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Researchers are increasingly using observational or nonrandomized data to esti-

mate causal treatment effects. Essential to the production of high-quality evidence

is the ability to reduce or minimize the confounding that frequently occurs in

observational studies. When using the potential outcome framework to define

causal treatment effects, one requires the potential outcome under each possible

treatment. However, only the outcome under the actual treatment received is

observed, whereas the potential outcomes under the other treatments are considered

missing data. Some authors have proposed that parametric regression models

be used to estimate potential outcomes. In this study, we examined the use of

ensemble-based methods (bagged regression trees, random forests, and boosted

regression trees) to directly estimate average treatment effects by imputing potential

outcomes. We used an extensive series of Monte Carlo simulations to estimate bias,

variance, and mean squared error of treatment effects estimated using different

ensemble methods. For comparative purposes, we compared the performance of

these methods with inverse probability of treatment weighting using the propensity

score when logistic regression or ensemble methods were used to estimate the

propensity score. Using boosted regression trees of depth 3 or 4 to impute potential

outcomes tended to result in estimates with bias equivalent to that of the best

performing methods. Using an empirical case study, we compared inferences on

the effect of in-hospital smoking cessation counseling on subsequent mortality in

patients hospitalized with an acute myocardial infarction.
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There is an increasing interest in estimating causal treatment effects using

observational or nonrandomized data. In observational studies, the baseline

characteristics of treated or exposed subjects often differ systematically from

those of untreated or unexposed subjects. Essential to the production of high-

quality evidence to inform clinical and policy decisions is the ability to minimize

the effect of confounding. A wide variety of methods have been proposed to

minimize confounding or treatment-selection bias when estimating the effects of

treatments, exposures, and interventions when using observational data. These

include propensity score methods, instrumental variable analysis, and regression-

based approaches.

When comparing the effects of treatments or exposures, the potential out-

comes framework allows one to formally define causal treatment effects (Rubin,

1974, 2008). We briefly describe this framework in the setting in which one

active or experimental treatment is compared with one control or null treatment.

The two potential outcomes, Y.1/ and Y.0/, are the outcomes under the active

and control treatments, respectively. Let Z be an indicator variable denoting the

actual treatment received: Z D 1 denoting receipt of the active treatment and

Z D 0 denoting receipt of the control treatment. For an individual subject, the

effect of treatment is defined as Y.1/ � Y.0/. Three different average causal

treatment effects have been proposed: the average treatment effect (ATE), the

average treatment effect in the treated (ATT), and the average treatment effect

in the controls (ATC). These are defined as: ATE D EŒY.1/ � Y.0/�, ATT D

EŒY.1/ � Y.0/jZ D 1�, and ATC D EŒY.1/ � Y.0/jZ D 0�, respectively.

Of these three effects, the ATE and the ATT are likely of greater interest for

clinical and policy decision making. Although a distinction has been made

between sample and population estimates of the different average treatment

effects (Imbens, 2004), this distinction is not made in this article. Two necessary

assumptions in this causal effects framework are the stable unit treatment value

assumption (SUTVA) and the assumption that treatment assignment is strongly

ignorable (Rubin, 2008). The first of these assumes that the potential outcomes

for a given subject are affected only by the treatment that subject receives and

are not influenced by the treatment received by other subjects. The second

assumption is that Pr.ZjX; Y.1/; Y.0// D Pr.ZjX/ and that 0 < Pr.Z D

1jX; Y.0/; Y.1// < 1 (here X denotes a vector of baseline covariates). In other

words, treatment assignment, conditional on baseline covariates, is independent

of the potential outcomes, and each subject has a nonzero probability of receiving

either treatment.

In practice, only one of the two potential outcomes is observed: the outcome

under the actual treatment received. Two regression-based approaches have been

proposed to estimate potential outcomes. The first is G-computation, in which

a multivariable regression model is used to regress the outcome on treatment

status and baseline covariates (Snowden, Rose, & Mortimer, 2011). Using the
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fitted regression model, the predicted outcome is estimated for each subject as

if that subject had been untreated. Then, the predicted outcome is estimated

for each subject as if that subject had been treated. Thus, for each subject, the

two potential outcomes can be estimated directly from the single multivariable

regression model. For a given subject, the effect of treatment can be estimated

as the difference between the two imputed potential outcomes. Finally, average

treatment effect of interest can be estimated by averaging the subject-specific

treatment effects over the entire sample (ATE), over the treated subjects (ATT),

or over the untreated subjects (ATC). The second approach was proposed by

Imbens (2004). Let m0.X/ and m1.X/ denote regression models fit in untreated

and treated subjects, respectively. Each model relates the outcome to measured

baseline covariates. The regression model m0.X/ can be applied to each treated

and untreated subject to predict his or her outcome had he or she been untreated.

