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Novelty and Impact:  Lower circulating vitamin D is associated with higher mortality risk 
among colorectal cancer (CRC) patients; however, it is unknown whether this association differs 
by inherited vitamin D-binding protein (GC) isoforms that impact vitamin D metabolism.  In this 
study, vitamin D deficiency, relative to sufficiency, was associated with over 2-fold higher CRC-
specific mortality risk, but only among those with the Gc2-encoding genotype, identifying a 
vulnerable subgroup of patients who may particularly benefit from higher vitamin D.  
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ABSTRACT 
 
Lower pre-diagnostic circulating 25-hydroxyvitamin D (25[OH]D)—considered the best marker 
of total vitamin D exposure—is associated with higher mortality risk among colorectal cancer 
(CRC) patients.  However, it is unknown whether this association differs by the vitamin D-
binding protein (GC) isoform Gc2 (encoded by GC rs4588*C>A, Thr436Lys), which may 
substantially affect vitamin D metabolism and modify associations of 25(OH)D with colorectal 
neoplasm risk.  Pre-diagnostic 25(OH)D-mortality associations according to Gc2 isoform were 
estimated using multivariable Cox proportional hazards regression among 1,281 CRC cases (635 
deaths, 483 from CRC) from two large prospective cohorts conducted in the United States 
(Cancer Prevention Study-II) and Europe (European Prospective Investigation into Cancer and 
Nutrition).  25(OH)D measurements were calibrated to a single assay, season standardized, and 
categorized using Institute of Medicine recommendations (deficient [<30], insufficient [30 – 
<50], sufficient [≥50 nmol/L]).  In the pooled analysis, multivariable-adjusted hazard ratios 
(HRs) for CRC-specific mortality associated with deficient relative to sufficient 25(OH)D 
concentrations were 2.24 (95% CI 1.44–3.49) among cases with the Gc2 isoform, and 0.94 (95% 
CI 0.68–1.22) among cases without Gc2 (Pinteraction = 0.0002).  The corresponding HRs for all-
cause mortality were 1.80 (95% CI 1.24–2.60) among those with Gc2, and 1.12 (95% CI 0.84–
1.51) among those without Gc2 (Pinteraction = 0.004).  Our findings suggest that the association of 
pre-diagnostic vitamin D status with mortality among CRC patients may differ by functional GC 
isoforms, and patients who inherit the Gc2 isoform (GC rs4588*A) may particularly benefit from 
higher circulating 25(OH)D for improved CRC prognosis.   
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INTRODUCTION 
 
Colorectal cancer (CRC) is the second leading cause of cancer death among men and women 

combined globally.1  Vitamin D regulates several important signaling pathways relevant to 

cancer progression and prognosis, including proliferation, differentiation, angiogenesis, 

apoptosis, inflammation, and metastasis.2  Circulating 25-hydroxyvitamin D (collective term for 

D2 and D3, 25[OH]D) is considered the best marker of total vitamin D exposure and is used 

clinically to assess vitamin D status.3  Lower 25(OH)D concentrations are associated with higher 

mortality risk among CRC patients in observational studies;4-7 however, it is unknown whether 

this association differs depending on functional variants in the gene (GC, formerly known as 

group-specific component) encoding for the vitamin D-binding protein (GC, also known as 

DBP), which may impact vitamin D bioavailability and metabolism.  Investigation of interaction 

between 25(OH)D and functional GC variants could be important for:  1) identifying subgroups 

of individuals in which adequate 25(OH)D may be particularly beneficial, and 2) providing 

biologic insight into vitamin D metabolism and CRC progression.8 

 Nearly 90% of circulating 25(OH)D is bound to the GC protein, which delivers vitamin 

D to target tissues and helps maintain stable 25(OH)D stores.9, 10  The two missense variants GC 

rs4588 and rs7041 encode for three common protein isoformsGc1s, Gc1f, and Gc2.11  We 

recently reported that associations of 25(OH)D concentrations with risk of incident, sporadic 

colorectal adenoma12 and CRC13 were stronger among individuals with the Gc2 isoform than 

among those with only Gc1 isoforms.  Relative to the Gc1 isoforms (distinguished by the rs7041 
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genotype), the Gc2 isoform (determined by the rs4588 genotype) is associated with an 

approximately 2- to 4-fold lower 25(OH)D binding affinity14 and 2- to 3-fold higher vitamin D-

pathway induction by 25(OH)D in vitro15,  providing biologic plausibility for these clinically 

relevant genotype-specific associations.  

