Association of Vitamin D Deficiency and Treatment with COVID-19 Incidence

David O. Meltzer MD, PhD¹

Thomas J. Best, PhD¹

Hui Zhang, PhD¹

Tamara Vokes, MD¹

Vineet Arora, MD, MPP¹

Julian Solway, MD¹

¹The University of Chicago

Corresponding Author: David Meltzer MD, PhD, Fanny L. Pritzker Professor of Medicine, The University of Chicago, 5841 S. Maryland MC 5000, Chicago, IL 60637

Email: dmeltzer@medicine.bsd.uchicago.edu

Telephone: 773-517-2858

Abstract

Abstract Word Count: 350

Manuscript Word Count: 2967

Importance: Vitamin D treatment has been found to decrease incidence of viral respiratory tract infection, especially in vitamin D deficiency. It is unknown whether COVID-19 incidence is associated with vitamin D deficiency and treatment.

Objective: To examine whether vitamin D deficiency and treatment are associated with testing positive for COVID-19.

Design: Retrospective cohort study

Setting: University of Chicago Medicine

Participants: Patients tested for COVID-19 from 3/3/2020-4/10/2020. Vitamin D deficiency was defined by the most recent 25-hydroxycholecalciferol <20ng/ml or 1,25-dihydroxycholecalciferol <18pg/ml within 1 year before COVID-19 testing. Treatment was defined by the most recent vitamin D type and dose, and treatment changes between the time of the most recent vitamin D level and time of COVID-19 testing. Vitamin D deficiency and treatment changes were combined to categorize vitamin D status at the time of COVID-19 testing as likely deficient(last-level-deficient/treatment-not-increased), likely sufficient(last-level-not-deficient/treatment-not-deficiency(last-level-deficient/treatment-increased or last-level-not-deficient/treatment-decreased).

Main Outcomes and Measures: The main outcome was testing positive for COVID-19. Multivariable analysis tested whether the most recent vitamin D level and treatment changes after that level were associated with testing positive for COVID-19 controlling for demographic and comorbidity indicators. Bivariate analyses of associations of treatment with vitamin D deficiency and COVID-19 were performed.

Results: Among 4,314 patients tested for COVID-19, 499 had a vitamin D level in the year before testing. Vitamin D status at the time of COVID-19 testing was categorized as likely deficient for 127(25%) patients, likely sufficient for 291(58%) patients, and uncertain for 81(16%) patients. In multivariate analysis, testing positive for COVID-19 was associated with increasing age(RR(age<50)=1.05,p<0.021;RR(age≥50)=1.02,p<0.064)), non-white race(RR=2.54,p<0.01) and being likely vitamin D deficient (deficient/treatment-not-increased:RR=1.77,p<0.02) as compared to likely vitamin D sufficient(not-deficient/treatment-not-decreased), with predicted

COVID-19 rates in the vitamin D deficient group of 21.6%(95%CI[14.0%-29.2%]) versus 12.2%(95%CI[8.9%-15.4%]) in the vitamin D sufficient group. Vitamin D deficiency declined with increasing vitamin D dose, especially of vitamin D3. Vitamin D dose was not significantly associated with testing positive for COVID-19.

Conclusions and Relevance: Vitamin D deficiency that is not sufficiently treated is associated with COVID-19 risk. Testing and treatment for vitamin D deficiency to address COVID-19 warrant aggressive pursuit and study.

COVID-19, caused by the SARS-CoV-2 coronavirus, often produces severe lower respiratory symptoms and has caused 200,000 deaths worldwide.¹ One challenge in halting this pandemic is the absence of evidence demonstrating effective pharmacologic interventions to prevent COVID-19. Vitamin D has been identified as a potential strategy to prevent or treat COVID-19.² Vitamin D treatment has been found to decrease other viral respiratory infections, especially in persons with vitamin D deficiency.³ Vitamin D deficiency is common, affecting nearly half the US population, with higher rates among persons with darker skin or reduced sun exposure, including persons living in higher latitudes in the winter, nursing home residents, and health care workers.⁴ COVID-19 is more prevalent among African-Americans,⁵ persons living in northern cities in the late winter,⁶ older adults,⁷ nursing home residents⁸ and health care workers,⁹ populations which all have increased risk of vitamin D deficiency.^{10,11,12,13} Moreover. COVID-19 is less prevalent in pregnant women and children¹⁴, and in persons living in Japan¹⁵, in whom rates of vitamin D deficiency are lower.^{16,17,18} Shelter in place orders to reduce the spread of COVID-19 may also decrease sun exposure, potentially worsening vitamin D levels and providing further rationale for vitamin D supplementation.¹⁹ Given the low risks and low cost of vitamin D treatment, it has been suggested that vitamin D treatment should be rapidly scaled based on existing evidence.^{20,} Nevertheless, evidence of whether vitamin D deficiency is associated with COVID-19 infection is lacking and could help establish vitamin D as an evidencebased approach to decrease the burden and potentially the spread of COVID-19.