Similarly, m1.X/ can be applied to each treated and untreated subject to predict

his or her outcome had he or she been treated. Thus, for each subject, the

two potential outcomes can be estimated: Om0.Xi / and Om1.Xi /. As with G-

computation, the subject-specific treatment effect can be averaged over the

appropriate set of subjects to estimate the ATE, the ATT, or the ATC.

An advantage to the latter approach described earlier is that the two regression

models, m0.X/ and m1.X/, use only baseline covariates as predictors and

do not contain any variables denoting treatment status. In contrast, the first

approach requires that an indicator variable denoting treatment received must be

included in the regression model m.X; Z/. When using conventional parametric

regression models, the analyst can dictate the functional form of the regression

model. However, the first approach would not be possible with a prediction

method such as regression trees because the fitted regression tree may not use

the treatment selection indicator. However, the second approach could easily use

such methods for the regression models fit separately to untreated and treated

subjects.

Regression trees frequently have been used in the medical literature. How-

ever, they often have been found to have inferior predictive ability compared

with conventional regression methods (Austin, 2007; Austin, Tu, & Lee, 2010).

Ensemble-based methods in which predictions are averaged across a set of

regression trees have been developed in the data mining and machine learning

literature. These included bootstrap aggregation (or bagging) of regression trees,

random forests, and boosted regression trees. Although these methods have been

developed for predicting outcomes, their utility for estimating causal treatment

effects has not been well studied.

The objective of this study was to examine the utility of ensemble-based

methods for estimating causal treatment effects. Our focus was on boosted

regression trees, random forests, and bagged regression trees. This objective

was addressed in two different ways. First, we used an extensive series of
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Monte Carlo simulations to compare the relative ability of different methods to

estimate average treatment effects. Second, we compared estimates of the effect

of in-hospital smoking cessation counseling on mortality in a sample of patients

hospitalized with an acute myocardial infarction that were obtained using these

ensemble-based methods. The article is structured as follows: In the first section

we briefly describe the different regression methods that we consider. In the

subsequent section, we describe an extensive series of Monte Carlo simulations

that were used to compare the performance of these methods for estimating

average treatment effects. We then present the results of an empirical case study

in which we illustrate the application of each method. In the final section we

summarize our findings and discuss them in the context of the existing literature.

REVIEW OF ENSEMBLE-BASED
PREDICTION METHODS

In this section we briefly review bagged regression trees, random forests, and

boosted regression trees. We assume that the reader is familiar with the concept

of classification and regression trees and refer the interested reader elsewhere

for further information and background on regression trees (Breiman, Freidman,

Olshen, & Stone, 1998; Clark & Pregibon, 1993; Lemon, Roy, Clark, Friedmann,

& Rakowski, 2003).

Bagging Regression Trees

Bootstrap aggregation or bagging is a generic approach that can be used with

different predictive methods (Hastie, Tibshirani, & Friedman, 2001). Our focus

is on bagging regression trees. Using this approach, repeated bootstrap samples

are drawn from the study sample. A regression tree is grown in each of these

bootstrap samples. Using each of the grown regression trees, predictions are

obtained for each study subject. Finally, for each study subject, the estimated

outcome is the average of the predictions obtained from the regression trees

grown over the different bootstrap samples. In this study, we used the bagging

function from the ipred package for the R statistical programming language to fit

bagged regression trees (R Core Development Team, 2005). In our application

of bagging, we used 100 bootstrap samples.

Random Forests

The Random Forests approach was developed by Breiman (2001). The Random

Forests approach is similar to bagging regression trees with one important
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modification. When one is growing a regression tree in a particular bootstrap

sample, at a given node, rather than considering all possible binary splits on

all candidate variables, one only considers splits on a random sample of the

candidate predictor variables. The size of the set of randomly selected predictor

variables is defined prior to the process. We let the size of the set of randomly

selected predictor variables be bp=3c, where p denotes the total number of

predictor variables and b c denotes the floor function (this is the default in the

R implementation of Random Forests). We used the randomForest function

from the RandomForests package for R to estimate random forests in our study.

