




Linking the chemistry and physics of food with health and nutrition

# **Accepted Manuscript**

This article can be cited before page numbers have been issued, to do this please use: X. Kuang, C. Liu, X. Guo, K. Li, Q. Deng and D. Li, Food Funct., 2020, DOI: 10.1039/C9FO03063H.



This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the <u>Information for Authors</u>.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.



| Published on 09 March 2020. Downloaded on 3/15/2020 1:19:41 AM. |  |
|-----------------------------------------------------------------|--|
| Put                                                             |  |

| 1  | The combination effect of vitamin K and vitamin D on human bone quality:03a/C9F003063H |
|----|----------------------------------------------------------------------------------------|
| 2  | meta-analysis of randomized controlled trials                                          |
| 3  |                                                                                        |
| 4  | Xiaotong Kuang, Chunxiao Liu, Xiaofei Guo, Kelei Li, Qingxue Deng, Duo Li*             |
| 5  | Institute of Nutrition and Health, Qingdao University, Qingdao, China                  |
| 6  |                                                                                        |
| 7  | *Correspondence:                                                                       |
| 8  | Duo Li, PhD                                                                            |
| 9  | Institute of Nutrition and Health, Qingdao University,                                 |
| 10 | Qingdao 266071, China                                                                  |
| 11 | Tel: +86 532 82991018                                                                  |
| 12 | Fax: +86 532 82991018                                                                  |
| 13 | E-mail: duoli@qdu.edu.cn                                                               |
| 14 |                                                                                        |
| 15 | Sources of support: This study was funded by the National Basic Research Program       |
| 16 | of China (973 Program: 2015CB553604); by National Natural Science Foundation of        |
| 17 | China (NSFC: 81773433); and by the Key Scientific Research Projects in Shandong        |
| 18 | Provence China (2017YYSP007). The funders have no role in study design, data           |
| 19 | collection and analysis, decision to publish, or preparation of the manuscript.        |
| 20 |                                                                                        |
| 21 |                                                                                        |
| 22 |                                                                                        |
| 23 |                                                                                        |
| 24 |                                                                                        |
| 25 |                                                                                        |
| 26 |                                                                                        |
| 27 |                                                                                        |
| 28 |                                                                                        |
| 29 |                                                                                        |

View Article Online DOI: 10.1039/C9F003063H

| 31 | Background    |
|----|---------------|
| 32 | Previous stud |
| 33 | combined wi   |

**Abstract** 

Published on 09 March 2020. Downloaded on 3/15/2020 1:19:41 AM.

Previous studies did not draw a consistent conclusion about the effects of vitamin K

combined with vitamin D on human skeletal quality.

# Method and Findings

| A comprehensive search on Web of Science, PubMed, Embase and Cochrane Library             |
|-------------------------------------------------------------------------------------------|
| (from 1950 to February 2020) and bibliographies of relevant articles was undertaken,      |
| with eight randomized controlled trials (RCTs) with a total of 971 subjects included in   |
| the meta-analysis. Vitamin K combined with D significantly increased the total bone       |
| mineral density (BMD): the pooled effect size was 0.316 [95% CI (confidence               |
| interval) 0.031 to 0.601]. A significant decrease of undercarboxylated osteocalcin        |
| (-0.945, -1.113 to -0.778) can be witnessed with the combination of vitamin K and D.      |
| Simultaneously, subgroup analysis showed that K <sub>2</sub> or vitamin K (not specified) |
| supplement was less than 500 $\mu g/d$ , which combined with vitamin D can significantly  |
| increase the total BMD compared with control group on normal diet or the group with       |
| no treatment (0.479, 0.101 to 0.858 and 0.570, 0.196 to 0.945)                            |

#### **Conclusions**

The combination of vitamin K and D can significantly increase total BMD and significantly decrease undercarboxylated osteocalcin, and a more favorable effect is expected when vitamin  $K_2$  is used.

### Keywords

Vitamin K; Vitamin D; Bone Mineral Density; Undercarboxylated osteocalcin

. \_

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

Published on 09 March 2020. Downloaded on 3/15/2020 1:19:41 AM.

View Article Online DOI: 10.1039/C9F003063H

# Introduction

Bone-related diseases, especially osteoporosis and fractures, are increasing worldwide. As life expectancy rises, skeletal diseases are becoming a major public health problem, especially for postmenopausal women. The osteoporosis prevalence was 4% [95% CI (confidence interval), 3.84 to 4.13], 1.19% in men and 6.84% for women in a cross-sectional study with 45,990 participants. Nutrition plays a vital role in the prevention and treatment of bone-related diseases. For example, calcium supplementation can prevent osteoporotic fractures.<sup>2</sup> In addition to calcium, vitamin D has long been paid most attention. Vitamin D<sub>3</sub> is made from a derivative of cholesterol, 7-dehydrocholesterol, which is stored under the skin and converted under ultraviolet light. Vitamin D can also be obtained from food. Natural food sources of vitamin D are mainly fatty fish, cod liver oil and the fats of fish-eating animals. In countries such as northern Europe, fatty fish are a major part of the diet.<sup>3</sup> It is estimated that women consume up to 236 international units (5.9 mg) of vitamin D per day and men 272 international units (6.8 mg).<sup>4</sup> Foods fortified with vitamin D are the main dietary source of it in countries teemed with it. Many previous studies have shown that long term vitamin D supplementation<sup>5</sup> and appropriate dose<sup>6</sup> is of great importance to bone quality of the elderly,7 postmenopausal women8,9 and other

79 80

81

82

83

84

85

86

87

88

In addition to calcium and vitamin D, recent studies have shown that vitamin K supplementation also has a beneficial effect on bone metabolism and bone quality maintenance, especially in improving the density of vertebrae. Vitamin K exists in two forms that share a methylated naphthoquinone nucleus (menadione) having a variable aliphatic side chain at the 3' position. Green vegetables, which is rich in lutein (vitamin  $K_1$ ), such as kale, spinach, cauliflower and some fruits and herbs, is one of the most important foods in people's diet. Certain types of oils, such as soy and canola oils, also contain high amounts of vitamin  $K_1$ . Vitamin  $K_2$  is endogenous and

high-risk groups such as teenagers, 10 and can improve bone density parameters. 8,9 The

reason is that vitamin D stimulates bone matrix formation and bone maturation, which

also enhances osteoclast activity and affect osteoclast differentiation.<sup>3</sup>

| 90 | vit             |
|----|-----------------|
| 91 | soi             |
| 92 | Vi              |
| 93 | K               |
| 94 | cal             |
| 95 | [bo             |
| 96 | S. <sup>1</sup> |
| 97 | 3 p             |
| 98 |                 |
|    |                 |

synthesized by intestinal bacteria, so its distribution in diet is more limited that was Article Online vitamin K<sub>1</sub>, and it is found in some cheeses, eggs, meat, and natto (the most abundant source of fermented soybeans commonly found in Japan, at 775 μg /100g). 13-15 Vitamin K is involved in regulating calcium utilization in the body. Although vitamin K prevents vascular and soft tissue calcification, it promotes the integration of calcium into bone. There are 3 vitamin K-dependent proteins in bone: osteocalcin [bone gamma-carboxyglutamic acid (GLA) protein], matrix GLA protein, and protein S.16 The effect of vitamin K on osteocalcin is perhaps the best understood among the 3 proteins.

Vitamin D and K have different effects on bone microenvironment. The active form of vitamin D, 1,25(OH)<sub>2</sub>D<sub>3</sub>, can increase the activity of alkaline phosphatase and the expression of bone calcification gene in osteoblasts, so as to maintain the concentration of calcium and phosphorus and promote ossification.<sup>17</sup> Vitamin K, as an auxiliary factor of carboxylase activity, can promote osteocalcin carboxylation and promote bone formation.<sup>18</sup> Therefore, many experiments have investigated the effect of the combination of vitamin D and K on bone health. The combination of vitamin D and K seems to be more beneficial to lumbar vertebral density in postmenopausal women with osteoporosis than that of vitamin D and calcium.<sup>19</sup> However, it has been reported that when taking the recommended amount of vitamin D, dietary supplements of vitamin K did not lead to any additional benefits to the bone health of the spine or buttocks.<sup>20</sup>

Published on 09 March 2020. Downloaded on 3/15/2020 1:19:41 AM.

The lack of consistency in results among different studies leads to a poor understanding of the effect of combined vitamin D and K on bone health. Therefore, we conducted a meta-analysis to evaluate the effects of this combination on bone health.

#### Methods

#### 118 Literature search

Published on 09 March 2020. Downloaded on 3/15/2020 1:19:41 AM.

Article searching was conducted by two investigators independently. Relevant articles / CSFO03063H were identified though the search among PubMed, Embase, Web of Science and the Cochrane Library databases from their starting dates through February 2020. The following format of keywords were used in the structured search strategies: (VK and VD OR vitamin K and vitamin D OR vitamin K plus vitamin D OR vitamin K<sub>1</sub> and vitamin D OR vitamin K<sub>2</sub> and vitamin D) AND (bone OR osteoporosis OR osteoporotic OR osteopenia OR fracture OR spinal cord injury). The references of relevant articles were also checked to identify suitable publications with this systematic review conducted in adherence to the standards of the Preferred Reporting Items for Systematic Review and Meta-Analysis statement.<sup>21</sup>

## Eligibility criteria

Trials were selected based on the following inclusion criteria: (1) randomized controlled trials (RCTs) be conducted to compare the combination effect of vitamin K and D supplements with a control group on with only vitamin D or vitamin K alone or even not treated; (2) trials providing bone related data on total bone mineral density (BMD), neck BMD, lumbar BMD or undercarboxylated osteocalcin (UcOC). Exclusion criteria were: (1) trials without a control group; (2) trials of participants with corticosteroid-induced secondary osteoporosis.<sup>21</sup>

#### Data extraction

The following information was extracted by two researchers independently from each study: name of the first author; publication year; country of origin; participant characteristics, including body mass index (BMI) and age; doses of vitamin K and vitamin D; the type of vitamin K; trial duration; mean and standard deviation (SD) of total BMD, neck BMD, lumbar BMD (measured by dualenergy X-ray absorptiometer (DEXA)) and UcOC at baseline and endpoint or their changes from baseline to endpoint, with the disagreements resolved by consensus. If there were more than 2 groups, factorial designs or permitted multiple comparisons of trials, the information and data of interest reported in the original articles could be extracted.<sup>22</sup>

The reason why the total BMD, the lumbar BMD, the neck BMD and Uc@C twere/C9F003063H considered as the main result concerning bone mass is that the number of bone is mainly expressed as BMD, which determines the ability of the bones to recover.<sup>23</sup> It has been reported that UcOC could well predict bone mineral density,<sup>24,25</sup> which is considered to be an accurate indicator of bone quality.<sup>26</sup> Therefore, it could be used as an indirect biomarker to evaluate bone quality.