 Accordingly, we hypothesized that the association of pre-diagnostic 25(OH)D 

concentrations with mortality risk among CRC patients would be stronger among individuals 

with the Gc2 isoform than among those without it.  We investigated whether associations of 

25(OH)D with CRC-specific and all-cause mortality differed by Gc2 isoform among 1,281 CRC 

patients in two large prospective cohort studies in the United States (US) and Europe.  

 

METHODS 

Study population  

We analyzed individual patient data from the European Prospective Investigation into Cancer 

and Nutrition (EPIC) and the Cancer Prevention Study-II (CPS-II) prospective cohort studies.  

Details of the study populations and data collection were published previously for EPIC16 and 

CPS-II.17  Briefly, EPIC recruited over 520,000 men and women from the general population in 

10 western European countries from 1992 to 199818, and CPS-II recruited 184,194 men and 

women across 21 US states from 1992 to 1993.17  Blood samples were collected prior to cancer 

diagnosis from EPIC participants between 1992 and 1998, and from CPS-II participants between 

1998 and 2001.  Pre-diagnostic circulating 25(OH)D concentrations were measured for 1,248 and 
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298 incident CRC cases for previous case-control studies with 1:1 matching nested in EPIC18 and 

CPS-II,19 respectively.  Detailed descriptions of case selection and exclusions for these studies 

are described elsewhere.4, 18, 19  Of these 1,546 CRC cases, we further excluded 7 non-white 

CPS-II cases, 142 EPIC cases and 44 CPS-II cases with missing genotyping information, 25 

EPIC cases with missing cause of death information, and 38 EPIC cases and 9 CPS-II cases with 

missing follow-up or vital status information, leaving 1,281 CRC cases for these analyses.  The 

EPIC and CPS-II studies were approved by their respective institutional review boards, and 

written informed consent was obtained from each subject. 

 

Follow-up 

Follow-up for CRC incidence occurred during 1993–2004 in EPIC,4, 18 and 1999–2007 in CPS-

II.20  In EPIC, vital status and cancer incidence information was collected via linkage to regional 

and/or national mortality registries in all countries except France, Germany, and Greece, where 

participants were followed using a combination of cancer/pathology registries, health insurance 

records, and active follow-up, as described previously.4  Censoring dates for complete follow-up 

in EPIC occurred in 2012 (Netherlands, Greece), 2013 (France, Italy, Spain, UK, Denmark), and 

2014 (Germany, Sweden).  In CPS-II, CRC cases were followed through 2014, and vital status 

and cause of death information were collected via linkage to the National Death Index.20  CRC-

attributable deaths were determined using the International Classification of Diseases for 

Oncology (ICD-O) 10th revision codes C18.0-18.7 and C19 for colon cancer (including C18.1 for 
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appendix cancer), C20 for rectal cancer, and C18.8-18.9 for overlapping/unspecified colorectal 

origin.   

 

25(OH)D Measurements  

Total serum 25(OH)D (D2 and D3) was measured using the FDA-approved DiaSorin Liaison 

chemiluminescence immunoassay (CLIA) in CPS-II19 (Heartland Assays, Ames, IA), and the 

OCTEIA enzyme immunoassay (Immuno Diagnostic Systems, Boldon, UK) in EPIC.18  Inter-

assay coefficients of variation were 5.2% in CPS-II and 5.7% in EPIC.  EPIC 25(OH)D 

measurements were calibrated to the same assay used in CPS-II using a robust linear regression 

calculated by re-measuring a subset of 40 EPIC samples within each 25(OH)D decile using the 

DiaSorin CLIA, described previously.21  Each assay batch included National Institute of 

Standards and Technology standard reference materials, for which the coefficients of variation 

were 16%, 9%, and 9% at 17.7, 32.3, and 49.8 nmol/L, respectively. 