Boosted Regression Trees

The AdaBoost.M1 algorithm was proposed by Freund and Schapire for use with

classification trees (Freund & Schapire, 1996; Hastie et al., 2001). Boosting

sequentially applies a weak classifier to series of reweighted versions of the data,

thereby producing a sequence of weak classifiers. At each step of the sequence,

subjects who were incorrectly classified by the previous classifier are weighted

more heavily than subjects who were correctly classified. The predictions from

this sequence of weak classifiers are then combined through a weighted majority

vote to produce the final prediction. Generalized boosting methods adapt this

algorithm for use with regression rather than with classification (Hastie et al.,

2001; McCaffrey, Ridgeway, & Morral, 2004). We considered four different base

regression models: regression trees of depth one, regression trees of depth two,

regression trees of depth three, and regression trees of depth four. These have

also been referred to as regression trees with interaction depths one through

four. For each method, we considered sequences of 10,000 regression trees. R

code for fitting bagged regression trees, random forests, and boosted regression

trees is available online: http://works.bepress.com/peter_austin/

MONTE CARLO SIMULATIONS

We used an extensive series of Monte Carlo simulations to examine the per-

formance of ensemble methods for estimating causal treatment effects. Our

simulations used data-generating processes that were very similar to those used

in two prior studies by different groups of authors to examine the utility of data

mining methods to estimate propensity scores (Lee, Lessler, & Stuart, 2010;

Setoguchi, Schneeweiss, Brookhart, Glynn, & Cook, 2008). Setoguchi et al.

(2008) examined the ability of neural networks and recursive partitioning to

estimate propensity scores for use with propensity-score matching to estimate

treatment odds ratios (Setoguchi et al., 2008). Lee et al. (2010) examined the

ability of regression trees, bagged regression trees, random forests, and boosted
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regression trees to estimate propensity scores for use with inverse probability

of treatment weighting (IPTW) to estimate linear treatment effects (Lee et al.,

2010).

Monte Carlo Simulations: Methods

As in Setoguchi et al. (2008) and Lee et al. (2010), we assumed that there were

10 baseline covariates (X1 to X10) of which 4 had standard normal distribu-

tions and 6 had Bernoulli distributions. Four of the 10 covariates affected both

treatment selection and the outcome, 3 covariates affected treatment selection

alone, and 3 covariates affected the outcome alone. Furthermore, there were

three pairwise correlations between select pairs of baseline covariates. Setoguchi

et al. and Lee et al. considered seven scenarios that differed in the nature of the

true treatment-selection model (i.e., the propensity score model). We considered

five of these scenarios (and use the labels of the earlier papers—we excluded

scenarios B and D):

A. Additivity and linearity (main effects only):

logit.Pr.Z D 1// D “0C“1X1C“2X2C“3X3C“4X4C“5X5C“6X6C“7X7

C. Moderate nonlinearity (3 quadratic terms):

logit.Pr.Z D 1// D “0 C “1X1 C “2X2 C “3X3 C “4X4 C “5X5 C “6X6 C

“7X7 C “2X2
2 C “4X2

4 C “7X
2
7

E. Mild nonadditivity and nonlinearity (3 two-way interaction terms and 1

quadratic term):

logit.Pr.Z D 1// D “0 C “1X1 C “2X2 C “3X3 C “4X4 C “5X5 C “6X6 C

“7X7 C “2X2
2

“1 � 0:5 � X1X3 C “2 � 0:7 � X2X4 C “4 � 0:5 � X4X5 C “5 � 0:5 � X5X6

F. Moderate nonadditivity (10 two-way interaction terms):

logit.Pr.Z D 1// D “0 C “1X1 C “2X2 C “3X3 C “4X4 C “5X5 C “6X6 C
“7X7 C “2X2

2

“1 �0:5�X1X3 C“2 �0:7�X2X4 C“3 �0:5�X3X5 C“4 �0:7�X4X6C

“5 � 0:5 � X5X7 C “1 � 0:5 � X1X6 C “2 � 0:7 � X2X3C

“3 � 0:5 � X3X4 C “4 � 0:5 � X4X5 C “5 � 0:5 � X5X6

G. Moderate nonadditivity and nonlinearity (10 two-way interaction terms

and 3 quadratic terms):

logit.Pr.Z D 1// D “0 C “1X1 C “2X2 C “3X3 C “4X4 C “5X5 C “6X6 C

“7X7 C “2X2
2

“2X
2
2 C “4X2

4 C “7X2
7 C “1 � 0:5 � X1X3 C “2 � 0:7 � X2X4 C “3 � 0:5 �

X3X5 C “4 � 0:7 � X4X6C
“5 � 0:5 � X5X7 C “1 � 0:5 � X1X6 C “2 � 0:7 � X2X3C

“3 � 0:5 � X3X4 C “4 � 0:5 � X4X5 C “5 � 0:5 � X5X6
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For greater details on the data-generating process, the reader is referred to the

initial paper by Setoguchi et al.