156

157

158

159

160

161

162

150

151

152

153

154

155

# Quality assessment and risk of bias

Risk of bias of the included studies were assessed using the Jadad score criteria, including five items, which were used for quality assessment, namely random sequence generation, randomization, allocation concealment, double blinding and reason of dropout.<sup>27</sup> The trial scored one point for each area reported, and a trial with Jadad score  $\geq 4$  shall be classified as high quality.

163164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

### Statistical analysis

Meta-analysis was performed for total BMD, neck BMD, lumbar BMD and UcOC to determine the pooled effect of vitamin K combined D. For the parallel test, the changes from baseline to endpoint and their corresponding SDs in trial group and control group were used to calculate the effect size, namely the standard mean difference (SMD). If SD for change was not reported, it was imputed based on SDs at baseline and endpoint through previous study.<sup>22</sup> For studies with a crossover design, mean changes between the total BMD, the lumbar BMD, the neck BMD and UcOC and corresponding SDs at the end of two intervention periods were used in data analysis, as suggested by Cochrane handbook<sup>28</sup> for Systematic Reviews of Intervention. For studies with two or more intervention groups involved in one control group, the shared control group could be separated into two or more groups (the number was the same as intervention groups) and these comparisons into meta-analysis as if they were from different studies.<sup>22</sup> The overall effect size (standard mean difference) was calculated by a random effect model using Stata/SE 11.0 software (Stata Corporation, College Station, TX). Heterogeneity between the studies was assessed by I<sup>2</sup> statics, with values of 25%, 50% and 75% regarded as low,

moderate and high degree of heterogeneity, respectively.<sup>29</sup> The fixed-effects model was used for data synthesis when there was no obvious heterogeneity. To identify the source of heterogeneity, subgroup and meta-regression analyses were conducted to focus on the information of the trials: the dose of vitamin K supplement, the dose of vitamin D supplement, gender and age.

To evaluate whether the overall effect was steady, sensitivity analysis was performed with deleting one trail at a time, and the effect size was re-calculated. Publication bias was conducted by using Begg's rank correlation test (Significant level at P < 0.1). The trim-and-fill method was conducted to correct the potential publication bias, if the Begg's test was significant. Statistical analysis was conducted with STATA 11.0 for windows (Stata CORP, College station, TX). A P value of  $\leq 0.05$  was regarded as statistically significant.

Published on 09 March 2020. Downloaded on 3/15/2020 1:19:41 AM.

### Results

#### Literature search

The search strategy retrieved 780 unique citations: 187 from PubMed, 128 from Web of Science, 348 from Embase, 117 from the Cochrane Library, among which 125 articles were about vitamin  $K_1$ , 153 articles vitamin  $K_2$ , 332 articles vitamin  $K_1$  and vitamin  $K_2$ . Ultimately, 8 studies (including 971 participants) were included in quantitative synthesis,  $^{20,31-37}$  with the details of the screening steps and reasons for exclusion shown in Figure 1.

## **Characteristics of included studies**

Intervention duration ranged from 6 months to 3 years, participants' age ranged from 3 to 80 years old in included studies. Among all these, eight described women, while six of them were conducted exclusively in women (Table 1). Four trials from 4 studies were conducted with vitamin  $K_2$ , while the other eight conducted with vitamin  $K_1$ . Two studies did not specify the type of vitamin D, while the other six studies were conducted with vitamin  $D_3$ . The number of related studies reporting on outcomes of interest were as follows: the total BMD (n = 8), the neck BMD (n = 4), the lumbar

View Article Online DOI: 10.1039/C9FO03063H

BMD (n = 7), and UcOC (n = 8) respectively.

213214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

212

# Effect of combination of vitamin K and D on total bone mineral density

A significant increasing effect of combination of vitamin K and D on total BMD was observed: the pooled effect size was 0.316 (95% CI 0.031 to 0.601, P = 0.03) (Figure 2). Moderate heterogeneity was observed in the study: the I<sup>2</sup> value were 63.3%. Subgroup analysis showed that the dosage of vitamin K and the type of vitamin K had a significant influence on the effect of the combination on total BMD: significant increasing effect was observed only when the dose of vitamin K supplement was less than 500 µg/d, or the vitamin K was vitamin K<sub>2</sub> (P for subgroup difference were 0.013 and 0.03, respectively) (Figure 3) (Figure 4); and the pooled effect size in the two subgroups were 0.479 (0.101, 0.858) and 0.570 (0.196, 0.945), respectively. The pooled effect showed that combined vitamin K with D supplementation significantly increased total BMD (0.41; 95% CI: 0.07, 0.74, P = 0.019) in female subjects (Figure 5). The variation of vitamin K supplement  $\geq 500 \,\mu\text{g/d}$  (as categorical variable) could help explain 70.9% heterogeneity. The combined vitamin K with D supplementation indicated that no significant differences were discerned on total BMD of the trials stratified by vitamin K supplementation (P for meta-regression = 0.971) and vitamin D supplementation (P for meta-regression = 0.845) with meta-regression analysis, respectively (Supplementary figure S1-S2).

232

233

Published on 09 March 2020. Downloaded on 3/15/2020 1:19:41 AM.

# Effect of combination of vitamin K and D on neck bone mineral density

No significant effect of the combination of vitamin K and D on total BMD was observed (-0.03, -0.198 to 0.137, P = 0.724) (Figure 6). No heterogeneity was observed among this group of studies ( $I^2 = 0.0\%$ ).

237238

239

240

241

242

243

### Effect of combination of vitamin K and D on lumbar bone mineral density

All the articles have shown the effect of combination of vitamin K and D on second-fourth lumbar BMD, only one study has also investigated effect of combination of vitamin K and D on first lumbar BMD,<sup>35</sup> the pooled effect (SMD<sub>1</sub>) was 0.137, -0.022 to 0.295; P = 0.092 (Figure 7). For the second lumbar BMD, the third BMD, the forth BMD, the corresponding pooled effect were as follows: SMD<sub>2</sub>=

244 0.245, -0.038 to 0.528; P = 0.09 (Figure 8),  $SMD_3 = 0.322$ , 0.039 to 0.606;  $P_{DO} = 0.025$  (see Article Online SMD) and  $P_{DO} = 0.038$  (Figure 8),  $P_{DO} = 0.038$ 

(Figure 9),  $SMD_4 = 0.265$ , -0.010 to 0.539; P = 0.059 (Figure 10), which means that

the combination of these two elements can significantly increase the third lumbar

BMD. However, it did not significantly increase BMD in the first, second and fourth

lumbar segments. Moderate heterogeneity was observed in the third lumbar BMD

249 group: the  $I^2$  value was 60.9%.

Subgroup analysis was performed based on dosage and type of vitamin K supplementation: significant increasing effect on the third lumbar BMD was observed when there was vitamin K supplement  $\leq 100~\mu g/d$ , or the type of vitamin K was vitamin  $K_2$  (P for subgroup difference were 0.002 and 0.011, respectively) (Figure 11) (Figure 12); and the pooled effect size in the two subgroups were 0.537 (0.206 to 0.869) and 0.475 (0.110 to 0.840) respectively. The pooled effect showed that supplementation with combination of vitamin K and D significantly increased the third lumbar BMD (0.41; 95% CI: 0.06, 0.76, P = 0.023) in female subjects (Figure 13). However, the variation of vitamin K supplement = 100  $\mu g/d$  (as categorical variable) could explain 32.8% of heterogeneity. Supplemental vitamin K combined with D indicated that no significant differences were discerned on the third lumbar BMD of the trials stratified by vitamin K supplementation (P for meta-regression = 0.967) with meta-regression analysis (Supplementary figure S3).

### Effect of combination of vitamin K and D on undercarboxylated osteocalcin

A significant decreasing of combination of vitamin K and D on UcOC was observed (-1.191, -1.714 to -0.668; P = 0.000; I<sup>2</sup> = 87.7%) (Figure 14). In order to find the source of heterogeneity, sensitivity analyses were conducted. Sensitivity analysis was performed by studying whether effect size changes significantly after excluding special trials one by one. Some trials were not consistent with others in the age of the subjects or in the type of intervention: Panis et al.<sup>33</sup> studied subjects between the ages of 3 and 17; in Braam et al. study<sup>32</sup> treatment group received additional minerals such as calcium, magnesium and zinc, while the control group did not. However, the sensitivity analysis of UcOC showed that when excluded the study by Braam et al.,<sup>32</sup>

| 275 | the combined effect remains significant (Figure 15). The pooled effect size of vitamis (C9F003063H |
|-----|----------------------------------------------------------------------------------------------------|
| 276 | combination on UcOC was -0.943, -1.117 to -0.770; $P = 0.000$ ; $I^2 = 0.0\%$ (Figure 16).         |
| 277 | The pooled effect showed that a significant decrease can be witnessed on the UcOC in               |
| 278 | both female subjects (-0.948; 95% CI: -1.153, -0.742, $P = 0.0$ ) and male subjects                |
| 279 | (-0.932; 95%  CI:  -1.255, -0.610, P = 0.0) (Figure 17) with supplementation of vitamin            |
| 280 | K combined with D, which also showed a significant reduction in UcOC in subjects                   |
| 281 | whose mean age was $\geq$ 60 years (-0.941; 95% CI: -1.120, -0.762, P=0.0) , and in                |
| 282 | subjects whose mean age was < 60 years (-0.976; 95% CI: -1.640, -0.312, P=0.004)                   |
| 283 | (Figure 18). Also, no significant differences were discerned on that UcOC of the trials            |
| 284 | stratified by vitamin K supplementation (P for meta-regression = 0.995) with                       |
| 285 | meta-regression analysis (Supplementary figure S4) added supplemental vitamin K                    |
| 286 | combined with D. The reason of heterogeneity change may due to Braam et al.                        |
| 287 | study,32 in which treatment group received additional minerals such as calcium,                    |
| 288 | magnesium and zinc, which is well known that these minerals can have an impact on                  |
| 289 | bone quality, as confounding factors for the study outcome. Thus this article <sup>32</sup> is     |
| 290 | considered as the source of the heterogeneity, and therefore exclude it.                           |
|     |                                                                                                    |

Published on 09 March 2020. Downloaded on 3/15/2020 1:19:41 AM.