 

Genotyping 

Genotyping was performed using a custom GoldenGate Universal-plex assay kit (Illumina, CA, 

USA) in EPIC, and a custom Affymetrix genome-wide platform, the Axiom Correct Set 

(Affymetrix, CA, USA), in CPS-II.  Quality control measures for CPS-II22 and EPIC23 were 

reported previously.  Individuals with the GC rs4588 CC, CA, and AA genotypes were classified 

as having Gc1-1, Gc1-2, and Gc2-2 isoform combinations (or phenotypes), respectively.11  These 
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genotypes perfectly predict the expected amino acid changes of the circulating protein isoforms 

as determined in previous proteomic analyses.24  In EPIC, GC rs3755967 was used as a proxy for 

rs4588 since these SNPs are in complete linkage disequilibrium (r2=1.0) in the HapMap Spanish 

and British Western European populations similar to EPIC’s (LDproxy, 1000 Genomes Project 

Phase 3).  GC rs3755967 and rs4588 were in Hardy-Weinberg equilibrium in both studies.  

 

Statistical Analyses  

To seasonally-adjust 25(OH)D measurements, calibrated (EPIC) or newly measured (CPS-II) 

25(OH)D values were regressed on week of blood draw using a cos/sin function, and residuals 

from the model were added to the study- and sex-specific mean among cases (details in 

references19, 21).  The adjusted value may be interpreted as the predicted 25(OH)D concentration 

for a participant averaged over the entire year, accounting for study- and sex-specific seasonal 

variation in 25(OH)D. 

 CRC-specific mortality was the primary endpoint, and all-cause mortality was the 

secondary endpoint.  Our primary exposure was circulating 25(OH)D categorized a priori 

according to clinical guidelines for vitamin D status set by the Institute of Medicine (IOM, now 

the National Academy of Medicine):  <30 nmol/L (deficient), 30 – <50 nmol/L (insufficient), 

and ≥50 nmol/L (sufficient).  For our primary analysis, effect modification by Gc2 was evaluated 

using a dominant inheritance model given the low frequency of Gc2-2 homozygotes.  As a 

secondary analysis, we coded Gc2 using a co-dominant inheritance model as we would expect 
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the 25(OH)D-CRC survival association to be stronger with an increasing number of Gc2-

encoding alleles; here, 25(OH)D was dichotomized at 50 nmol/L to maximize statistical 

efficiency. 

 A Cox proportional hazards model, stratified by country of cancer diagnosis, was used to 

calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for CRC-specific and all-cause 

mortality according to 25(OH)D concentrations and Gc2 isoform.  Age between diagnosis and 

censorship or death was used as the time-scale, which may better control for age and reduce 

bias.25  Covariates included year of diagnosis (continuous), sex, tumor site (colon, rectum, 

missing/not specified), body mass index (BMI) (continuous), physical activity (quartiles 1 – 4, 

missing), smoking status (never, former, current, missing), and stage (I – IV, missing/not 

specified).  Potential covariates were selected based on biological plausibility, causal structure, 

and previous literature; of those selected, education, dietary calcium, and alcohol consumption 

were not included in the final model because they did not materially affect the estimated HRs.  

The proportional hazards assumption was evaluated by including a time-dependent covariate in 

the Cox model and by assessing the correlation between the Schoenfeld residuals and survival 

time.26  Estimates were calculated in each study separately and in a pooled analysis using 

aggregated data.  Results presented hereafter are based on the pooled analysis unless otherwise 

stated.  Multiplicative interaction between 25(OH)D and the Gc2 isoform was evaluated by 

comparing the pooled, adjusted Cox models with and without an interaction term using a 

likelihood ratio test.   
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To assess whether competing causes of death may have influenced the observed 

associations, adjusted cumulative incidence curves for CRC-specific mortality risk were 

estimated according to 25(OH)D and Gc2 isoform using Fine and Gray’s competing-risks 

regression.27    

 All statistical tests were two-sided; a P-value <0.05 or a 95% confidence interval that 

excluded 1.0 was considered statistically significant.  Analyses were performed in SAS version 

9.4 (Cary, NC). 

  

RESULTS 

Study Population and Follow-Up 

During follow-up of the 1,281 CRC cases, 635 died, including 483 from CRC.  Mean follow-up 

duration was 8.3 years in EPIC and 7.3 years in CPS-II.  Characteristics of CRC cases according 

to IOM-defined vitamin D status categories are summarized in Table 1.  

 

25(OH)D and Mortality According to Gc2   

Associations of 25(OH)D concentrations with mortality among all participants and according to 

Gc2 isoform, assuming a dominant inheritance model, are summarized in Table 2.  Relative to 

those with 25(OH)D concentrations considered sufficient by the IOM (≥50 nmol/L), CRC-

specific mortality risk for those with concentrations considered deficient (<30 nmol/L) was 

statistically significantly 33% higher among all cases, 124% higher among cases with Gc2, and 

This article is protected by copyright. All rights reserved.