We randomly generated data sets of size 1,000. For each subject we randomly

generated treatment status using a logistic model based on the seven covariates

that affected treatment selection (Z D 1 denoting treated and Z D 0 denoting

untreated). We then randomly generated a continuous outcome and a binary

outcome for each subject. For the continuous outcome, our data-generating

process was a minor modification of that used by Lee et al. (2010). We randomly

generated a continuous outcome from the following model:

Yi D ’0 C ’1X1;i C ’2X2;i C ’3X3;i C ’4X4;i C ’5X8;i

C ’6X9;i C ’7X10;i C ”Zi C ei :
(1)

In this model, the regression coefficients were the same as those used by

Setoguchi et al. (2008) and by Lee et al.: ’0 through ’7 were equal to �3.85,

0.3, �0.36, �0.73, �0.2, 0.71, �0.19, and 0.26, respectively. As in Lee et al.,

the effect of treatment on the mean outcome was set as ” D �0:4. Our one

deviation from Lee et al. was that the random error term was drawn from the

following distribution: ei � N.0; ¢ D 1:87/. In doing so, the baseline covariates

explained 13% of the variation of the outcome in the absence of treatment.

Cohen has described this as a moderate effect size (Cohen, 1988).

We modified the aforementioned data-generating process to generate a binary

outcome for each subject. We replaced the linear model in Formula (1) by

a logistic model. We generated binary outcomes so that the probability of an

event occurring if all subjects were untreated was 0.1. Furthermore, we generated

data so that treatment caused an absolute risk reduction of 0.02 (equivalent to

a number needed to treat [NNT] of 50). Using previously described methods,

we determined that the required values for ’0 and ” were �2.44 and 0.774,

respectively (Austin, 2010).

Using the aforementioned data-generating processes, we randomly generated

1,000 data sets, each of size 1,000 for each of the five scenarios. Within each

simulated data set, we used boosted regression trees (interaction depth 1, inter-

action depth 2, interaction depth 3, and interaction depth 4), bagged regression

trees, and random forests to estimate potential outcomes under treatment and lack

of treatment. To do so, the simulated sample was divided into two subgroups,

the first consisting of untreated subjects and the second consisting of treated

subjects. The selected prediction method was developed to predict the outcome

within each of the two subgroups (note: the final prediction model could differ

between each of the two subsets). For each prediction method, the candidate

predictor variables were the 10 randomly generated baseline covariates (the

rationale for including all 10 covariates as potential predictors of the outcome,

even though only 7 are predictors of the outcome, is to simulate a realistic
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setting in which the researcher may not know which of the measured variables

are truly predictive of the outcome). Let M0 and M1 denote the prediction model

developed on the treated and untreated subjects, respectively. Each prediction

model, M0 and M1, was then applied to the entire sample to estimate the outcome

for each subject, first assuming the subject was untreated and then assuming

that the subject was treated. Let Xi denote the baseline characteristics of the

i th subject. Then the two imputed potential outcomes, OY .0/ and OY .1/, were

M0.Xi / and M1.Xi /. The ATE in the kth simulated data set is then estimated

as ™k D 1
N

PN
iD1;000.M1.Xi /�M0.Xi //, where N denotes the sample size (N D

1,000 in our settings). Averaging over the entire sample allows one to estimate

the ATE; averaging over the treated subjects only would allow for estimation

of the ATT. If ™k denotes the estimated treatment effect (either a difference in

means or a risk difference) in the kth simulated data set, then the bias in the

estimated treatment effect was estimated as 1
1;000

P1;000
kD1 .™k �™/, where ™ denotes

the true treatment effect in the data-generating process. The relative bias was

defined as 100 � Bias
™

, whereas the mean squared error (MSE) of the estimated

treatment effect was estimated as 1
1;000

P1;000
kD1 .™k � ™/2. We report the percent

bias in the estimated average treatment effect, the standard deviation of the

estimated treatment effects across the 1,000 simulated samples, and the MSE of

the estimated treatment effect.