Using data from the electronic health record at the University of Chicago Medicine (UCM) in Chicago, IL, we examined whether persons tested for COVID-19 were more likely to test positive for COVID-19 if they were vitamin D deficient than if they were not vitamin D deficient. Because patients may have had changes in their vitamin D treatment after the time of their most recent vitamin D level prior to COVID-19 testing, we combined data on patients' last vitamin D level before COVID-19 testing and changes in their treatment after that vitamin D level to construct a measure of whether each patient was expected to have a deficient, sufficient, or uncertain vitamin D level at the time they were tested for COVID-19. We also tested whether the type and dosage of vitamin D supplementation was associated with vitamin D levels and COVID-19.

Methods

Study Design and Oversight

The underlying motivation for our analysis is that if vitamin D deficiency increases the risk of COVID-19, then persons with vitamin D deficiency tested for COVID-19 should be more likely to test positive than persons being tested who are not vitamin D deficient. Based on this hypothesis, we obtained IRB approval for a preliminary bivariate analysis examining whether patients tested for COVID-19 at UCM were more likely to test positive for COVID-19 if they had

a documented deficient level of vitamin D in the past 2 years compared to patients with nondeficient vitamin D levels. This preliminary analysis demonstrated an increased rate of testing positive for COVID-19 among persons with vitamin D deficiency and suggested the importance of examining data on vitamin D treatments after the time of these test results. Since a large fraction of the persons tested at UCM were UCM health care workers, exploratory analyses were begun to inform UCM internal operations in parallel with IRB submission of this study, which was approved by the University of Chicago Biological Sciences Division IRB.

Participants

We obtained data for all 4,314 persons tested for COVID-19 at UCM from March 3, 2020 to April 10, 2020. We obtained electronic health record data for required demographic, comorbidity, laboratory and medication data, including 25(OH)-vitamin D levels within 2 years before COVID-19 testing. Vitamin D levels and treatments within 14 days of COVID-19 testing were excluded from analyses to avoid possible confounding by potential early manifestations of COVID-19, such as presenting for health care with symptoms that could lead to testing for and treatment of vitamin D deficiency. This resulted in 22 patients being excluded.

Measurements

All variables were defined based on information from the UCM electronic health record, Epic® (Verona, WI). COVID-19 test status was determined by any positive COVID-19 RNA test result. Because of limitations on testing, testing at UCM was focused on persons presenting with potential symptoms of COVID-19 admitted to the hospital or health care workers with COVID-19 symptoms and exposure. The first date of testing positive for COVID-19 was used to determine the testing date for calculating variables defined in relation to the testing date. Patients with a most recent 25(OH)-vitamin D level <20 ng/ml within 1 year of COVID-19 testing were deemed vitamin D deficient. Patients with a most recent vitamin D levels within 1 year \geq 20 ng/ml were deemed not vitamin D deficient. Patients treated with calcitriol and with calcitriol levels were classified as vitamin D deficient if the calcitriol levels <18 pg/ml. Vitamin D3 dosing was defined based on most recent daily dose recorded over the past 2 years excluding the 14 days before testing positive: None, 1-1000IU or a multivitamin, 2000IU, ≥3000IU. Indicators for treatment with D2 and calcitriol were also included. To account for possible changes in patients' vitamin D treatment after the time of their last vitamin D level, we combined the data on the last vitamin D level and changes in treatment after that vitamin D level to assign each patient to one of four categories reflecting their likelihood of being vitamin D deficient at the time of COVID-19 testing: 1) deficient/treatment-not-increased (likely deficient), 2) not-deficient/treatment-not-decreased (likely sufficient), and 3) deficient/treatment-increased and 4) not-deficient/treatment-decreased, indicating uncertain

vitamin D sufficiency. Days from most recent vitamin D level to COVID-19 diagnosis was constructed for sensitivity analysis.

Age, gender, race, Hispanic ethnicity were also obtained and coded as reported in Table 1. BMI and the following ICD-10-CM-based Elixhauser comorbidity clusters²¹ potentially related to COVID-19 coded based on all encounters during the period: hypertension, diabetes, chronic pulmonary disease, pulmonary circulation disorders, depression, and immunosuppression. Comorbidity indicators for liver disease and chronic kidney disease were also included because their potential roles in affecting levels of activated vitamin D.

Statistical Analysis

Basic descriptive statistics were reviewed for all variables. Fisher's exact test was used to compare rates of testing positive for persons with last vitamin D levels that were deficient and persons with last levels that were not deficient. A multivariable generalized linear model (GLM) with binomial residuals and log link function²² was estimated with the covariates noted above. We also tested whether treatment dose/type was associated with vitamin D deficiency and COVID-19. In the bivariate COVID-19 analysis, patients were included if they had a diagnosis of vitamin D deficiency defined by having any deficient vitamin D level or recorded ICD-10-CM code for vitamin D deficiency within 2 years.

Results

Characteristics of the Patients

All 4,314 patients tested for COVID-19 during the study period had a test result. Of these, 499 had a vitamin D level in the year before testing, including 178(36%) with vitamin D deficiency. Four-hundred-twenty-eight(10%) patients tested for COVID-19 had a diagnosis of vitamin D deficiency within 2 years. Table 1 provides descriptive statistics for all patients with a COVID-19 test result and comparisons of demographic and comorbidity indicators, treatments and rates of testing positive for COVID-19 for the cohorts of patients stratified by whether their last vitamin D level was deficient.