  
 

non-statistically significantly 6% lower among cases without Gc2 (Pinteraction = 0.0002).  There 

was a dose-response association trend between lower (poorer) vitamin D status and higher 

mortality risk among those with Gc2 (Ptrend = <0.0001 and 0.0002 for CRC-specific and overall 

mortality, respectively), but not among those without Gc2 (Ptrend = 0.69 and 0.49 for CRC-

specific and overall mortality, respectively).  This pattern of effect modification by Gc2 was 

similar in both EPIC and CPS-II (Supplementary Table S1).  

Associations of 25(OH)D concentrations with CRC-specific and all-cause mortality 

among all participants and according to Gc2 isoform, assuming a co-dominant inheritance 

model, are summarized in Table 3.  Relative to those with 25(OH)D concentrations considered 

sufficient, CRC-specific mortality risk for those with non-sufficient concentrations (<50 nmol/L) 

was close to the null among Gc1-1 cases, statistically significantly 54% higher among Gc1-2 

cases, and non-statistically significantly 150% higher among Gc2-2 cases (Pinteraction = 0.003).  

Estimated all-cause mortality risk for those with non-sufficient relative to sufficient 25(OH)D 

concentrations varied from 6% to 33% higher among Gc1-1, Gc1-2, and Gc2-2 cases, but did not 

statistically significantly differ by Gc2 (Pinteraction = 0.09).  The pattern of effect modification by 

number of Gc2-encoding alleles for CRC-specific mortality was similar in EPIC and CPS-II 

(Supplementary Table S2). 

 

Competing Risks Regression and Cumulative Incidence Curves 
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Using multivariable-adjusted competing-risks regression, we observed a dose-response 

association of lower 25(OH)D concentrations with higher CRC-specific mortality among those 

with the Gc2 isoform, but not among those without Gc2 (Figure 1).  Among individuals with 

Gc2, the estimated risk dying from CRC within 5 years of diagnosis was approximately 15% if 

vitamin D sufficient, 20% if vitamin D insufficient, and 30% if vitamin D deficient prior to 

diagnosis, controlling for all other covariates and accounting for competing causes of death.   

 

Subgroup and Sensitivity Analyses 

The association of 25(OH)D concentrations <50 relative to ≥50 nmol/L with CRC-specific 

mortality among individuals with and without the Gc2 isoform did not statistically significantly 

differ according to sex, stage, tumor site, or calcium intake; however, the observed effect-

modification pattern by Gc2 was slightly more pronounced among rectal cancer cases, stage I-II 

cases, and individuals with above-median dietary calcium intake (Supplementary Table S3).  In 

sensitivity analyses, our effect-modification findings were slightly stronger when we excluded 

metastatic CRC cases (Supplementary Table S4) or cases diagnosed within 1 or 3 years of their 

pre-diagnostic blood draw (Supplementary Table S5).  There was also a similar pattern of effect 

modification by Gc2 when we categorized 25(OH)D using study-specific 25(OH)D tertile cut-

points (Supplementary Table S6), further supporting the robustness of our findings.  

 

DISCUSSION 
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Our findings suggest that pre-diagnostic vitamin D deficiency relative to sufficiency, based on 

IOM recommendations, may be associated with higher mortality risk among CRC patients, but 

only among those with the common Gc2-encoding GC rs4588*A functional variant that may 

affect 25(OH)D binding affinity, bioavailability, and vitamin D-pathway activation.11, 28  This 

association was stronger for CRC-specific mortality, which may have been due to non-vitamin 

D-related deaths in the all-cause mortality group.  To our knowledge, this is the first study to 

investigate the association of 25(OH)D concentrations with mortality among CRC patients by 

GC vitamin D-binding protein isoform. 

 Findings from observational studies suggest an association of circulating 25(OH)D 

concentrationsincluding those measured before diagnosis4, 5 and after diagnosis7with CRC-

specific mortality.  Furthermore, findings from some studies indicate that 25(OH)D may be a 

clinically relevant prognostic factor and add value to predictive survival models for CRC 

patients.7, 29  However, our findings suggest that the utility of 25(OH)D as prognostic factor 

among CRC patients in the US and Europe may critically depend on inherited genotypes 

encoding common, functional GC isoforms.  If our findings are confirmed, they would support 

GC genotyping, which could be easily and affordably obtained in clinical settings, for guiding 

vitamin D-related therapy and survival stratification. 