# Quality assessment, sensitivity analysis and publication bias

According to the Jadad score criteria, four trials were regarded as high-quality studies<sup>20,32-34</sup> (Table 1), with the remaining 4 trials were classified as low-quality ones,<sup>31,35-37</sup> for the lack of relevant information, including randomization, generation of random sequence, binding, allocation concealment or reasons for dropout.

Sensitivity analysis showed that there was no apparent difference for the effect of vitamin K combined with D on total BMD, neck BMD or lumbar BMD before and after any one study was removed (Supplementary Figure S5–S9).

The results of Begg's rank correlation test and Egger's linear regression test indicated that there was no obvious publishing bias detected in the meta-analysis of total BMD, neck BMD or UcOC. Publication bias may exist for third lumbar BMD according to Egger's linear regression test (P = 0.028) and Begg's rank correlation test (P = 0.016)

(Figure 19). The funnel plot revealed an apparent asymmetry, suggesting the presence/C9F003063H of a potential publication bias. What should be mentioned is that statistical power of Begg's test lowered when there was limited number (less than 25) of studies. After the trim and fill method was employed, three theoretically missing studies were added. The pooled analysis incorporating the hypothetical studies showed a statistically insignificant association between vitamin K combined D and the third lumbar BMD (0.063, -0.254 to 0.380) (Figure 20). Hence, the conclusions from the meta-analysis of the should be interpreted with caution due to potential publication bias.

### **Discussion**

As far as we know, this is the first meta-analysis to systematically examine the effects of vitamin K (not specified) combined with D on bone quality, which provides a basis for the proper use of the combination of vitamins to improve the quality of bones and thus prevent skeletal diseases. This meta-analysis of 8 RCTs suggests that the combination of vitamin K and D had the total BMD and the third lumbar BMD increased significantly and UcOC decreased significantly. However, no remarkable effect was detected on neck BMD.

Although a number of reviews have shown that combination of vitamin K (not specified) and D had promoting effect on BMD, a few studies have found that vitamin K did not seem to have that good effect on it.<sup>38,39</sup> However, a meta-analysis revealed that the modest overall effect of vitamin K on BMD may be biased and should be interpreted with caution.<sup>40</sup> Present study only focused on the combined effect of vitamin K and D, but Fang et al.<sup>40</sup> focused on the vitamin K alone, which suggested that vitamin D combined with K may be more effective in promoting BMD than vitamin K alone. There may be some interaction between vitamin D and K, which have osteoinduction properties (Figure 21).<sup>12,41</sup> Some studies have shown that vitamin D can increase the concentration of vitamin K-dependent bone protein by stimulating the expression of osteoblast-specific genes,<sup>17</sup> and induce bone formation *in vitro*.<sup>42-44</sup> Vitamin D<sub>3</sub>, for example, increases the expression of BMP6 mRNA in human bone

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

marrow mesenchymal stem cells 12-fold. Vitamin K exists in the endoplasmic View Article Online marrow mesenchymal stem cells 12-fold. Vitamin K exists in the endoplasmic View Article Online Marrow mesenchymal stem cells 12-fold. reticulum as the coenzyme of gamma-glutamyl carboxylase (GGCX), which catalyzes the carboxylation of glutamate residues (GLU) into gamma-carboxylated glutamate (GLA), affecting the activity of vitamin k-dependent protein (VKDPs). The most relevant VKDP is bone GLA protein (BGP, or osteocalcin).<sup>41</sup> Physiological 1,25-Dihydroxyvitamin D<sub>3</sub> [1,25(OH)<sub>2</sub>D<sub>3</sub>] can increase the rate of bone GLA protein biosynthesis, thus promoting bone mineralization.<sup>44</sup> Vitamin K may stimulate the expression of 1,25 (OH)<sub>2</sub>D<sub>3</sub>-induced osteocalcin mRNA to enhance the mineralization of osteoblasts.<sup>42</sup> Osteoblast-specific expression of osteocalcin is controlled at the transcriptional level by 25-hydroxyvitamin D [25(OH)D] through 1,25(OH)D-responsive element within the promoter of the osteocalcin gene. <sup>17</sup> The addition of vitamin K enhanced the accumulation of 1,25(OH)<sub>2</sub>D<sub>3</sub>-induced osteocalcin in the intracellular and extracellular matrix (cell layer), thereby promoting bone mineralization.46 In rats, 1,25(OH)D receptor binding can undergo gamma-carboxylation in the presence of vitamin K, which means that 1,25(OH)D receptor carboxylation can potentially modify the intrinsic biochemical properties of the nuclear receptors and modulates its binding to DNA.<sup>47</sup> Human intervention studies also shown that vitamin D<sub>3</sub> is necessary before activating vitamin K<sub>2</sub> of vitamin D<sub>3</sub> to carboxylation osteocalcin, because osteocalcin is induced by this effect. Vitamin K<sub>2</sub> distinctively enhances activated vitamin D<sub>3</sub>-induced mineralization by osteoblasts when there is administration of activated vitamin D<sub>3</sub>, which can be denoted as that vitamin K<sub>2</sub> administration enhances the carboxylation of highly produced osteocalcin by vitamin D<sub>3</sub> administration, resulting in a vigorous increase in mineralization in bone tissue. 19 These evidences help to explained the mechanism by synergetic effect of vitamin K and D on BMD.

361

362

363

364

A meta-analysis of the effects of vitamin D on bones health showed that single vitamin D did not significantly promote total BMD.<sup>48</sup> Another meta-analysis did not use total BMD to study the effect of vitamin K on bone health, but lumbar spine BMD

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

(significant without considering heterogeneity and publication bias) and neek BMD/C9F003063H (insignificant) as indicators. 40 The present results suggest that vitamin K (not specified) combined with D has a significant effect on the promotion of total bone mineral density, which may be superior to that of vitamin K or vitamin D alone. Vitamin K<sub>2</sub> combined with vitamin D<sub>3</sub> significantly increased vertebral bone mass compared with vitamin K2 or vitamin D3 alone in Japanese women with bone loss and osteoporosis.<sup>31</sup> Ninety-two osteoporotic women who were more than 5 years after menopause were randomly divided into four groups (vitamin D<sub>3</sub> group, vitamin K<sub>2</sub> group, vitamin D<sub>3</sub> + vitamin K<sub>2</sub> group and calcium group). After two years of supplement, compared with vitamin D<sub>3</sub> and K<sub>2</sub> alone, the density of lumbar vertebrae in vitamin  $D_3$  combined with  $K_2$  group was significantly increased (P < 0.05, P < 0.001).19 A randomized controlled trial divided postmenopausal women into three experimental groups (calcium + vitamin D + K<sub>1</sub> fortified dairy products, calcium + vitamin D + K<sub>2</sub> fortified dairy products, calcium + vitamin D fortified dairy products) and a control group (normal diet). After 12 months of supplement, compared with the single vitamin D fortified milk group, the favorable changes in the two vitamin K + vitamin D groups were as long as they were shown as the inhibition of serum bone remodeling indexes and the positive changes in lumbar spine density.<sup>37</sup> Another RCT also divided postmenopausal women into four groups the same as the above study, intervening in fortified milk and yogurt, with the additional benefits of L2-L4 bone mineral density were observed in the combined vitamin K and D group compared with the single vitamin D fortified dairy group.<sup>36</sup> These findings indicated that the combined administration of vitamin D and K have a synergistic effect in increasing BMD. However, it has been found that the combination of vitamin K and D had no significant effect on bone mineral density among healthy women as compared with vitamin D alone, which is possibly due to the shorter duration of the study (1 year) and the normal bone mineral density of healthy people, which could be illustrated as a healthy physiological state.<sup>49</sup>

The results of meta-analysis showed that vitamin K (not specified) combined with Dew Article Online Combined with Dew Article Online Combined on the Combined increased the lumbar BMD. However, it did not significantly promote that of the neck BMD. Some studies also found that vitamin D<sub>3</sub> combined with K<sub>2</sub>, compared with calcium, significantly increased the density of lumbar bone in postmenopausal women with osteoporosis.<sup>19</sup> Thus it can be said that the combination of vitamin K and D can increase the bone density of the lumbar spine, the left femoral neck, and the left hip, but not neck BMD.<sup>50</sup> It has been found that when serum 25(OH)D concentration was > 40 nmol/L, the contribution of serum 25(OH)D on BMD at lumbar spine and femoral neck BMD was different: 5.9% and 2.7%, respectively.<sup>51</sup> The present meta-analysis showed that vitamin K combined with D did not significantly increase the second lumbar BMD, fourth lumbar BMD and neck BMD, and there was significant publication bias among studies concerning the effect of vitamin K combined D on the third lumbar BMD. After the correction of trim and fill analysis, the effect size became insignificant. Therefore, this result should be considered carefully. Present conclusion will help us to further study the different effects of vitamin K combined D on different parts of the body (lumbar vertebrae, neck, femur, hip, etc.).