Table 1 indicates no significant differences between patients whose last vitamin D level was or was not deficient except that vitamin D deficient patients are more likely to be younger, African American, have deficient vitamin D levels, and receive vitamin D2 and less likely to receive vitamin D3.

Thirty-two of 178(18%) vitamin D deficient patients tested positive for COVID-19 versus 40 of 321(11%) non-deficient patients(p=0.11).

Supplemental Table 1 repeats these descriptive analyses dividing the sample among the 4 groups combining deficiency status and treatment changes after the last vitamin D level to infer vitamin D status at the time of COVID-19 testing. The results are similar but show some additional differences in some baseline attributes in the small groups with uncertain deficiency status. Controlling for these variables or omitting the groups with uncertain vitamin D status at the time of COVID-19 testing the groups with uncertain vitamin D status at the time of COVID-19 testing the groups with uncertain vitamin D status at the time of COVID-19 testing the groups with uncertain vitamin D status at the time of COVID-19 testing from the analysis did not change our findings.

Figure 1 depicts the distribution of most recent vitamin D levels between 1 year before and 14 days before COVID-19 test orders for the sample used in multivariable analysis (Table 2). Among the 35% of patients whose most recent vitamin D-level was deficient, 18% tested positive for COVID-19, compared to 12% for patients whose last vitamin D level was not deficient(p=0.11).

Follow-up and Outcomes

Table 2 shows the results of the multivariable GLM model for testing positive for COVID-19. Patients who were likely vitamin D deficient at the time of COVID-19 testing (i.e., their most recent vitamin D level before COVID-19 testing was deficient and they did not have their vitamin D dose increased) had an increased relative risk of testing positive for COVID-19(RR=1.77,p<0.02) compared to patients whose vitamin D level at the time of COVID-19 testing was likely sufficient (i.e., their last vitamin D level was not deficient and they at least maintained their vitamin D dose between the time of their last vitamin D level and when they were tested for COVID-19), for an estimated average rate in the vitamin D deficient group of 21.6%(95%Cl[14.0%-29.2%]) versus 12.2%(95%Cl[8.9%-15.4%]) in the vitamin D sufficient group. Testing positive for COVID-19 was also associated with increasing age, and non-white race, and was not associated with comorbidities except for a decreased incidence in persons with conditions associated with immunosuppression. Testing positive for COVID-19 was not significantly more likely for the patients classified as having vitamin D levels of uncertain sufficiency compared to patients with sufficient vitamin D levels. The risk of testing positive for COVID-19 in the likely deficient vitamin D group with a deficient last vitamin D level and no increase in treatment after that level was also not statistically significantly different than the risk of testing positive in the group with a deficient last vitamin D level but some increase in treatment. All these results were robust to including measures of time from last vitamin D level to COVID-19 testing. They also were preserved when the analysis was performed separately for non-white and white persons, though the small number of white persons forced dropping some covariates for model estimation in that subgroup. Because hypertension, obesity and diabetes may be ameliorated by treatment with Vitamin D, sensitivity analyses were also performed omitting these as covariates; this did not significantly change these findings.

Among the 124 patients who had a deficient last vitamin D level and did not have vitamin D treatment increased, 60% had no recorded vitamin D treatment after the deficient level, 30% continued their dosing before the deficient vitamin D level, and the remaining 10% primarily reflected switches from vitamin D3 to vitamin D2 or from vitamin D2 to ≤1000IU vitamin D3. Among patients with a deficient last vitamin D level who had an increase in treatment after that level, 35% initiated or increased vitamin D3 to 2000IU or more, 50% initiated D2, and 15% initiated low-dose ≤1000 IU vitamin D3.

Vitamin D treatment type and dosage were not significantly associated with testing positive for COVID-19 (Table 3) but the analysis was notable for a small number of individuals receiving higher doses of vitamin D3. Vitamin D type and dosage were significantly (p<0.01) associated with deficient vitamin D levels (Table 4). The latter effect was no longer significant (p=0.24) if patients in the D3 2000IU and \geq 3000IU categories were omitted from the analysis.

Discussion

This study provides the first direct evidence of the association of vitamin D deficiency and potentially insufficient treatment with testing positive for COVID-19. The multivariable analysis suggests that persons with deficient most recent vitamin D levels whose treatments were not increased and therefore likely remained vitamin D deficient were at substantially higher risk of testing positive for COVID-19 than were persons with levels that were likely to be sufficient.

This result supports the idea that having an insufficient vitamin D level increases the risk for COVID-19 and suggests that treatment for vitamin D deficiency can reduce that risk. The potential value of treatment for vitamin D deficiency in reducing the risk of COVID-19 is supported by the finding that patients with deficient last vitamin D levels who did have increased treatment were not found to have increased risk for COVID-19 compared to patients whose last vitamin D levels and treatments after those levels suggested they were likely to have had sufficient levels of vitamin D at the time they were tested for COVID-19. Though the difference in COVID-19 risk among these patients with deficient last vitamin D levels who were and were not treated did not reach statistical significance, the small fraction of those receiving treatment in this sample is limited by relatively conservative treatment approaches used. That vitamin D treatment type and dose are related to rates of deficiency and that this association is fully accounted for by the two most effective treatments for vitamin D deficiency studied (vitamin D3 2000IU) reinforces the potential value of treatment.