For comparative purposes, we used parametric regression models to impute

the potential outcomes. This was done in two different fashions. First, using the

approach described by Imbens (2004), linear (for the continuous outcome) and

logistic (for the binary outcome) regression models were fit in the treated and

untreated subjects separately (Imbens, 2004). Each regression model regressed

the outcome on the 10 baseline covariates. The fitted regression models were

then used to impute potential outcomes for each subject, assuming they were

untreated and then assuming they were treated. We refer to this approach as the

Imbens method. Second, we used G-computation, in which a single regression

model was fit to the entire sample (linear for continuous outcome and logistic

for the binary outcome). This model contained an indicator variable denoting

treatment status and the 10 baseline covariates. Using the fitted regression model,

we predicted outcomes for each subject assuming they had been untreated and

again assuming that they had been treated. We also estimated the crude treatment

effect that did not account for confounding. To do so, we estimated the difference

in means or risk difference between treated and untreated subjects in the overall

sample.

For comparative purposes we used inverse probability of treatment weighting

(IPTW) using the propensity score to estimate the ATE in the simulated sam-

ples (Rosenbaum, 1987). The propensity score is the probability of treatment

assignment conditional on observed baseline covariates (Rosenbaum & Rubin,

1983). We used the following methods to estimate the propensity score: logistic
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regression (including all 10 baseline covariates as main effects only), bagged re-

gression trees, random forests, and boosted regression trees (four different sets of

trees: interactions depths of 1 through 4). Let ei denote the estimated propensity

score. Then the ATE was estimated as 1
1;000

P1;000
iD1

Zi Yi

ei
� 1

1;000

P1;000
iD1

.1�Zi /Yi

1�ei
.

The aforementioned five scenarios all assume a linear relationship between

baseline covariates and the outcome (Formula (1)). In such settings, G-

computation would be expected to perform very well because it is based on the

multivariable regression model that corresponds to the model used to generate

outcomes. Similarly, the Imbens method would be expected to perform very

well. We included the aforementioned five scenarios so that our results could

be compared with those from prior studies that used these data-generating

processes. However, we added two additional scenarios to examine the relative

performance of the different methods when the outcomes model included

nonlinearities and was nonadditive. In the first of these additional scenarios, we

assumed mild nonadditivity and nonlinearity in the outcome model, whereas

in the second additional scenario, we assumed moderate nonadditivity and

nonlinearity. To do so, the outcome model in Formula (1) was modified so

as to have the functional form of the treatment-selection models (E) and (G),

respectively. Furthermore, X5, X6, and X7 were replaced by X8, X9, and X10,

respectively, whereas the regression coefficient bi was replaced by ai . Thus, the

outcome model in Formula (1) was modified to have either mild or moderate

nonadditivity and nonlinearity. However, the parametric multivariable regression

models fit for G-computation and the Imbens method included only main effects

and assumed linear relationships between continuous covariates and the outcome.

We refer to these two scenarios as E2 and G2, respectively.

Monte Carlo Simulations: Results

We present the results for estimation of causal effects when outcomes are

continuous, followed by the results when outcomes are binary.

Continuous outcomes. The percent bias for the different estimation meth-

ods is reported in Table 1. Of the different methods based on estimating potential

outcomes, either G-computation or the Imbens method resulted in estimates

of average treatment effect with the least bias when the outcomes model was

linear and additive. Using either of these methods, the absolute percent bias

was at most 1.4% across the five scenarios. Of the ensemble-based methods,

boosted regression trees with interaction depths of four resulted in the least

biased estimates of average treatment effects, with absolute percent bias of at

most 3.3% across these five scenarios. Boosting with interaction depth of three

also resulted in estimates with at most modest bias (absolute bias of at most

3.8%). Bagging and random forests resulted in absolute bias of less than 9% in
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TABLE 1

