initiation and/or progression of the 
curvature.

Recent studies have shown that asymmetric loading 
of the osteopenic vertebrae may cause vertebral wedg-
ing through creeping, a continuous deformation under 
constant load [182,183]. Lowered vertebral BMD is as-
sociated with a higher Cobb angle and increased risk 
for curve progression [4,5,184]. Studies have shown that 
sustained compressive loading can cause progressive and 
measurable creep deformity in osteopenic elderly human 
vertebrae [182,183], with a mean BMD <0.15 g/cm3 that 
results in vertebral wedging [182]. Wren et al. [185] in 
2017 reported that lateral thoracic vertebral body wedging 
is negatively correlated with the vertebral cross-sectional 
area (CSA) in girls with AIS. Thus, vertebral body wedg-
ing is more likely to occur in the thoracic spine that has a 
small vertebral CSA, particularly in the presence of osteo-
penia [186]. In skeletally immature patients, continuous 
asymmetric growth on the concave and convex sides of a 
scoliosis curve would increase vertebral wedging, further 
contributing to an increase in the curvature [185,187].

Conclusions

Our literature review demonstrated an association be-
tween vitamin D status and BMD, menarche, and other 
hormones. Although lower vitamin D levels are correlated 
with the Cobb angle, the relationship between vitamin D 
and AIS may not be casual. Further studies are required 

to determine whether vitamin D definitely plays a casual 
role in the etiopathogenesis of AIS and whether vitamin 
D deficiency is related to the tethering of the nerve roots 
and postural control dysfunctions observed in some AIS 
subjects. Longitudinal studies may also be required to ex-
amine the effects of fat-restricted diets as well as vitamin 
D and K2 supplementation on the progression and man-
agement of the scoliosis curves.

Further, it may be interesting to determine if the wide-
spread deficiencies of vitamin D and K2 in adolescents are 
related to the increased need for vitamin D and K2 during 
pubertal growth and/or to the adherence to the now chal-
lenged fat- and cholesterol-restricted diets [188] that have 
been promoted since the early 1980s to reduce the risk of 
cardiovascular diseases.
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