Nevertheless, the complex relationship of treatments to COVID-19 risk and vitamin D levels and deficiency highlights the need for randomized trials to determine whether vitamin D treatment

might affect the risk of COVID-19. Testing of vitamin D levels may be an important tool in guiding treatments, and the availability of low-cost home testing for vitamin D may be especially valuable given the benefits of social distancing in COVID-19. However, because vitamin D dosing of up to at least 4000IU or 5000IU is generally considered safe,²³ taking 4000-5000IU of vitamin D daily may be a reasonable approach for persons without known contraindications to vitamin D supplementation.

Although this appears to be the first data directly connecting vitamin D deficiency and the risk of COVID-19, the idea that adequate vitamin D levels could prevent COVID-19 is supported by multiple trials and meta-analysis that find vitamin D treatment can reduce other viral respiratory infections, among which coronaviruses are common causative organisms. While these benefits would be expected to be greatest among vitamin D deficient persons, the low risks of vitamin D supplementation, the costs and limited access to testing and known seasonality of vitamin D levels all argue for population-level supplementation efforts and perhaps targeted testing for groups at high risk for vitamin D deficiency and/or COVID-19, as noted above. Vitamin D deficiency is influenced by genetic factors, including in African Americans,²⁴ so Vitamin D testing and treatment may play an important role in reducing incidence among the African American community where COVID-19 has been particularly prevalent and morbid. This also implies that some risk for COVID-19 might be heritable, which might inform COVID-related decision making for persons with biological relatives who have been affected.

If the incidence of COVID-19 can be reduced by treatment with vitamin D, it is tempting to consider whether vitamin D might reduce COVID-19 transmission. However, caution is required because of the potential importance of asymptomatic persons in COVID-19 spread. Vitamin D is understood to modulate immune function through effects on dendritic cells and T cells²⁵, which may promote viral clearance and/or reduce inflammatory responses that produce symptoms. Higher vitamin D levels correlate with lower IL-6 levels, which is notable because IL-6 blocking agents are a major target for controlling cytokine storm in COVID-19.^{26,27} Vitamin D may also affect metabolism of zinc²⁸, which has been found to decrease the replication of coronaviruses.²⁹ To the extent it decreases viral replication or accelerates viral clearance, vitamin D treatment might reduce spread. On the other hand, if vitamin D reduces inflammation, it might increase asymptomatic carriage and decrease symptomatic presentations, including cough, making it hard to predict its effect on viral spread.

Important limitations must be noted. First, the associations observed may not reflect causal effects of vitamin D deficiency on COVID-19, especially since vitamin D deficiency can reflect a range of chronic health conditions or behavioral factors that plausibly reduce the likelihood of treatment of vitamin D deficiency and increase COVID-19 risk. Nevertheless, the results are

robust to including a broad set of demographic and comorbidity indicators. Our analysis also included patients treated with vitamin D2 or calcitriol, and included calcitriol levels in our definition of vitamin D deficiency, which are often used in patients with chronic kidney disease or hypoparathyroidism. In sensitivity analysis, our results generally strengthened when we omitted these patients. We also note our sample is enriched in persons with vitamin D deficiency because of the large number of African Americans, adults with chronic illness and health care workers, all living in a northern city and exposed to COVID-19 during winter. Vitamin D deficiency may be a smaller risk factor in other populations. The relative simplicity of the analysis performed here would facilitate replication of this analysis in other settings. Since vitamin D deficiency is so prevalent in the US population, and especially in persons with darker skin, who are older and nursing home residents, who are at increased risk for COVID, it seems likely that these findings might be replicated in other settings.

The data presented here argues strongly for a role of vitamin D deficiency in COVID-19 risk and for expanded population-level vitamin D treatment and testing and assessment of the effects of those interventions. Studies of whether interventions to reduce vitamin D deficiency could reduce COVID-19 incidence should be an important priority, including both broad population interventions and intervention among groups at increased risk of vitamin D deficiency and/or COVID-19.

Funding, Disclosures and Acknowledgements

Meltzer, Best and Zhang wish to acknowledge support from the Learning Health Care System Core of the University of Chicago/Rush University Institute for Translational Medicine (ITM) Clinical and Translational Science Award (ITM 2.0: Advancing Translational Science in Metropolitan Chicago, UL1TR002389, Solway, Contact PI)) and the African American Cardiovascular pharmacogenetic CONsorTium (ACCOuNT, U54-MD010723, Perera, Meltzer Co-PIs). We would like to acknowledge Dr. Stephen Weber for assistance in the UCM operational analyses that informed design of this study, and Tim Filarski and Steven Hooper, who helped with laboratory data acquisition.