411412

413

414

415

416

417

418

419

420

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

Present evidences suggested that vitamin K (not specified) combined with D can reduce serum UcOC, which is consistent with the results of many studies. Prospective studies found that older women with elevated serum UcOC had a six times higher risk of hip fracture during follow-up than elderly women with normal serum UcOC.<sup>24</sup> An increase in the amount of UcOC was observed in patients with osteoporosis.<sup>33,52</sup> The UcOC was negatively correlate with BMD.<sup>53</sup> However, another study found that decreased UcOC is positively associated with stress fractures.<sup>54</sup> UcOC can promote osteoblast activity<sup>55,56</sup> and regulate insulin secretion and sensitivity.<sup>57</sup> Therefore, more experiments are needed to prove the relationship between UcOC and bone mass in the future.

422

423

424

421

Subgroup analyses indicated that when the vitamin K (not specified) supplementation was less than 500  $\mu$ g/d, the combination of vitamin K and D has a significant positive

effect on total BMD and third lumbar vertebral BMD. The daily consumption of 36/C9FO03063H 400 IU vitamin D<sub>3</sub> and 80 μg vitamin K<sub>1</sub> of postmenopausal women could prevent 25(OH)D from falling in winter. 44 The meta-analysis also showed that a daily increase of 50 μg of vitamin K intake would reduce the fracture risk by 3 percent, 45 which is consistent with the results of present subgroup analysis, which proves that when vitamin K intake is less than 500 μg/d, the combined effect of vitamin D<sub>3</sub> and K<sub>1</sub> on bone quality is better than that of when vitamin K intake is great than 500 μg/d. The review by Shah et al. 58 and Hamidi et al. 16 also suggest that once the vitamin K for bone health is satisfied, there may be no additional benefit to the extra intake, but the appropriate dose of vitamin K for bone health in people with low bone density is still unknown. More trials are needed to investigate the relationship between vitamin K supplementation and the combined effect of vitamin K and D on BMD in patients with low bone density or osteoporosis.

Subgroup analyses also showed that when the type of vitamin K was vitamin  $K_2$ , the combined effect of vitamin K and D can significantly increase the total BMD and third-lumbar BMD. The meta-analysis has also proved that, vitamin  $K_2$  may play a role in maintaining bone density and reducing the incidence of fractures in postmenopausal women with osteoporosis.<sup>59</sup> A meta-analysis summarized the efficacy of vitamin  $K_2$  in the treatment of non-spinal and hip fractures, suggesting that compared with vitamin  $K_1$ , vitamin  $K_2$  may have a better effect in improving bone density and bone quality.<sup>48</sup> It has been proved that bone mineralizing inducer in human osteoblasts can increase the production of osteocalcin.<sup>60</sup> It has been proved that vitamin  $K_2$  can inhibit osteoclast *in vitro* studies.<sup>61</sup> More studies are needed to investigate the detailed mechanism of combined effect of vitamin K and D on bone quality.

The results of the present meta-analysis suggested that the combined effect of vitamin K (not specified) and D seems to be more effective than that of mono-vitamin, and that a reasonable diet and nutritional pattern may be more important than the intake of a single nutrient. This provides evidence that healthy diet includes a variety of foods

to promote bone health. For example, Kanellakis et al.<sup>37</sup> and Moschonis et al.<sup>36</sup>1used/C9F003063H vitamin K and D fortified dairy products rather than simply using vitamin tablets, their effect on bone mineral density were better than that of the control group with normal diet. Those who need to pay attention to bone health, especially postmenopausal women, should eating foods rich in vitamin K and D to adjust their diet except taking appropriate vitamin supplements.

462 463

456

457

458

459

460

461

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

Although the present meta-analysis may provide some useful information, several potential limitations should be considered. Firstly, as a meta-analysis, the residual confounding factors are always of concern in the included studies, and the possibility that other risk factors may impact the observed association between vitamin K (not specified) combined D on bone quality. However, most of the studies were adjusted to a wide range of potential confounding factors, including age, BMI and nationality. Secondly, in the present meta-analysis, 2 studies included men and women and 6 studies included only women. We could not examine the association between vitamin K combined with D and bone quality in men. Thirdly, the sample size was relatively small (5 subjects in each group were less than 50). Fourthly, the quality of the included studies was not always optimal. However, after excluding low-quality studies, the results have not been changed. Furthermore, Begg's rank correlation test showed some asymmetry suggesting the possibility of publication bias within the included studies on the effect of vitamin K combined D on BMD at the third lumbar spine. After trim and fill analysis correction, the combined effect becomes insignificant, suggested that we should be cautious the result.

479

480

481

482

483

484

485

486

#### **Conclusions**

This meta-analysis showed that the combination of vitamin K and D can improve bone quality via increasing total bone mineral density and decreasing undercarboxylated osteocalcin, and a more favorable effect is expected when vitamin  $K_2$  is used. These findings have important public health implications with regard to the improvement of bone quality, especially in women, via a combination of vitamin K and D supplement. Further well designed RCTs are required to investigate the

489

mechanism of the effect of combined vitamin K and D on bone quality.

View Article Online DOI: 10.1039/C9F003063H

# **Conflict of interest**

There are no identified conflicts of interest with any of the authors.

View Article Online

DOI: 10.1039/C9FO03063H

# 491 References:

- M. Asadi-Lari, Y. Salimi, M. R. Vaez-Mahdavi, S. Faghihzadeh, A. A. Haeri 492 493 Mehrizi, Z. Jorjoran Shushtari and B. Cheraghian, Socio-Economic Status and 494 Prevalence of Self-Reported Osteoporosis in Tehran: Results from a Large Population-Based Cross-Sectional Study (Urban HEART-2). J Urban Health, 495 2018, 95, 682-90. 496 E. R. Larsen, L. Mosekilde and A. Foldspang, Vitamin D and calcium 497 2 supplementation prevents osteoporotic fractures in elderly community 498 dwelling residents: a pragmatic population-based 3-year intervention study. J 499 Bone Miner Res, 2004, 19, 370-378. 500 S. A. Lanham-New. Importance of calcium, vitamin D and vitamin K for 501 3 502 osteoporosis prevention and treatment. *Proc Nutr Soc.* 2008, 67, 163-76. H. M. Macdonald, F. E. McGuigan, S. A. Lanham-New, W. D. Fraser, S.H. 4 503 Ralston and D. M. Reid, Vitamin K1 intake is associated with higher bone 504 505 mineral density and reduced bone resorption in early postmenopausal Scottish women: no evidence of gene-nutrient interaction with apolipoprotein E 506 polymorphisms. Am J Clin Nutr, 2008, 87, 1513-20. 507 508 5 K. Nakamura, T. Saito, M. Oyama, R. Oshiki, R. Kobayashi, T. Nishiwaki, M. Nashimoto and Y. Tsuchiya, Vitamin D sufficiency is associated with low 509 510 incidence of limb and vertebral fractures in community-dwelling elderly 511 Japanese women: the Muramatsu Study. Osteoporos Int, 2011, 22, 97-103. I. R. Reid, A. M. Horne, B. Mihov, G. D. Gamble, F. Al-Abuwsi, M. Singh, L. 512 6
- 512 6 I. R. Reid, A. M. Horne, B. Mihov, G. D. Gamble, F. Al-Abuwsi, M. Singh, L. Taylor, S. Fenwick, C. A. Camargo, A. W. Stewart and R. Scragg, Effect of monthly high-dose vitamin D on bone density in community-dwelling older adults substudy of a randomized controlled trial. *J Intern Med*, 2017, 282, 452-60.
- 517 G. Kim, K. W. Oh, E. H. Jang, M. K. Kim, D. J. Lim, H. S. Kwon, K. H.
- Baek, K. H. Yoon, W. C. Lee, B. Y. Cha, K. W. Lee, H. Y. Son and M. I.
- Kang, Relationship between vitamin D, parathyroid hormone, and bone

- mineral density in elderly Koreans. *J Korean Med Sci*, 2012, 27, 636-43: 10.1039/C9F003063H
- 521 8 D. Agostini, S. Zeppa Donati, F. Lucertini, G. Annibalini, M. Gervasi, C. Ferri
- Marini, G. Piccoli, V. Stocchi, E. Barbieri and P. Sestili, Muscle and Bone
- Health in Postmenopausal Women: Role of Protein and Vitamin D
- Supplementation Combined with Exercise Training. *Nutrients*, 2018, 10.
- L. Cooper, P. B. Clifton-Bligh, M. L. Nery, G. Figtree, S. E. Twigg, Hibbert
- and B. G. Robinson, Vitamin D supplementation and bone mineral density in
- early postmenopausal women. *Am J Clin Nutr*, 2003, 77, 1324-9.
- 528 10 M. S. Barnes, P. J. Robson, M. P. Bonham, J. J. Strain and J. M. Wallace,
- Effect of vitamin D supplementation on vitamin D status and bone turnover
- 530 markers in young adults. *Eur J Clin Nutr*, 2006, 60, 727-33.
- 531 11 A. Palermo, D. Tuccinardi, L. D'Onofrio, M. Watanabe, D. Maggi, A. R.
- Maurizi, V. Greto, R. Buzzetti, N. Napoli, P. Pozzilli and S. Manfrini, Vitamin
- K and osteoporosis: Myth or reality? *Metabolism*, 2017, 70, 57-71.
- 534 12 M. Fusaro, M. C. Mereu, A. Aghi, G. Iervasi and M. Gallieni, Vitamin K and
- bone. Clinical cases in mineral and bone metabolism: the official journal of
- the Italian Society of Osteoporosis, Clin Cases Miner Bone Metab, 2017, 14,
- 537 200-06.
- Vermeer. C, Vitamin K: the effect on health beyond coagulation an
- overview, *Food Nutr Res*, 2012, 56.
- 540 14 S. J. Elder, D. B. Haytowitz, J. Howe, J. W. Peterson and S. L. Booth, Vitamin
- k contents of meat, dairy, and fast food in the u.s. Diet. J Agric Food Chem,
- 542 2006, 54, 463-7.
- 543 15 J. P. Bonjour, L. Gueguen, C. Palacios, M. J. Shearer and C. M. Weaver,
- Minerals and vitamins in bone health: the potential value of dietary
- 545 enhancement. *Br J Nutr*, 2009, 101, 1581-96.
- 546 16 M. S. Hamidi, O. Gajic-Veljanoski and A. M. Cheung, Vitamin K and bone
- 547 health. J Clin Densitom, 2013, 16, 409-13.
- 548 17 S. A. Kerner, R. A. Scott and J. W. Pike, Sequence elements in the human