Evidence from randomized clinical trials (RCTs) of vitamin D supplementation 

improving survival of CRC patients is limited.  In a US phase-II, multi-center RCT with 139 

patients with advanced or metastatic CRC, those randomized to high-dose (4,000 IU/day) 
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relative to low-dose (400 IU/day) vitamin D supplementation had longer progression-free 

survival (HR = 0.64, 1-sided 95% CI 0–0.90, P = 0.02), which was the primary outcome, 

although no significant treatment effect was observed for overall survival.30  Importantly, 

findings from a larger RCT (n=2,259) suggest that the effects of vitamin D supplementation on 

increasing 25(OH)D concentrations31 and reducing colorectal adenoma risk32 are stronger among 

individuals with the Gc2-encoding variant.   Specifically, the effect of vitamin D 

supplementation on adenoma risk was statistically significantly 18% lower with each Gc2-

encoding-rs4588 variant inherited (interaction relative risk = 0.82, 95% CI 0.69–0.98, Pinteraction = 

0.03).32  These findings are consistent with ours, and collectively suggest that future trials should 

consider potential differences in supplementation effects according to Gc2 isoform.  If 

confirmed, this effect modification could be important clinically, and for public health, given the 

high prevalence of the Gc2-encoding allele (40 – 50% with European ancestry33) and vitamin D 

concentrations <50 nmol/L in the US and Europe (26 – 76%, depending on age and country3, 34). 

The Gc2 isoform is encoded by the missense GC rs4588*C>A variant resulting in a 

Threonine (Gc1)Lysine (Gc2) amino acid substitution at residue 436.11  Although the 

physiologic consequences of the isoforms have not been fully elucidated, the Gc2-encoding 

variant is strongly associated with lower circulating 25(OH)D concentrations and higher odds of 

vitamin D insufficiency.35-37  This association may be mediated by lower GC protein 

concentration (20 – 30% lower among Gc2 homozygotes relative to Gc1 homozygotes in studies 

that did not use the isoform-biased monoclonal R&D assay24, 38-40) since GC mediates the renal 
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reabsorption of 25(OH)D and prolongs its circulating half-life.41  Gc2 may also have lower 

25(OH)D binding affinity than Gc1 isoforms14, which, in addition to lower circulating GC, could 

lead to higher levels of bioavailable and free 25(OH)D available to target tissues.9, 14, 24, 28  This 

may underlie the higher induction of vitamin D target genes by 25(OH)D in cultured monocytes 

and colon cancer cell lines with Gc2 relative to cells cultured with Gc1 isoforms.15, 42  

Importantly, normal and neoplastic colon tissues express the vitamin D-receptor (VDR) and are 

able to locally convert 25(OH)D to the VDR-activating 1,25(OH)2D form, which may play an 

important role in CRC progression via modulating pathways involved in cell proliferation, 

inflammation, angiogenesis, and metastasis.2, 43  Taken together, we hypothesize that individuals 

with the Gc2 isoform may particularly benefit from higher 25(OH)D concentrations as these 

concentrations may lead to higher vitamin D-pathway activation and may be needed to 

compensate for Gc2 individuals’ reduced capacity to maintain adequate 25(OH)D 

concentrations.   

Supporting this hypothesis are other studies that reported a similar pattern of effect 

modification by Gc2 in relation to 25(OH)D and risk of colorectal neoplasms.  In a pooled US 

case-control study of individuals of European ancestry, 25(OH)D concentrations ≥50 relative to 

<50 nmol/L were associated with lower risk of incident, sporadic colorectal adenoma, but only 

among those with Gc2 (OR among Gc1-2/Gc2-2 = 0.51, 95% CI 0.33–0.81; OR among Gc1-1 = 

1.11, 95% CI 0.68–1.82; Pinteraction = 0.05).12  Additionally, in a pooled nested case-control study 

using EPIC, CPS-II, and Nurses’ Health Study data (n=3,359), 25(OH)D concentrations ≥50 
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relative to <30 nmol/L were associated with a statistically significant 53% lower CRC risk 

among individuals with Gc2, but non-statistically significant 12% lower risk among individuals 

without Gc2 (Pheterogeneity = 0.01).13  

Our study strengths include its prospective design, long follow-up, and use of data from 

two independently conducted cohort studies of participants in the US and 10 European countries.  