	eristics of Patien		Full sam	ple	Vitamin Deficien (Most re vitamin past yea ng/ml)	t cent D in r <20	Not Vitamin Deficient (Most recenvitamin D in year ≥20 ng	nt n past g/ml)	Fisher's exact test for difference	
			N	%	N			%		
Number of patie	ents		4314	100	178	100	321	100		
Age			45.7		45.6		50.7		0.002 (t toot	
years (mean) <50			45.7 2591	60	45.6	-	50.7 155	48	0.003 (t-test	
50-64			1040	24	34			28	0.003	
65+			683	16	30		77	24		
Gender			2700	65	420	70	225	70	0.333	
Female Male			2790 1524	65 35	138		235 86	73 27		
IVIAIE			1524	55	40	22	00	27		
Race	асе					1			< 0.002	
White			1067	25	30	17	128	40	~0.00	
Other than Wh	ite		2767	64	143	80	191	60	<0.00	
Unknown	480	11	5	3	2	<1				
		_				┥ ┥				
Ethnicity			240	6	45		20	0	1.00	
Hispanic			249	6	15	-		9		
Not Hispanic Unknown			4004 61	93 1	163			91 0		
Onknown		01	1	0	0	0	0			
Employee status								0.55		
UChicago employee			1431	33	63	35	104	32		
Not UChicago employee			2883	67	115	65	217	68		
	evaluated in past		499	12	178		-	100		
	vitamin D<20 ng/		241	6	178			0		
	g/ml in past 2 yea		305	7	178	100	54	17	<0.00	
deficiency in 2 y	0-CM diagnosis o ears I	r vitamin D	251	6	71	40	100	31	0.06	
Most recent vitamin D level within 1 year deficient (<20 ng/ml)?	Vitamin D dose stable, increased or decreased after last level?*	Interpretation								
Yes	Stable or decreased	Likely Deficient	127	25	127	71				
Yes	Increased	Uncertain deficiency	51	10	51	29				
No	Decreased	Uncertain deficiency	30	6			30	9		
No	Stable or Increased	Likely Sufficient	291	58			291	91		
Days since most recent vitamin D level (mean)		286		157		165		0.42		
Days since most recent vitamin D level (mean) Days since most recent vitamin D level (median)			233		137		105		0.42	
Comorbidity ind	licators						↓ ↓			
Hypertension			1381	32	89			54		
Diabetes			625	14	51			27		
Chronic pulmo			832	19	44			23		
Pulmonary circ	culation disorders	5	82	2	9	5	11	3	0.47	

Chronic kidney disease	416	10	36	20	80	25	0.269
Liver disease	222	5	17	10	39	12	0.459
Comorbidities with immunosuppression	438	10	36	20	69	22	0.819
BMI value not missing	3656	85	177	99.4	320	99.7	1.000
BMI (mean)	29.8		30.5		29.4		0.158 (t-test)
BMI ≥30 kg/m ²	1593	37	90	51	141	44	0.159
Most recent active vitamin D treatment before COVID-19 test							<0.001
None	3502	81	83	47	135	42	0.347
1-1000 IU D3/Multivitamin	436	10	29	16	86	27	0.008
2000 IU D3	171	4	7	4	53	17	< 0.001
3000+ IU D3	37	<1	10	6	10	3	0.232
D2	152	4	46	26	32	10	< 0.001
Calcitriol	16	<1	3	2	5	2	1.000
Treatment adjustment after the most recent vitamin D level in past year	187	5	127	71	30	9	<0.001
Test positive COVID-19	758	18	32	18	40	12	0.110

* Vitamin D dose was rank-ordered as follows: Calcitriol > 3000+ IU D3 > 2000 IU D3 > D2 > 1-1000 IU D3/Multivitamin > No Vitamin D.

			Ν	%	Relative Risk	p-value
Number of patients			489	100		
Age (Linear Spline) [§]						
<50			260	53	1.05	0.020
50+			229	47	1.02	0.063
Gender (Male is refe	rence)		123	25		
Female			366	75	0.87	0.57
Race (White is refere	ance)		158	32		
Race other than w	· ·		331	68	2.54	0.009
Ethnicity (Not Hispar	nic is reference)		448	92		
Hispanic	lic is reference)		448	8	0.29	0.209
UChicago omployeo	status (Nat ampla	(an is reference)	328	67		
UChicago employee UChicago Employe		ee is relefence)	161	33	0.93	0.78
Ochicago Employe	e		101	55	0.93	0.78
Most recent vitamin D level within 1 year deficient (<20 ng/ml)?	Vitamin D dose stable, increased or decreased after last level?*	Interpretation				
Yes	Stable or decreased*	Likely deficient	124	27	1.77	0.01
Yes	Increased	Uncertain deficiency	48	10	1.10	0.82
No	Decreased	Uncertain deficiency	30	5	1.09	0.85
No	Stable or Increased	Likely sufficient	287	59	reference	
Como anhidita in dicata						
Comorbidity indicate Hypertension	ors		261	53	1.08	0.78
Diabetes			137	28	0.78	0.31
Chronic pulmonary	v disease		117	24	0.91	0.72
Pulmonary circulat			20	4	0.64	0.39
Depression			119	24	1.22	0.44
Chronic kidney dise	ease		116	24	0.80	0.38
Liver disease			56	11	0.99	0.98
Comorbidities with	immunosuppressi	on	105	21	0.39	0.00
BMI (mean)			29.8		1.02	0.09
Goodness-of-lin	k test of squared p	redicted value ³⁰				0.86
Hosmer-Leme	eshow goodness-of	-fit decile test ³¹				0.88

Table 2. Multivariable Association of Vitamin D Deficiency and Treatment with Testing Positive for COVID-19

§ A piecewise linear spline with a single knot at 50 improved model fit over models with unadjusted age or more complex parameterizations.