/iew Article Online

- osteocalcin gene confer basal activation and inducible response to hormonal/c9F003063H vitamin D3. *Proc Natl Acad Sci U S A*, 1989, 86, 4455-4459.
- B. Furie, B. A. Bouchard and B. C. Furie, Vitamin K-dependent biosynthesis of gamma-carboxyglutamic acid. *Blood*, 1999, 93, 1798-1808.
- J. Iwamoto, T. Takeda and S. Ichimura, Effect of combined administration of vitamin D3 and vitamin K2 on bone mineral density of the lumbar spine in postmenopausal women with osteoporosis. *J Orthop Sci*, 2000, 5, 546-51.
- 556 20 S. L. Booth, G. Dallal, M. K. Shea, C. Gundberg, J. W. Peterson and B. Dawson-Hughes, Effect of vitamin K supplementation on bone loss in elderly men and women. *J Clin Endocrinol Metab*, 2008, 93, 1217-23.
- J. G. Zhao, X. T. Zeng, J. Wang and L. Liu, Association Between Calcium or Vitamin D Supplementation and Fracture Incidence in Community-Dwelling Older Adults: A Systematic Review and Meta-analysis. *JAMA*, 2017, 318, 2466-82.
- 563 22 K. Li, T. Huang, J. Zheng, K. Wu and D. Li, Effect of marine-derived n-3 564 polyunsaturated fatty acids on C-reactive protein, interleukin 6 and tumor 565 necrosis factor alpha: a meta-analysis. *PLoS One*, 2014, 9, e88103.

- M. Karpinski, J. Popko, K. Maresz, V. Badmaev and S. J. Stohs, Roles of
   Vitamins D and K, Nutrition, and Lifestyle in Low-Energy Bone Fractures in
   Children and Young Adults. *J Am Coll Nutr*, 2017, 36, 399-412.
- I. Zofkova, M. Hill and V. Palicka, Association between serum undercarboxylated osteocalcin and bone density and/or quality in early postmenopausal women. *Nutrition*, 2003, 19, 1001-3.
- P. Szulc, M. Arlot, M. C. Chapuy, F. Duboeuf, P. J. Meunier and P. D. Delmas, Serum undercarboxylated osteocalcin correlates with hip bone mineral density in elderly women. *J Bone Miner Res*, 1994, 9, 1591-5.
- G. Liu and M. Peacock, Age-related changes in serum undercarboxylated osteocalcin and its relationships with bone density, bone quality, and hip fracture. *Calcif Tissue Int*, 1998, 62, 286-289.

- 578 27 D. Moher, B. Pham, A. Jones, D. J. Cook, A. R. Jadad, M. Moher, P. Pugwell/C9F003063H
- and T. P. Klassen, Does quality of reports of randomised trials affect estimates
- of intervention efficacy reported in meta-analyses? Lancet, 1998, 352,
- 581 609-613.
- 582 28 M. E. L. Diogenes, F. F. Bezerra, E. P. Rezende, M. F. Taveira, I. Pinhal and
- 583 C. W. Donangelo, Effect of calcium plus vitamin D supplementation during
- pregnancy in Brazilian adolescent mothers: A randomized, placebo-controlled
- 585 trial. *Am J Clin Nutr*, 2013, 98, 82-91.
- 586 29 J. Higgins, Cochrane handbook for systematic reviews of interventions.
- Version 5.1.0 [updated March 2011]. The Cochrane Collaboration.
- 588 <u>www.cochrane-handbook.org</u>, 2011.
- 589 30 M. Egger, G. Davey Smith, M. Schneider and C. Minder, Bias in
- meta-analysis detected by a simple, graphical test. *BMJ*, 1997, 315, 629-634.
- T. Ushiroyama, A. Ikeda and M. Ueki, Effect of continuous combined therapy
- with vitamin K(2) and vitamin D(3) on bone mineral density and
- coagulofibrinolysis function in postmenopausal women. *Maturitas*, 2002, 41,
- 594 211-21.
- 595 32 L. A. J. L. M. Braam, M. H. J. Knapen, P. Geusens, F. Brouns, K. Hamulyak,
- M. J. Gerichhausen and C. Vermeer, Vitamin K1 supplementation retards
- bone loss in postmenopausal women between 50 and 60 years of age. *Calcif*
- 598 *Tissue Int*, 2003, 73, 21-26.
- B. Panis, C. Vermeer, Mipg. Kroonenburgh, F. H. M. Nieman, Ppca.
- Menheere, L. J. Spaapen and M. E. Rubio-Gozalbo, Effect of calcium,
- vitamins K1 and D3 on bone in galactosemia. *Bone*, 2006, 39, 1123-29.
- 602 34 C. Bolton-Smith, M. E. McMurdo, C. R. Paterson, P. A. Mole, J. M. Harvey,
- S. T. Fenton, C. J. Prynne, G. D. Mishra and M. J. Shearer, Two-year
- randomized controlled trial of vitamin K1 (phylloquinone) and vitamin D3
- plus calcium on the bone health of older women. J Bone Miner Res, 2007, 22,
- 606 509-19.

- S. H. Je, N. S. Joo, B. H. Choi, K. M. Kim, B. T. Kim, S. B. Park, D.D. Article Online View Article Online (CO) CO) 607 35 K. N. Kim and D. J. Lee, Vitamin K supplement along with vitamin D and 608 calcium reduced serum concentration of undercarboxylated osteocalcin while 609 increasing bone mineral density in Korean postmenopausal women over 610 sixty-years-old. J Korean Med Sci, 2011, 26, 1093-8. 611 G. Moschonis, S. Kanellakis, N. Papaioannou, A. Schaafsma and Y. Manios, 612 36 Possible site-specific effect of an intervention combining nutrition and 613 614 lifestyle counselling with consumption of fortified dairy products on bone mass: the Postmenopausal Health Study II. J Bone Miner Metab, 2011, 29, 615
- S. Kanellakis, G. Moschonis, R. Tenta, A. Schaafsma, E. G. van den Heuvel,
  N. Papaioannou, G. Lyritis and Y. Manios, Changes in parameters of bone
  metabolism in postmenopausal women following a 12-month intervention
  period using dairy products enriched with calcium, vitamin D, and
  phylloquinone (vitamin K1) or menaquinone-7 (vitamin K2): The
  postmenopausal health study II. *Calcif Tissue Int*, 2012, 90, 251-62.
- A. J. van Ballegooijen, S. Pilz, A. Tomaschitz, M. R. Grubler and N. Verheyen, The Synergistic Interplay between Vitamins D and K for Bone and Cardiovascular Health: A Narrative Review. *Int J Endocrinol*, 2017, 2017, 7454376.
- P. M. Kidd, Vitamins D and K as pleiotropic nutrients: clinical importance to the skeletal and cardiovascular systems and preliminary evidence for synergy. Altern Med Rev, 2010, 15, 199-222.
- 40 Y. Fang, C. Hu, X. Tao, Y. Wan and F. Tao, Effect of vitamin K on bone
- mineral density: a meta-analysis of randomized controlled trials. *J Bone Miner*
- 632 *Metab*, 2011, 30, 60-68.

501-6.

Published on 09 March 2020. Downloaded on 3/15/2020 1:19:41 AM.

616

A. Gigante, M. Torcianti, E. Boldrini, S. Manzotti, G. Falcone, F. Greco and M. Mattioli-Belmonte, Vitamin K and D association stimulates in vitro osteoblast differentiation of fracture site derived human mesenchymal stem

View Article Online

DOI: 10.1039/C9FO03063H

- 636 cells. J Biol Regul Homeost Agents, 2008, 22, 35-44.
- 42 Y. Koshihara, and K. Hoshi, Vitamin K2 enhances osteocalcin accumulation
- in the extracellular matrix of human osteoblasts in vitro. J Bone Miner Res,
- 639 1997, 12, 431-438.
- P. A. Price and S. A. Baukol, 1,25-Dihydroxyvitamin D3 increases synthesis
- of the vitamin K-dependent bone protein by osteosarcoma cells. *J Biol Chem*,
- 642 1980, 255, 11660-3.
- P. A. Price and S. A. Baukol, 1,25-dihydroxyvitamin D3 increases serum
- levels of the vitamin K-dependent bone protein. Biochem Biophys Res
- 645 *Commun*, 1981, 99, 928-935.
- 646 45 A. Gigante, F. Bruge, S. Cecconi, S. Manzotti, G. P. Littarru and L. Tiano,
- Vitamin MK-7 enhances vitamin D3-induced osteogenesis in hMSCs:
- modulation of key effectors in mineralization and vascularization. *J Tissue*
- Eng Regen Med, 2015, 9, 691-701.
- 46 Y. Koshihara, K. Hoshi, H. Ishibashi and M. Shiraki, Vitamin K2 promotes
- 1alpha,25(OH)2 vitamin D3-induced mineralization in human periosteal
- osteoblasts. Calcif Tissue Int, 1996, 59, 466-473.
- 653 47 I. N. Sergeev and A. W. Norman, Vitamin K-dependent gamma-carboxylation
- of the 1,25-dihydroxyvitamin D3 receptor. Biochem Biophys Res Commun,
- 655 1992, 189, 1543-1547.
- 656 48 I. R. Reid, M. J. Bolland and A. Grey, Effects of vitamin D supplements on
- bone mineral density: a systematic review and meta-analysis. *Lancet*, 2014,
- 658 383, 146-155.
- N. Binkley, J. Harke, D. Krueger, J. Engelke, N. Vallarta-Ast, D. Gemar, M.
- 660 Checovich, R. Chappell and J. Suttie, Vitamin K treatment reduces
- undercarboxylated osteocalcin but does not alter bone turnover, density, or
- geometry in healthy postmenopausal North American women. J Bone Miner
- 663 Res, 2009, 24, 983-991.
- 664 50 S. Maria, M. H. Swanson, L. T. Enderby, F. D'Amico, B. Enderby, R. M.