Additional strengths include using seasonally-adjusted 25(OH)D concentrations (limiting 

exposure misclassification) and calibrating 25(OH)D measurements to a standard assay to permit 

estimating hazards using absolute clinical cut-points.   

Our study has several limitations.  The CPS-II sample size was small; however, the 

direction of the HRs within strata and the pattern of effect modification were consistent across 

studies, supporting the validity and reproducibility of our findings.  Larger studies are needed to 

yield more precise estimates among individuals with the rare Gc2-2 genotype.  There may have 

been some misclassification of vitamin D status related to using the DiaSorin immunoassay; 

however, this assay is one of the most commonly used in clinical settings, and is highly 

concordant (r2>0.95) with liquid chromatography-mass spectrometry.44  Thus, we would expect 

this misclassification to be small and comparable to that found in real-world clinical practice.  

Additionally, while 25(OH)D was measured only once prior to diagnosis, estimated within-

person correlations for repeated 25(OH)D measures taken 1 to 11 years apart were 0.53 – 0.81 in 

other studies, suggesting that single 25(OH)D measurements may be a relatively valid marker of 

long-term vitamin D status.45, 46  Furthermore, using 25(OH)D measurements prior to diagnosis 
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limits the concern for reverse causality (e.g., patients with aggressive tumors may be sicker and 

thus develop lower 25(OH)D concentrations near diagnosis) and our results were similar when 

we excluded patients diagnosed within 3 years of 25(OH)D measurement.  We lacked data on 

CRC treatment, but adjusted for year of cancer diagnosis and stratified by country to account for 

potential temporal or geographic treatment differences.  25(OH)D may be a marker of an overall 

healthier lifestyle that could influence survival; however, we adjusted for BMI, smoking, and 

physical activity, and further adjusting for factors, such as alcohol intake and education, did not 

materially affect our results.  Adjusting for these potential shared risk factors for CRC risk and 

survival also reduces the possibility of a spurious association due to collider-stratification bias.47  

We did not collect tumor microenvironment data, such as degree and type of tumor infiltrating 

lymphocytes—important histologic prognostic features of CRC.48  Given the putative 

immunomodulatory functions of vitamin D2,15, future research is warranted to investigate 

whether and how vitamin D and GC isoforms may influence, or interact with, immune cells in 

the CRC tumor microenvironment.  Last, our findings among Europeans and US whites with 

European ancestry may not be generalizable to other races or populations.  

In conclusion, our findings, together with previous literature, suggest that the association 

of pre-diagnostic 25(OH)D with mortality risk among CRC patients may differ by common, 

inherited genotypes encoding GC vitamin D-binding protein isoforms, such that CRC patients 

with the Gc2 isoform may particularly benefit from a sufficient vitamin D status. 
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Figure Legends:  

Figure 1.  Adjusted cumulative incidence curves for CRC-specific mortality according to 
vitamin D statususing Institute of Medicine recommended 25-hydroxyvitamin D cut-
pointsin the combined EPIC and CPS-II cohort (n = 1,281) among (A) patients without Gc2 
(GC rs4588*CC) and (B) patients with Gc2 (GC rs4588*CA or AA).  Cumulative incidence 
curves were estimated using Fine and Gray’s competing-risks regression models adjusted for age 
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at diagnosis (continuous), year of diagnosis (continuous), sex, tumor site (colon, rectum, 
missing/not specified), BMI (continuous), physical activity (quartiles 1 – 4, missing), smoking 
status (never, former, current, missing), stage (I – IV, missing/not specified), and country.  
25(OH)D concentrations <30, 30 – <50, and ≥50 nmol/L categorized as deficient, insufficient, 
and sufficient, respectively, based on Institute of Medicine guidelines. 
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Table 1.  Selected characteristics of CRC cases according to pre-diagnostic vitamin D status
a
 in the EPIC and CPS-II cohorts (n = 1,281) 

     EPIC (n = 1,043)   CPS-II (n = 238)   Pooled cohort (n = 1,281)   

  25(OH)D, nmol/L  25(OH)D, nmol/L  25(OH)D, nmol/L  

Characteristic 

< 30 
(deficient) 

n = 331 

30 – < 50 
(insufficient) 

n = 520 

≥ 50 
(sufficient) 

n = 192    

< 30 
(deficient) 

n = 35 

30 – < 50 
(insufficient) 

n = 73 

≥ 50 
(sufficient) 

n = 130   

< 30 
(deficient) 

n = 366 

30 – < 50 
(insufficient) 

n = 593 

≥ 50 
(sufficient) 

n = 322 P
b
 

Age at diagnosis, mean (SD), 
yrs. 62.5 (7.4) 62.0 (7.5) 62.0 (6.8) 