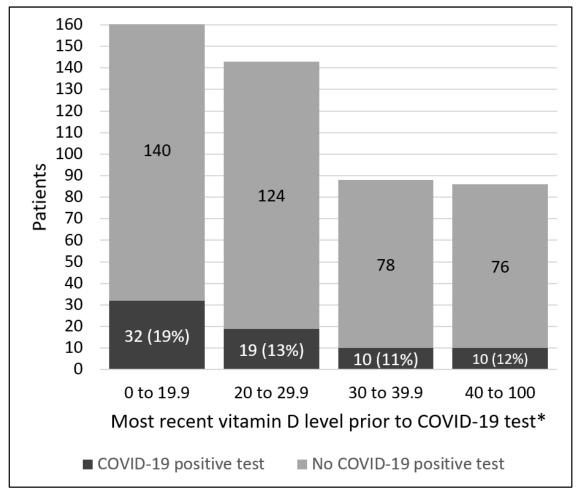

* Vitamin D dose was rank-ordered as follows: Calcitriol > 3000+ IU D3 > 2000 IU D3 > D2 > 1-1000 IU D3/Multivitamin > No Vitamin D.

Table 3. Bivariate analysis of most recent active vitamin D treatment 14 days before COVID-19 test order and COVID-19 test results, among patients with a diagnosis of vitamin D deficiency within 2 years or any level <20 ng/ml.

Most recent active vitamin D treatment prior to COVID-19 test order	Total patients	COVID-19 p	ositive					
	N	N	%					
No Vitamin D	180	23	13					
1-1000 IU D3/Multivitamin	88	18	20					
2000 IU D3	41	6	15					
3000+ IU D3	25	2	8					
D2	87	12	14					
Calcitriol	7	2	29					
Total	428	63	15					
Fisher's exact test p = 0.39								

Table 4. Bivariate analysis of most recent active vitamin D treatment before most recent vitamin D level at least 14 days before COVID-19 test order and whether that level was <20 ng/ml, among patients with a diagnosis of vitamin D deficiency within 2 years or a level <20 ng/ml.

Most recent active vitamin D treatment before most recent vitamin D level	Total patients	Vitamin D Deficient (Most recent vitamin D past year <20 ng/ml)								
	N									
No Vitamin D	139	87	63							
1-1000 IU D3/Multivitamin	92	50	54							
2000 IU D3	38	13	34							
3000+ IU D3	25	15	21							
D2	107	73	68							
Calcitriol	5	3	60							
Total	406	241	59							
Fisher's exact test p = 0.009										

*Shown are the last vitamin D levels between 1 year before and 14 days before COVID-19 test orders (N=489 distinct patients). Seven levels are in pg/ml from a test of $1,25(OH)_2$ -vitamin D and the remainder are in ng/ml from a test of 25(OH)-vitamin D.

Figure 1. Most recent vitamin D levels prior to COVID-19 tests

Methodologic Supplement.

Chronic condition indicators. Each chronic condition indicator was set equal to 1 if the patient had at least one of a list of ICD-10-CM diagnosis codes included on an administrative/billing record with a discharge date between January 1, 2018 and April 10, 2020. The lists of codes used for the indicators was defined using the HCUP Elixhauser Comorbidity Software.²⁰ For each condition, we used all ICD-10-CM and DRG codes listed within categories in the Elixhauser file comformat_icd10_cm_2020_1.sas, entitled Creation of Format Library for Comorbidity Groups, ICD-10-CM Elixhauser Comorbidity Software, Version 2020.1. The actual ICD-10-CM codes can be found by finding the following category variable names in the file. Hypertension: HTN, HHRWCHF, HHRWHRF, HHRWOHRF, HHRWRF, HRENWORF, HTNCX, HTNPREG, HTNWCHF, HTNWOCHF, OHTNPREG, HTNCXDRG, HTNDRG. Diabetes: DM, DMCX, DIABDRG. Chronic pulmonary disease: CHRNLUNG, PULMDRG. Pulmonary circulation disorders: PULMCIRC. Depression: DEPRESS. CKD: RENLFAIL, HHRWCHF, HHRWHRF, HHRWOHRF, HHRWRF, HHRWOHRF, HRENWRF, HRENWRF, RENALDRG, RENFDRG. Liver disease: LIVER. CM_IS: AIDS, METS, TUMOR, ARTH.