- Samsonraj, A. Dudakovic, A. J. van Wijnen and P. A. Witt-Enderloge/C9F003063H
- Melatonin-micronutrients osteopenia treatment study (MOTS). Aging (Albany
- 667 *NY*), 2017, 9, 256-285.
- D. Collins, I. Fogelman and R. Swaminathan. Vitamin D and Bone Mineral
- Density. Osteoporos Int, 1998, 8, 110-4.
- 670 52 S. M. Kim, K. M. Kim, B. T. Kim, N. S. Joo, K. N. Kim and D. J. Lee,
- 671 Correlation of undercarboxylated osteocalcin (ucOC) concentration and bone
- density with age in healthy Korean women. J Korean Med Sci, 2010, 25,
- 673 1171-1175.

- 674 53 T. Miyamoto, Y. Oguma, Y. Sato, T. Kobayashi, E. Ito, M. Tani, K.
- Miyamoto, Y. Nishiwaki, H. Ishida, T. Otani, H. Matsumoto, M. Matsumoto
- and M. Nakamura, Elevated Creatine Kinase and Lactic Acid Dehydrogenase
- and Decreased Osteocalcin and Uncarboxylated Osteocalcin are Associated
- with Bone Stress Injuries in Young Female Athletes. *Sci Rep*, 2018, 8, 18019.
- 679 54 N.K. Lee, H. Sowa, E. Hinoi, M. Ferron, J.D. Ahn, C. Confavreux, R.
- Dacquin, P.J. Mee, M.D. McKee, D.Y. Jung, Z. Zhang, J.K. Kim, F.
- Mauvais-Jarvis and P. Ducy, Endocrine regulation of energy metabolism by
- the skeleton. *Cell*, 2007, 130, 456-469.
- 683 55 M. Ferron, J. Wei, T. Yoshizawa, A. Del Fattore, R. A. DePinho, A. Teti and
- P. Ducy, Insulin signaling in osteoblasts integrates bone remodeling and
- energy metabolism. *Cell*, 2010, 142, 296-308.
- N. J. Lee, N. Ali, L. Zhang, Y. Qi, I. Clarke, R.F. Enriquez, M. Brzozowska,
- I.C. Lee, M. J. Rogers, D. R. Laybutt, J. R. Center, P. A. Baldock,
- Osteoglycin, a novel coordinator of bone and glucose homeostasis. Mol
- 689 *Metab*, 2010, 13, 30-44.
- 690 57 K. Shah, L. Gleason and D. T. Villareal, Vitamin K and bone health in older
- 691 adults. *J Nutr Gerontol Geriatr*, 2014, 33, 10-22.
- 692 58 Z. B. Huang, S. L. Wan, Y. J. Lu, L. Ning, C. Liu and S. W. Fan, Does
- vitamin K2 play a role in the prevention and treatment of osteoporosis for

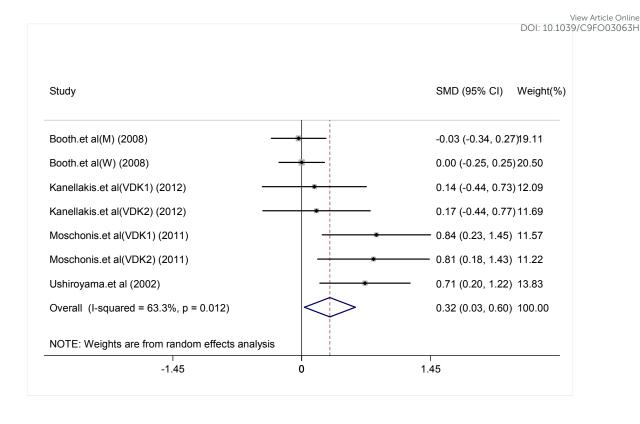
| AM.               |  |
|-------------------|--|
|                   |  |
| 3/15/2020 1:19:41 |  |
| ed on 3/          |  |
| ownload           |  |
| ch 2020. Dow      |  |
| 9 March           |  |
| od on 0           |  |
| Publishe          |  |

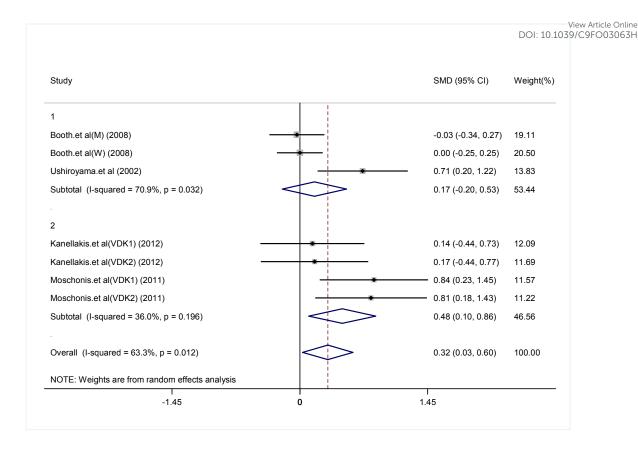
| 694 |    | postmenopausal women: a meta-analysis of randomized controlled trials // C9FO03063H |
|-----|----|-------------------------------------------------------------------------------------|
| 695 |    | Osteoporos Int, 2015, 26, 1175-86.                                                  |
| 696 | 59 | R. Sanguineti, F. Monacelli, A. Parodi, A. L. Furfaro, R. Borghi, D. Pacini, M.     |
| 697 |    | A. Pronzato, P. Odetti, L. Molfetta and N. Traverso, Vitamins D3 and K2 may         |
| 698 |    | partially counterbalance the detrimental effects of pentosidine in ex vivo          |
| 699 |    | human osteoblasts. J Biol Regul Homeost Agents, 2016, 30, 713-26.                   |
| 700 | 60 | Y. Akiyama, K. Hara, T. Tajima, S. Murota and I. Morita, Effect of vitamin          |
| 701 |    | K2 (menatetrenone) on osteoclast-like cell formation in mouse bone marrow           |
| 702 |    | cultures. Eur J Pharmacol, 1994, 263, 181-5.                                        |

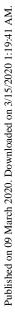
View Article Online DOI: 10.1039/C9F003063H

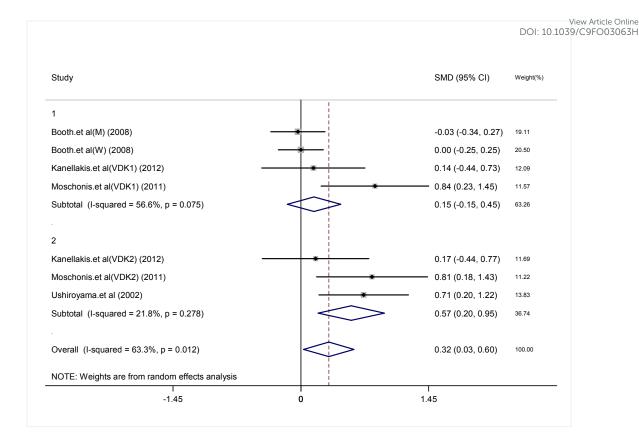
- Fig. 2 Pooled effect size of vitamin K combined with vitamin D on total BMD. BMD, bone mineral density. SMD, standard mean difference.
- Fig. 3 Effect of vitamin K dose on the effect size of vitamin K combined with vitamin D on total BMD (1:  $\geq$  500 µg/d or 2: < 500 µg/d). BMD, bone mineral density. SMD, standard mean difference.
- Fig. 4 Effect of vitamin K types on the effect size of vitamin K combined with vitamin D on total BMD (1: vitamin  $K_1$  or 2: vitamin  $K_2$ ). BMD, bone mineral density. SMD, standard mean difference.
- Fig. 5 Effect of gender on the effect size of vitamin K combined with vitamin D on total BMD (1: male or 2: female). BMD, bone mineral density. SMD, standard mean difference.
- Fig. 6 Pooled effect size of vitamin K combined with vitamin D on neck BMD. BMD, bone mineral density. SMD, standard mean difference.
- Fig. 7 Pooled effect size of vitamin K combined with vitamin D on first lumbar BMD. BMD, bone mineral density. SMD, standard mean difference.
- Fig. 8 Pooled effect size of vitamin K combined with vitamin D on second lumbar BMD. BMD, bone mineral density. SMD, standard mean difference.
- Fig. 9 Pooled effect size of vitamin K combined with vitamin D on third lumbar BMD. BMD, bone mineral density. SMD, standard mean difference.
- Fig. 10 Pooled effect size of vitamin K combined with vitamin D on forth lumbar BMD. BMD, bone mineral density. SMD, standard mean difference.