Monte Carlo Simulations: Relative Bias (%) in Estimated Average Treatment Effect (ATE)

for Continuous Outcomes Using Different Methods Across the Seven Scenarios

Estimation Method A C E F G E2 G2

Regression methods to directly impute potential outcomes

Crude �44.3 �37.7 �44.1 �46.8 �38.3 �85.3 �129.4

Bagging �7.1 �6.0 �6.9 �6.2 �5.1 �25.0 �32.3

Random forests �8.6 �7.6 �8.0 �7.8 �6.7 �30.2 �44.0

Boosting—interaction depth 1 �10.5 �9.2 �10.0 �9.5 �8.1 �34.1 �47.8

Boosting—interaction depth 2 �5.0 �4.6 �4.5 �3.5 �2.8 �25.2 �34.1

Boosting—interaction depth 3 �3.8 �3.6 �3.3 �2.1 �1.5 �22.2 �29.2

Boosting—interaction depth 4 �3.3 �3.0 �2.9 �1.6 �1.1 �20.8 �26.9

Imbens method �1.4 �1.3 �1.0 0.2 0.0 �50.8 �77.4

G-computation �1.4 �1.3 �1.1 0.1 0.1 �47.0 �73.7

Inverse probability of treatment weighting

Bagging �15.2 �13.8 �57.1 6.8 11.2 �85.6 �31.6

Random forests �37.2 �41.4 �116.7 29.3 30.3 �143.2 �11.5

Boosting—interaction depth 1 �18.4 �8.0 �47.4 �5.7 5.0 �82.4 �51.3

Boosting—interaction depth 2 �11.9 �5.6 �48.6 1.0 10.0 �77.5 �35.4

Boosting—interaction depth 3 �11.6 �6.5 �51.8 4.7 12.0 �77.5 �27.9

Boosting—interaction depth 4 �12.9 �8.7 �55.7 7.5 13.7 �79.9 �23.6

Logistic regression �1.4 26.0 �24.1 �24.9 �13.4 �78.7 �96.0

all five scenarios in which the outcomes model was linear and additive. When

the outcomes model was not linear and nonadditive, G-computation and the

Imbens methods resulted in large biases. Boosted regression trees of depth four

resulted in the least bias (20.8% and 26.9% in the two scenarios).

When using IPTW using the propensity score, none of the methods for

estimating the propensity score resulted in the lowest bias across all scenarios.

Boosting (interaction depth 2) had the lowest bias of the IPTW methods in two

of the five scenarios in which the outcomes model was linear and additive.

In comparing bias between the IPTW methods and the methods based on

directly imputing the potential outcomes, one observes that when the outcome

model was linear and additive, then either G-computation or the Imbens approach

resulted in the lowest bias. However, in all five scenarios directly imputing

potential outcomes using boosted regression trees of depth 2, 3, or 4 resulted in

bias that was negligible or very low. When the outcomes model was nonlinear

and nonadditive, estimating potential outcomes using boosted regression trees

of depth 3 or 4 resulted in good performance.
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TABLE 2

Monte Carlo Simulations: Standard Deviation of Estimated Average Treatment Effect (ATE)

for Continuous Outcomes Using Different Methods Across the Seven Scenarios

Estimation Method A C E F G E2 G2

Regression methods to directly impute potential outcomes

Crude 0.1262 0.1285 0.1231 0.1249 0.1290 0.1608 0.2278

Bagging 0.1316 0.1339 0.1350 0.1358 0.1387 0.1746 0.2425

Random forests 0.1276 0.1320 0.1307 0.1325 0.1344 0.1703 0.2383

Boosting—interaction depth 1 0.1265 0.1297 0.1279 0.1300 0.1312 0.1682 0.2326

Boosting—interaction depth 2 0.1287 0.1337 0.1312 0.1314 0.1344 0.1719 0.2380

Boosting—interaction depth 3 0.1298 0.1357 0.1328 0.1323 0.1360 0.1739 0.2408

Boosting—interaction depth 4 0.1304 0.1369 0.1338 0.1329 0.1372 0.1749 0.2428

Imbens method 0.1319 0.1301 0.1353 0.1361 0.1330 0.1813 0.2412

G-computation 0.1318 0.1293 0.1339 0.1357 0.1312 0.1795 0.2374

Inverse probability of treatment weighting

Bagging 0.1318 0.1435 0.1352 0.1338 0.1368 0.1686 0.2187

Random forests 0.1412 0.1447 0.1432 0.1432 0.1464 0.1642 0.1949

Boosting—interaction depth 1 0.1249 0.1282 0.1252 0.1246 0.1252 0.1622 0.2128

Boosting—interaction depth 2 0.1294 0.1334 0.1324 0.1317 0.1300 0.1692 0.2155

Boosting—interaction depth 3 0.1294 0.1360 0.1351 0.1336 0.1331 0.1712 0.2174

Boosting—interaction depth 4 0.1287 0.1367 0.1354 0.1334 0.1348 0.1706 0.2177

Logistic regression 0.1870 0.1629 0.2032 0.1982 0.1679 0.2567 0.2790

The standard deviations of the estimated treatment effects across the 1,000

simulated data sets are reported in Table 2, whereas the MSEs of the estimated

average treatment effects are reported in Table 3. When restricting our attention