Supplemental Table 1: Characteristics of Patient P	T. T.				Uncertai	in	Uncertain				
			Likely		deficien		deficiency		Likely		Fisher's exact test
	Full sam	ple	deficien	t	increase			sufficient		for difference	
			dencient		treatme		treatment		Sumclent		for unrerence
	N	%	N	%	N	%	N	%	N	%	p-value
Number of patients	4314	100	127	100	51	100	30	100		100	
Age											
years (mean)	45.7		45.9		44.6		50.2		50.7		0.028 (ANOVA
<50	2591	60	79	62	35	69	10	33		50	0.020 (ANOVA
50-64	1040	24	26	20	8	16	10	47		26	0.007
65+	683	16	20	17	8	16	6	20		20	0.007
05+	085	10	22	17	0	10	0	20	/1	24	
Gender											0.301
Female	2790	65	96	76	42	82	19	63	216	74	
Male	1524	35	31	24	9	18	11	37	75	26	
Race											< 0.001
White	1067	25	22	17	8	16	8	27	120	41	-0.00
Other than White	2767	64	103	81	40	78	22	73	169	58	<0.001
Unknown	480	11	2	2	3	6	0	0	2	1	
Ethnicity											0.416
Hispanic	249	6	8	6	7	14	3	10	-	9	
Not Hispanic	4004	93	119	94	44	86	27	90	266	91	
Unknown	61	1	0	0	0	0	0	0	0	0	
Employee status											0.006
UChicago employee	1431	33	43	34	20	39	2	7		35	
Not UChicago employee	2883	67	84	66	31	61	28	93	189	65	
Vitamin D level evaluated in past year	499	12	127	100	51	100	30	100		100	
Most recent vitamin D<20 ng/ml	241	6	127	100	51	100	0	0		0	
Vitamin D <20 ng/ml in past 2 years	305	7	127	100	51	100	13	43	41	14	< 0.001
Recorded ICD-10-CM diagnosis of vitamin D	251	6	50	39	21	41	12	40	88	30	0.155
deficiency in 2 years											
Days since most recent vitamin D level (mean)	286		149		178		134		168		0.092
Days since most recent vitamin D level (median)	233		149		178		112		161		0.049
Days since most recent vitamin Diever (median)	235		115		100		112		101		0.043
Comorbidity indicators											
Hypertension	1381	32	65	51	24	47	21	70	151	52	0.227
Diabetes	625	14	30	24	21	41	11	37		26	
Chronic pulmonary disease	832	19	35	28	9	18	8	27		23	
Pulmonary circulation disorders	82	2	6	5	3	6	1	3		3	
Depression	451	10	37	29	9	18	11	37		22	
Chronic kidney disease	416	10	27	21	9	18	12	40		23	
Liver disease	222	5	13	10	4	8	8	27		11	
Comorbidities with immunosuppression	438	10	28	22	8	16	7	23		21	0.779
BMI value not missing	3656	85	126	99.2	51	100	30	100	290	99.7	0.660
BMI (mean)	29.8		30.2		31.2		28.8		29.5		0.451 (ANOVA
BMI ≥30 kg/m ²	1593	37	60	47	30	59	12	40	129	44	0.247
Most recent active vitamin D treatment before											< 0.001
COVID-19 test	0.500										
None	3502	81	72	57	11	22	8	27	127	44	
1-1000 IU D3/Multivitamin	436	10	19	15	10	20	15	50		24	
2000 IU D3	171	4	3	2	4	8	1	3		18	
3000+ IU D3	37	<1	3	2	7	14	2	7		3	
D2	152	4	27	21	19	37	4	13	28	10	< 0.00

Calcitriol	16	<1	3	2	0	0	0	0	5	2	0.853
Treatment adjustment after the most recent vitamin D level in past year	187	5	127	100	0	0	30	100	0	0	
Test positive COVID-19	758	18	26	20	6	12	4	13	36	12	0.183

References

⁴ Forrest KY, Stuhldreher WL. Prevalence and correlates of vitamin D deficiency in US adults. *Nutrition research*. 2011; 31(1): 48-54.

⁵ Garg S, Kim L, Whitaker M, et al. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019 — COVID-NET, 14 States, March 1–30, 2020. *MMWR Morb Mortal Wkly Rep*. ePub: 8 April 2020.

http://dx.doi.org/10.15585/mmwr.mm6915e3. Accessed April 27, 2020.

⁶ Umhau JC. Casting sunlight on an epidemic – is vitamin D a critical host factor to prevent COVID-19? *MedPage Today*. March 25, 2020.

https://www.medpagetoday.com/infectiousdisease/covid19/85596 Accessed April 13, 2020. ⁷ NCHS, National Vital Statistics System. Provisional Death Counts for Coronavirus Disease

(COVID-19). https://www.cdc.gov/nchs/nvss/vsrr/COVID19/index.htm. Accessed April 27, 2020.

⁸ National Center for Immunization and Respiratory Diseases (NCIRD), Division of Viral Diseases. Preparing for COVID-19: Long-term Care Facilities, Nursing Homes.

https://www.cdc.gov/coronavirus/2019-ncov/hcp/long-term-care.html. Accessed April 27, 2020.

⁹ Characteristics of Health Care Personnel with COVID-19 — United States, February 12–April 9, 2020. *MMWR Morb Mortal Wkly Rep*. ePub: 14 April 2020.

http://dx.doi.org/10.15585/mmwr.mm6915e6. Accessed April 27, 2020.

¹⁰ Huotari A, Herzig, KH. Vitamin D and living in northern latitudes—An endemic risk area for Vitamin D deficiency. *International journal of circumpolar health*. 2008; 67(2-3): 164-178.