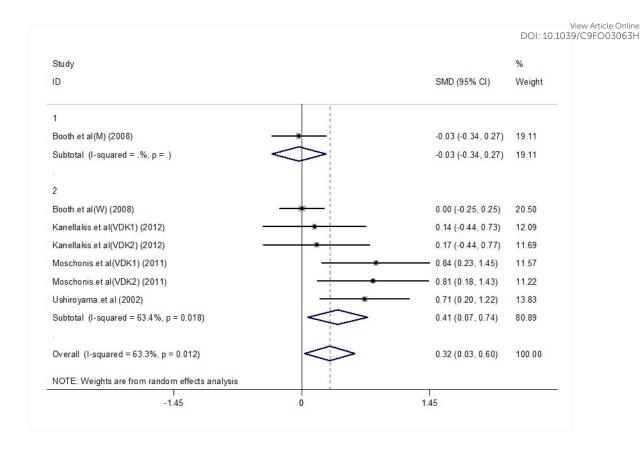
- Fig. 11 Pooled effect size of Pooled effect size of vitamin K combined with vitamin D on the third lumbar BMD including vitamin K supplement (1:  $500 \mu g/d$  or 2:  $100 \mu g/d$ ). BMD, bone mineral density. SMD, standard mean difference.
- Fig. 12 Pooled effect size of Pooled effect size of vitamin K combined with vitamin D on the third lumbar BMD including the type of vitamin K (1: vitamin  $K_1$  or 2: vitamin  $K_2$ ). BMD, bone mineral density. SMD, standard mean difference.
- Fig. 13 Effect of gender on the effect size of vitamin K combined with vitamin D on the third lumbar BMD (1: male or 2: female). BMD, bone mineral density. SMD, standard mean difference.
- Fig. 14 Pooled effect size of vitamin K combined with vitamin D on UcOC. UcOC, undercarboxylated osteocalcin. SMD, standard mean difference.
- Fig. 15 Sensitivity analysis of vitamin K combined with vitamin D on UcOC. UcOC, undercarboxylated osteocalcin. SMD, standard mean difference.
- Fig. 16 Pooled effect size of vitamin K combined with vitamin D on UcOC after excluded one article. UcOC, undercarboxylated osteocalcin. SMD, standard mean difference.
- Fig. 17 Effect of gender on the effect size of vitamin K combined with vitamin D on the UcOC (1: male or 2: female). UcOC, undercarboxylated osteocalcin. SMD, standard mean difference.
- Fig. 18 Effect of age on the effect size of vitamin K combined with vitamin D on the UcOC (1:  $\geq$  60 years or 2: < 60 years). UcOC, undercarboxylated osteocalcin. SMD, standard mean difference.
- Fig. 19 Begg's funnel plot of vitamin K combined with vitamin D on third lumbar BMD. BMD, bone mineral density. SMD, standard mean difference.
- Fig. 20 Filled funnel plots for the third lumbar BMD. The square represents theoretically missing studies. The funnel plots were achieved using trim and fill method. BMD, bone mineral density.
- Fig. 21 Potential synergistic mechanisms between vitamin D and K and bone. 1,25(OH)<sub>2</sub>D<sub>3</sub>:

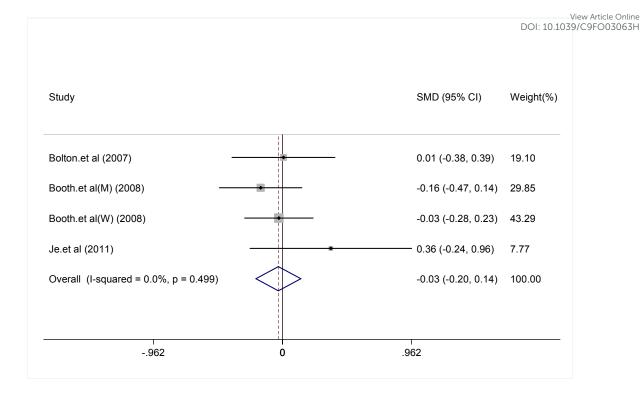

1,25-Dihydroxyvitamin D3; Glu: glutamate residues; GLA: gamma-carboxylated glutamate;  $\Omega_{\text{CO39/C9FO03063H}}^{\text{C. View Article Online}}$  osteocalcin.

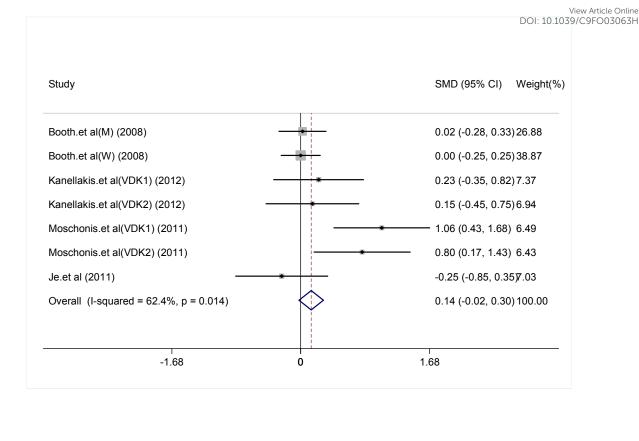

View Article Online

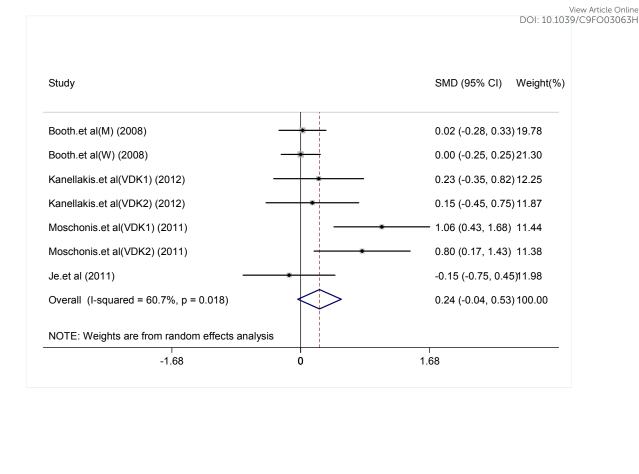

DOI: 10.1039/C9FO03063H

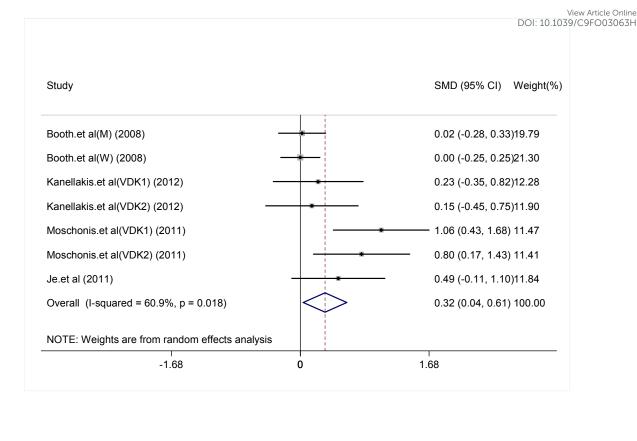

Published on 09 March 2020. Downloaded on 3/15/2020 1:19:41 AM.

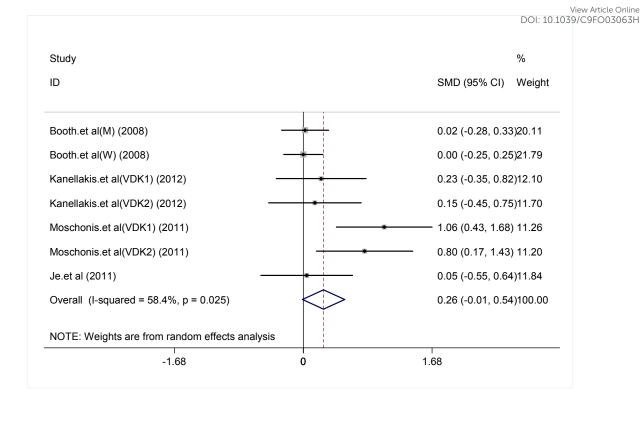

Studies identified though PubMed (n = 187), Web of 170 studies automatically with Science (n = 128), Embase (n the help of Endnote. = 348), Cochrane (n = 117). Records after first duplicates 69 studies excluded manually. removed (n = 610). Records after second 512 studies excluded by duplicates removed (n = 541). screening titles and abstracts. Records screened by titles and Other type designs excluded abstracts (n = 29). (n = 7).No full article (n = 4) No nesessary biomarkers (n = No indipensable data (n = 4) 22 RCTs included after eliminating other type designs. Due to other results (n = 3) 8 RCTs including in the present meta analysis.