 
74.2 (5.9) 75.2 (5.7) 74.5 (5.7) 

 
63.7 (8.0) 63.6 (8.5) 67.2 (8.9) <0.0001 

Women, % 59 49 41 
 

69 55 57 
 

60 50 43 <0.0001 

Stage, % 
            

 
I 23 29 20 

 
40 45 45 

 
25 31 30 

 

 
II 24 17 22 

 
20 18 20 

 
24 17 21 

 

 
III 31 32 32 

 
31 25 19 

 
31 31 27 

 

 
IV 10 10 11 

 
9 8 14 

 
9 10 12 0.11 

Tumor location, % 
            

 
Left colon 36 35 27 

 
40 25 24 

 
36 34 27 

 

 
Right colon 35 31 30 

 
46 63 65 

 
36 35 44 

 

 
Rectum 24 28 33 

 
14 10 11 

 
23 26 24 0.08 

Body-mass index, mean (SD), 
kg/m

2
 27.0 (4.9) 26.8 (4.1) 26.0 (3.5) 

 
29.0 (7.2) 26.8 (5.1) 25.5 (4.1) 

 
27.2 (5.2) 26.8 (4.2) 25.8 (3.7) <0.0001 

Smoking status, % 
            

 
Never 44 42 35 

 
40 42 49 

 
44 41 41 

 

 
Former 23 37 43 

 
57 45 42 

 
27 38 43 

 

 
Current 31 22 22 

 
3 4 3 

 
28 20 15 <0.0001 

Physical activity quartiles
c
, %  

            

 
1  28 22 22 

 
37 30 17 

 
29 23 20 

 

 
2  20 25 24 

 
26 26 25 

 
21 25 24 

 

 
3  23 22 19 

 
17 23 28 

 
22 22 23 

 

 
4  26 25 28 

 
20 19 29 

 
25 24 28 0.05 

Abbreviations:  25(OH)D, 25-hydroxyvitamin D; CPS-II, Cancer Prevention Study-II; EPIC, European Prospective Investigation into Cancer and Nutrition; MET, metabolic equivalent; SD, standard 
deviation; yrs, years. 
a
According to Institute of Medicine 2011 recommendations based on 25(OH)D blood concentrations. Column percentages (i.e., within each vitamin D status category) are presented for categorical 

variables; percentages may not sum to 100 due to rounding and missing values.  
b
P value calculated among the pooled sample using one-way analysis of variance for continuous variables and the 𝜒2 

test for categorical variables.
 
 

c
Study-specific quartiles based on recreational metabolic-equivalent hours (MET-hours) per week.  
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Table 2.  Multivariable-adjusted associations of pre-diagnostic vitamin D status
a
 with CRC-specific and all-cause mortality among all CRC cases and according to vitamin D-binding protein (GC) 

isoform, assuming a dominant inheritance model, in the EPIC and CPS-II cohorts combined (n = 1,281) 

  
 Circulating 25(OH)D concentrations     

 
≥ 50 nmol/L (sufficient) 

 
30 – <50 nmol/L (insufficient) 

 
< 30 nmol/L (deficient) 

  

Outcome and GC strata 
No. 
total 

No.     
died HR (95% CI)

b
 

  No. 
total 

No.      
died HR (95% CI)

b
 

  No. 
total 

No.      
died HR (95% CI)

b
 Ptrend

c
 Pinteraction

d
 

CRC-specific mortality 
             

 All CRC cases 322 106 1.00 (Ref)  593 241 1.09 (0.83–1.43)  366 136 1.33 (1.03–1.72) 0.02  

 
No Gc2 (GC rs4588*CC) 187 72 1.00 (Ref) 

 
309 114 1.11 (0.78–1.57) 

 
164 70 0.94 (0.68–1.22) 0.69 

 

 
Gc2 (GC rs4588*CA or AA) 135 34 1.00 (Ref) 

 
284 127 1.29 (0.81–2.06) 

 
202 66 2.24 (1.44–3.49) <0.0001 0.0002 

               All-cause mortality 
             

 All CRC cases 322 146 1.00 (Ref)  593 301 1.13 (0.90–1.43)  366 188 1.36 (1.09–1.70) 0.005  