to estimation methods based on directly imputing potential outcomes, in three of

the seven scenarios, boosting (with interaction depth 2) resulted in estimates with

the lowest MSE; in two of the seven scenarios, boosting (with interaction depth

4) resulted in estimates with the lowest MSE; and in the remaining two scenarios,

G-computation resulted in estimates with the lowest MSE. Of important note,

boosting with interaction depth of four had the lowest MSE in the two scenarios

in which the outcome model was nonlinear and nonadditive. When restricting

our attention to IPTW methods, using boosted regression trees (with interaction

depth of one or three) resulted in estimates with the lowest MSE in four of the

seven scenarios.

Binary outcomes. The percent bias for the different estimation methods

are reported in Table 4. Of the methods based on directly imputing potential

outcomes, G-computation resulted in estimates of average treatment effect with

the least bias in two of the seven scenarios. Using G-computation, the absolute
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TABLE 3

Monte Carlo Simulations: MSE of Estimated Average Treatment Effect (ATE) for

Continuous Outcomes Using Different Methods Across the Seven Scenarios

Estimation Method A C E F G E2 G2

Regression methods to directly impute potential outcomes

Crude 0.0473 0.0392 0.0462 0.0506 0.0400 0.1423 0.3199

Bagging 0.0181 0.0185 0.0190 0.0190 0.0196 0.0405 0.0755

Random forests 0.0175 0.0183 0.0181 0.0185 0.0188 0.0436 0.0878

Boosting—interaction depth 1 0.0177 0.0182 0.0180 0.0183 0.0182 0.0468 0.0906

Boosting—interaction depth 2 0.0170 0.0182 0.0175 0.0175 0.0182 0.0397 0.0752

Boosting—interaction depth 3 0.0171 0.0186 0.0178 0.0176 0.0185 0.0381 0.0715

Boosting—interaction depth 4 0.0172 0.0189 0.0180 0.0177 0.0188 0.0375 0.0705

Imbens method 0.0174 0.0169 0.0183 0.0185 0.0177 0.0742 0.1539

G-computation 0.0174 0.0167 0.0179 0.0184 0.0172 0.0675 0.1431

Inverse probability of treatment weighting

Bagging 0.0210 0.0236 0.0703 0.0186 0.0207 0.1457 0.0637

Random forests 0.0420 0.0483 0.2385 0.0342 0.0360 0.3552 0.0401

Boosting—interaction depth 1 0.0210 0.0174 0.0517 0.0160 0.0160 0.1348 0.0873

Boosting—interaction depth 2 0.0190 0.0183 0.0553 0.0174 0.0185 0.1247 0.0665

Boosting—interaction depth 3 0.0189 0.0192 0.0611 0.0182 0.0200 0.1253 0.0596

Boosting—interaction depth 4 0.0192 0.0199 0.0680 0.0187 0.0211 0.1312 0.0562

Logistic regression 0.0350 0.0373 0.0506 0.0492 0.0310 0.1649 0.2251

percent bias was at most 4.3% when the outcomes model was correctly specified.

However, the bias was substantial when the outcomes model was incorrectly

specified (47.6% and 72.6%). Bias with the Imbens method was qualitatively

similar to that of G-computation in each of the seven scenarios. Of the ensemble

methods, no method had uniformly superior performance. However, boosted

regression trees with interaction depths of three or four tended to result in the

bias that was similar to that of the best performing method in six of the seven

scenarios. The use of bagged regression trees of depth 3 or 4 to impute potential

outcomes resulted in bias that was either approximately equal to that of the best

performing IPTW method or that was lower than that of the best performing

IPTW method.