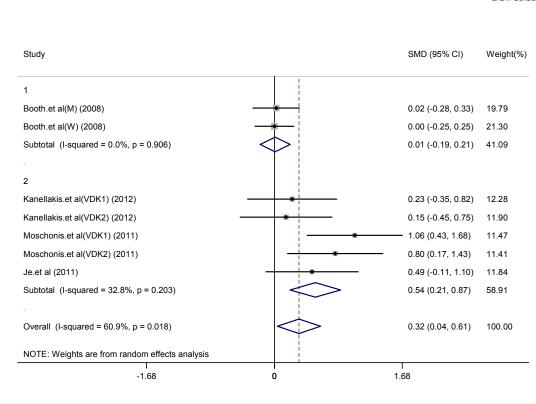



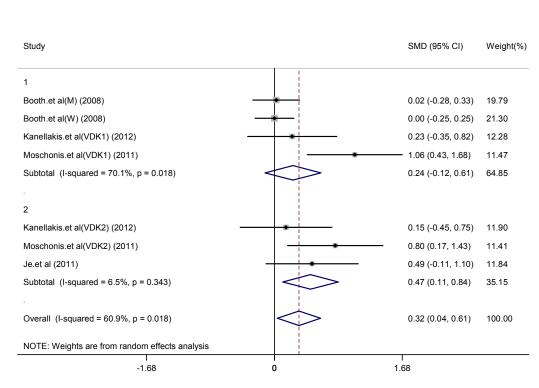





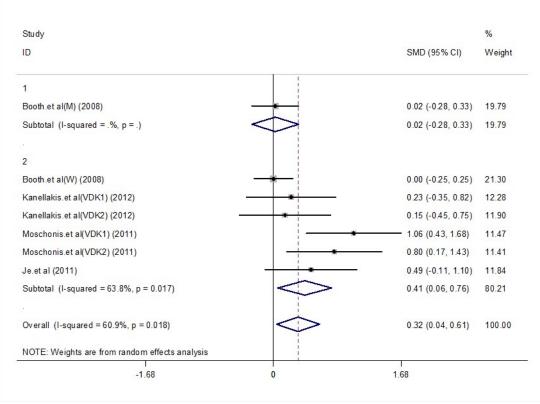



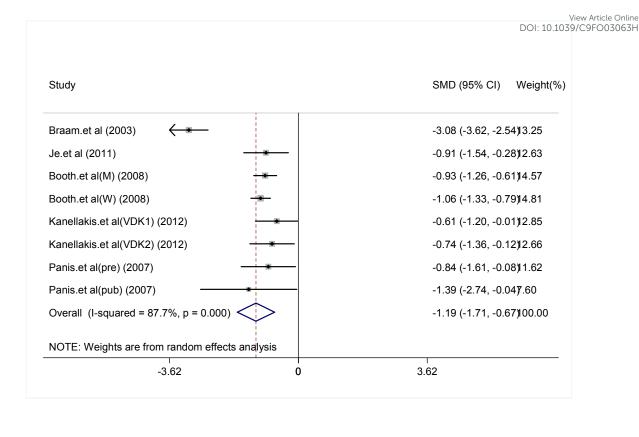




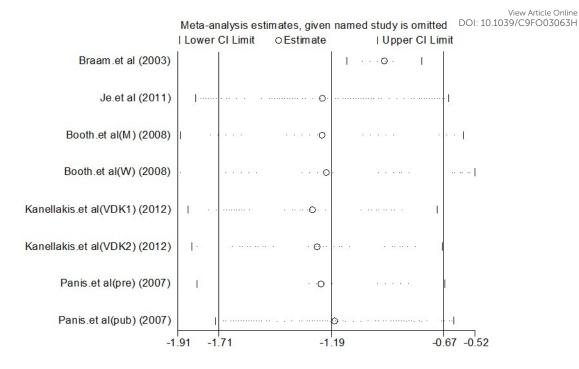



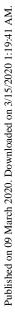

View Article Online DOI: 10.1039/C9F003063H

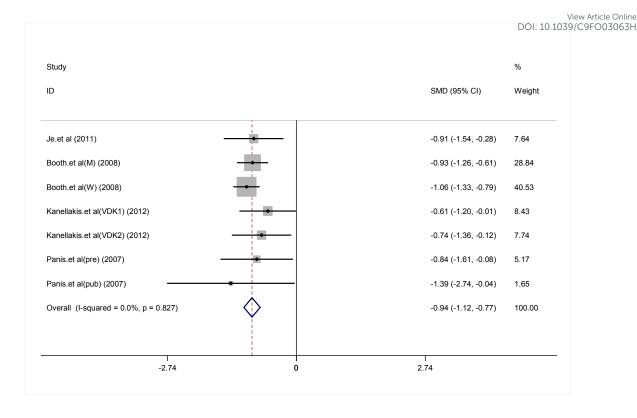


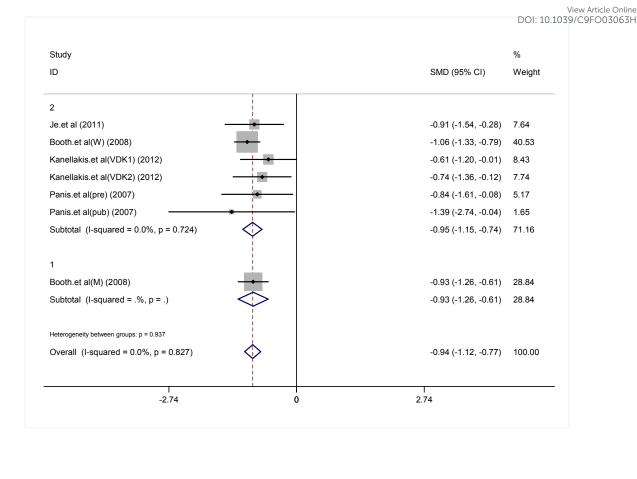


View Article Online
DOI: 10.1039/C9F003063H

Weight(%)

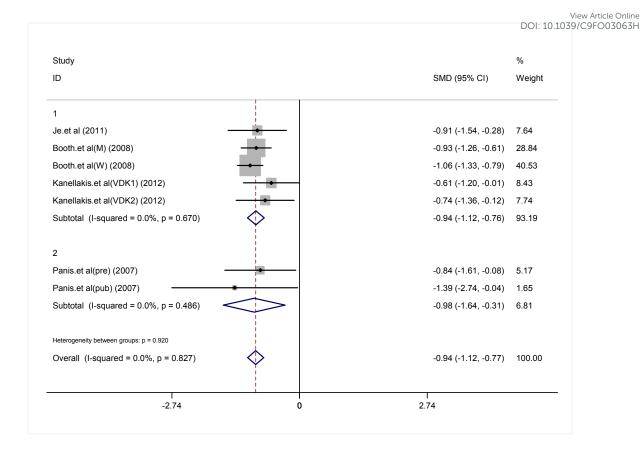




View Article Online DOI: 10.1039/C9FO03063H

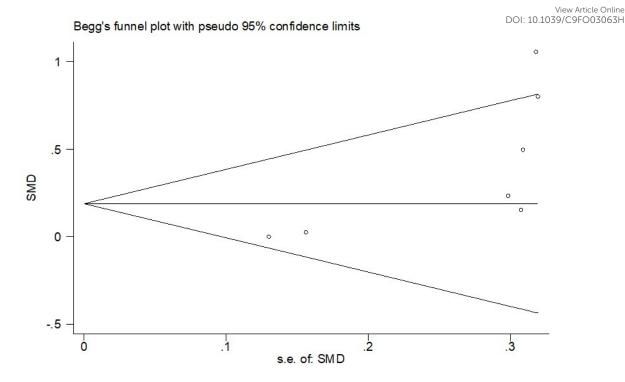


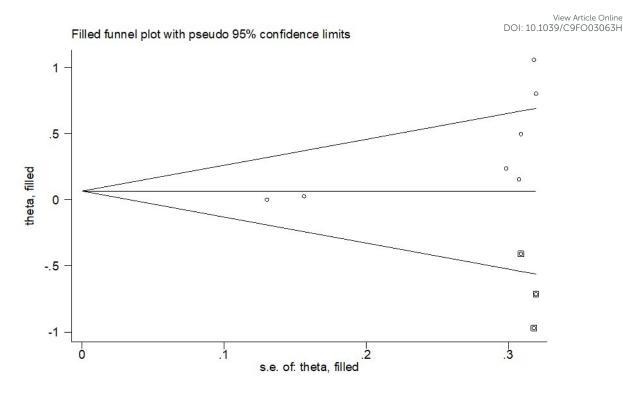


















View Article Online DOI: 10.1039/C9F003063H

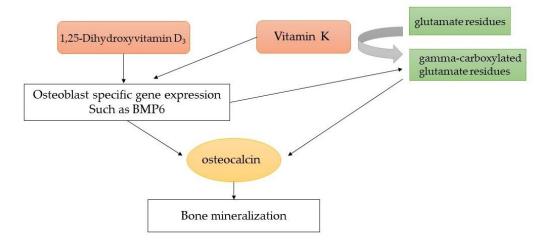



Table 1. Characteristics of the eligible RCTs

| Author                                | Publication<br>year | Duration of follow-up | No. (intervention/control, subjects) | Country    | BMI (kg/m²) | Age (mean± SD) | Vitamin D    | Vitamin K       | Type of vitamin K | Jadad<br>score |
|---------------------------------------|---------------------|-----------------------|--------------------------------------|------------|-------------|----------------|--------------|-----------------|-------------------|----------------|
|                                       |                     |                       |                                      |            |             |                |              |                 |                   |                |
| Ushiroyama.et al.                     |                     |                       |                                      |            |             |                |              |                 |                   |                |
| Braam.et al.                          | 2003                | 3 years               | 63/60                                | Netherland | 25.6        | $55.3 \pm 2.8$ | $10 \mu g/d$ | 1 mg/d          | $K_1$             | 6              |
| Panis.et al. (Pre)                    | 2006                | 2 years               | 14/15                                | Netherland | NR          | $6.7 \pm 1.9$  | $10 \mu g/d$ | 1 mg/d          | $K_1$             | 6              |
| Panis.et al. (Pub)                    | 2006                | 2 years               | 5/6                                  | Netherland | NR          | $14.1 \pm 2.7$ | $10 \mu g/d$ | 1 mg/d          | $K_1$             | 6              |
| Bolton-Smith.et al.                   | 2007                | 2 years               | 49/56                                | UK         | 26.15       | $67.8 \pm 5.4$ | $10 \mu g/d$ | $200\;\mu g/d$  | $K_1$             | 5              |
| Booth.et al. (M)                      | 2008                | 3 years               | 84/80                                | USA        | NR          | $69.0 \pm 5.0$ | $10 \mu g/d$ | $500 \ \mu g/d$ | $K_1$             | 4              |
| Booth.et al. (W)                      | 2008                | 3 years               | 120/117                              | USA        | NR          | $68.0 \pm 5.4$ | $10 \mu g/d$ | $500 \ \mu g/d$ | $K_1$             | 4              |
| Je.et al.                             | 2011                | 6 months              | 38/40                                | Korean     | 24.15       | $68.1 \pm 6.3$ | $10 \mu g/d$ | 45 mg/d         | $K_2$             | 3              |
| Moschonis.et al. (VDK <sub>1</sub> )  | 2011                | 1 year                | 26/20                                | Greece     | 30.00       | $60.9 \pm 5.3$ | $10 \mu g/d$ | $100 \ \mu g/d$ | $K_1$             | 2              |
| Moschonis.et al. (VDK <sub>2</sub> )  | 2011                | 1 year                | 24/19                                | Greece     | 29.65       | $62.0 \pm 6.4$ | $10 \mu g/d$ | $100 \ \mu g/d$ | $K_2$             | 2              |
| Kanellakis.et al. (VDK <sub>1</sub> ) | 2012                | 1 year                | 26/20                                | Greece     | 30.00       | $62.0 \pm 5.8$ | $10 \mu g/d$ | $100 \ \mu g/d$ | $K_1$             | 2              |
| Kanellakis.et al. (VDK <sub>2</sub> ) | 2012                | 1 year                | 24/19                                | Greece     | 29.69       | $62.0 \pm 5.8$ | 10 μg/d      | 100 μg/d        | $K_2$             | 2              |

Abbreviations: Pre, prepubertals; Pub, Pubertals; M, men; W, women; VDK1, vitamin D and vitamin K1; VDK2, vitamin D and vitamin K2; NR, not reported.