 
No Gc2 (GC rs4588*CC) 187 93 1.00 (Ref) 

 
309 148 1.26 (0.93–1.72) 

 
164 93 1.12 (0.84–1.51) 0.49 

 
  Gc2 (GC rs4588*CA or AA) 135 53 1.00 (Ref) 

 
284 153 1.09 (0.75–1.61) 

 
202 95 1.80 (1.24–2.60) 0.0002 0.004 

Abbreviations:  25(OH)D, 25-hydroxyvitamin D; CI, confidence interval; CPS-II, Cancer Prevention Study-II; CRC, colorectal cancer; GC, vitamin D-binding protein; EPIC, European Prospective 
Investigation into Cancer and Nutrition; HR, hazard ratio 
a
According to Institute of Medicine 2011 recommendations. 

b
From multivariable Cox proportional hazards models, adjusted for year of diagnosis (continuous), sex, tumor site (colon, rectum, missing/not specified), BMI (continuous), physical activity (quartiles 1 
– 4, missing), smoking status (never, former, current, missing), and stage (I – IV, missing/not specified), and stratified by country.  
c
Ptrend calculated by using vitamin D status as a continuous variable in the model. 

d
Pinteraction between vitamin D status and GC isoform calculated using a likelihood ratio test. 

 

A
cc

ep
te

d 
A

rti
cl

e



  

 

 
Table 3.  Multivariable-adjusted associations of pre-diagnostic vitamin D status

a
 with CRC-specific and all-cause mortality among all CRC cases and 

according to vitamin D-binding protein (GC) isoform, assuming a co-dominant inheritance model, in the EPIC and CPS-II cohorts combined (n = 1,281) 

 

  
Circulating 25(OH)D concentrations     

 
≥ 50 nmol/L (sufficient)  < 50 nmol/L (non-sufficient) 

  

Outcome and GC strata 
No. 
total 

No. 
died HR (95% CI)

b
 

 
No. 
total 

No. 
died HR (95% CI)

b
 

 
Pinteraction

c
 

CRC-specific mortality       
  

          

 All CRC cases 322 106 1.00 (Ref)  959 377 1.22 (0.97–1.52)   

 

Gc1-1 (GC rs4588*CC) 187 72 1.00 (Ref) 
 

473 184 0.96 (0.72–1.29)   

0.003 

 

Gc1-2 (GC rs4588*CA) 120 32 1.00 (Ref) 
 

390 149 1.54 (1.02–2.32)   

 

Gc2-2 (GC rs4588*AA) 15 2 1.00 (Ref) 
 

96 44 2.50 (0.56–11.1)   

           All-cause mortality 
         

 All CRC cases 322 146 1.00 (Ref)  959 489 1.21 (1.00–1.47)   

 

Gc1-1 (GC rs4588*CC) 187 93 1.00 (Ref) 
 

473 241 1.06 (0.83–1.37)   

0.09 

 

Gc1-2 (GC rs4588*CA) 120 48 1.00 (Ref) 
 

390 194 1.33 (0.94–1.86)   

 

Gc2-2 (GC rs4588*AA) 15 5 1.00 (Ref) 
 

96 54 1.13 (0.41–3.05)   

           
Abbreviations:  25(OH)D, 25-hydroxyvitamin D; CI, confidence interval; CPS-II, Cancer Prevention Study-II; CRC, colorectal cancer; GC, vitamin D-binding 
protein; EPIC, European Prospective Investigation into Cancer and Nutrition; HR, hazard ratio 
a
According to Institute of Medicine 2011 recommendations. 

b
From multivariable Cox proportional hazards models adjusted for age at diagnosis, year of diagnosis, sex, tumor site (colon, rectum, missing/not specified), 

BMI (continuous), physical activity (quartiles 1 – 4, missing), smoking status (never, former, current, missing), and stage (I – IV, missing/not specified) and 
stratified by country.  
c
Pinteraction between vitamin D status and GC isoform calculated using a likelihood ratio test. 

 

A
cc

ep
te

d 
A

rti
cl

e


	Running title:  Vitamin D, genotypes, and colorectal cancer survival
	Keywords:  25-hydroxyvitamin D, single nucleotide polymorphism, cohort studies, survival analysis, gene-environment interaction
	Disclosure of Potential Conflicts of Interest:  None declared