¹¹ Forrest, KY, Stuhldreher, WL. Prevalence and correlates of vitamin D deficiency in US adults. *Nutrition research*. 2011; 31(1): 48-54.

¹² Elliott ME, Binkley NC, Carnes M, et al. Fracture Risks for Women in Long-Term Care: High Prevalence of Calcaneal Osteoporosis and Hypovitaminosis D. Pharmacotherapy. *The Journal of Human Pharmacology and Drug Therapy*. 2003; 23: 702-710.

¹³ Sowah D, Fan X, Dennett L, et al. Vitamin D levels and deficiency with different occupations: a systematic review. *BMC Public Health*. 2017; 17: 519.

¹⁴ Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus– infected pneumonia. *New England Journal of Medicine*. 2020;

https://www.nejm.org/doi/full/10.1056/NEJMoa2001316. Accessed April 27, 2020.

¹⁵ Coronavirus cases in Japan. <u>https://www.statista.com/statistics/1096478/japan-confirmed-cases-of-coronavirus-by-state-of-health</u>. Accessed April 15, 2020.

¹⁶ Ginde AA, Sullivan AF, Mansbach JM, Camargo CA. Vitamin D insufficiency in pregnant and nonpregnant women of childbearing age in the United States. *American Journal of Obstetrics and Gynecology*. 2010; 202(5):436.

¹ Worldometer. <u>https://www.worldometers.info/coronavirus</u>. Accessed April 25, 2020.

² Grant WB, Lahore H, McDonnell SL, et al. Evidence that Vitamin D Supplementation Could

Reduce Risk of Influenza and COVID-19 Infections and Deaths. *Nutrients*. 2020; 12(4): 988. ³ Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. *Bmj*. 2017; 356, i6583.

¹⁷ Misra M, Pacaud D, Petryk A, Collett-Solberg PF, Kappy M. Vitamin D deficiency in children and its management: review of current knowledge and recommendations. *Pediatrics*. 2008; 122(2): 398-417.

¹⁸ Nakamura K. Vitamin D insufficiency in Japanese populations: from the viewpoint of the prevention of osteoporosis. *J Bone Miner Metab*. 2006; 24:1–6.

¹⁹ Hunt K. Britons urged to take vitamin D while sheltering inside during the pandemic. <u>https://www.cnn.com/2020/04/23/health/vitamin-d-uk-coronavirus-wellness/index.html</u>. Accessed April 27, 2020.

²⁰ Frieden T. Former CDC Chief Dr. Tom Frieden: Coronavirus infection risk may be reduced by Vitamin D. Fox News, Opinion. March 23, 2020. <u>https://www.foxnews.com/opinion/formercdc-chief-tom-frieden-coronavirus-risk-may-be-reduced-with-vitamin-d</u>. Accessed April 13, 2020.

²¹Healthcare Cost and Utilization Project (HCUP). Elixhauser Comorbidity Software for ICD-10-CM (beta version), version 2020 v1. https://www.hcup-

us.ahrq.gov/toolssoftware/comorbidityicd10/comorbidity_icd10.jsp. Accessed April 8, 2020.

²² McNutt LA, Wu C, Xue X, Hafner JP. Estimating the relative risk in cohort studies and clinical trials of common outcomes. *American journal of epidemiology*. 2003; 157(10): 940-943.

²³ Institute of Medicine. *Dietary Reference Intakes for Calcium and Vitamin D*. Washington, DC: The National Academies Press. 2011; https://doi.org/10.17226/13050.

²⁴ Signorello LB, Shi J, Cai Q, et al. Common Variation in Vitamin D Pathway Genes Predicts Circulating 25-Hydroxyvitamin D Levels among African Americans. *PLOS ONE*. 2011; 6(12): e28623. https://doi.org/10.1371/journal.pone.0028623.

²⁵ Yin K, Agrawal DK. Vitamin D and inflammatory diseases. J Inflamm Res. 2014; 7:69–87.
Published 2014 May 29. https://doi.org/10.2147/JIR.S63898

²⁶ Liu LC, Voors AA, van Veldhuisen DJ, et al. Vitamin D status and outcomes in heart failure patients. *Eur J Heart Fail*. 2011; 13:619–625.

²⁷ Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. *Lancet*. 2020.

https://doi.org/10.1016/S0140-6736(20)30628-0142. Accessed April 27, 2020.

²⁸ Greger, JL. Effect of variations in dietary protein, phosphorus, electrolytes and vitamin D on calcium and zinc metabolism. *Nutrient interactions*. New York: Marcel Dekker. 1988; 205-28.
²⁹ te Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn(2+) inhibits

coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. *PLoS Pathog*. 2010; 6(11):e1001176. Published 2010 Nov 4. https://doi.org/10.1371/journal.ppat.1001176.

³⁰ Pregibon D. *Data analytic methods for generalized linear models* [dissertation]. Toronto: University of Toronto; 1979; 43.

³¹ Blizzard L, Hosmer W. Parameter estimation and goodness-of-fit in log binomial regression. *Biometrical Journal*. 2006; 48(1): 5-22.