The standard deviations of the estimated treatment effects across the 1,000

simulated data sets are reported in Table 5, whereas the MSEs of the estimated

average treatment effects are reported in Table 6. When restricting our attention

to methods based on directly imputing potential outcomes, boosted regression

trees with interaction depth one had the lowest MSE in four of the seven

scenarios. In each of the remaining three scenarios, it had MSE very similar
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TABLE 4

Monte Carlo Simulations: Relative Bias (%) in Estimated Average Treatment Effect (ATE)

for Binary Outcomes Using Different Methods Across the Seven Scenarios

Estimation Method A C E F G E2 G2

Regression methods to directly impute potential outcomes

Crude �129.9 �154.7 �139.7 �129.4 �153.1 �112.7 �89.3

Bagging �4.0 2.4 �18.8 9.3 9.2 �45.7 �43.6

Random forests �3.7 14.6 �22.1 5.3 15.9 �48.2 �29.5

Boosting—interaction depth 1 �8.8 �5.8 �16.8 �1.8 �3.1 �44.6 �56.2

Boosting—interaction depth 2 �3.6 2.4 �8.1 �0.3 1.6 �32.6 �43.8

Boosting—interaction depth 3 �4.9 3.5 �5.4 �4.1 0.0 �28.1 �42.6

Boosting—interaction depth 4 �7.1 3.0 �3.8 �8.5 �3.1 �25.7 �44.8

Imbens method �0.6 5.2 �3.1 �0.7 2.2 �51.4 �73.3

G-computation �0.5 4.3 �1.9 �1.3 0.6 �47.6 �72.6

Inverse probability of treatment weighting

Bagging �32.1 �19.8 �9.3 �44.0 �35.9 �32.1 �72.9

Random forests �77.4 �61.3 �36.5 �107.9 �94.8 �52.7 �129.7

Boosting—interaction depth 1 �165.6 �176.7 �184.4 �162.4 �171.1 �154.1 �122.5

Boosting—interaction depth 2 �175.2 �179.2 �192.7 �169.9 �170.4 �168.4 �130.9

Boosting—interaction depth 3 �174.6 �177.8 �193.1 �167.5 �166.8 �173.0 �133.1

Boosting—interaction depth 4 �171.8 �175.4 �191.3 �162.3 �162.2 �173.5 �131.4

Logistic regression �2.2 7.2 25.3 25.2 43.3 �39.3 �53.9

to the method with the lowest MSE in that scenario. Bagging and boosted

regression trees with depths two, three, or four resulted in estimates with MSEs

that were very similar to that of the best performing methods. When restricting

our attention to IPTW methods, using bagged regression trees or random forests

to estimate the propensity score tended to result in estimates with low MSE.

Finally, in the five scenarios in which the outcome model was linear and additive,

the use of a method based on IPTW had the lowest MSE.

CASE STUDY

We illustrate the application of the methods described earlier to estimate the ef-

fect of in-hospital smoking cessation counseling on 3-year mortality in a sample

of patients discharged from the hospital with a diagnosis of acute myocardial

infarction (heart attack). These data were recently used in a tutorial and case

study (Austin, 2011a) that accompanied a review article on propensity score

methods (Austin, 2011b). The reader is referred to this prior article for a greater

description of the study sample.
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TABLE 5

Monte Carlo Simulations: Standard Deviation of Estimated Average Treatment Effect (ATE)

for Binary Outcomes Using Different Methods Across the Seven Scenarios

Estimation Method A C E F G E2 G2

Regression methods to directly impute potential outcomes

Crude 0.0176 0.0171 0.0179 0.0180 0.0174 0.0172 0.0173

Bagging 0.0195 0.0193 0.0198 0.0202 0.0189 0.0194 0.0182

Random forests 0.0206 0.0203 0.0210 0.0212 0.0201 0.0204 0.0194

Boosting—interaction depth 1 0.0191 0.0183 0.0190 0.0196 0.0183 0.0187 0.0176

Boosting—interaction depth 2 0.0197 0.0193 0.0198 0.0202 0.0190 0.0193 0.0183

Boosting—interaction depth 3 0.0200 0.0197 0.0202 0.0205 0.0194 0.0197 0.0188

Boosting—interaction depth 4 0.0202 0.0199 0.0204 0.0208 0.0197 0.0199 0.0191

Imbens method 0.0201 0.0184 0.0200 0.0207 0.0188 0.0200 0.0181

G-computation 0.0200 0.0182 0.0201 0.0204 0.0187 0.0197 0.0180

Inverse probability of treatment weighting

Bagging 0.0168 0.0165 0.0167 0.0171 0.0162 0.0159 0.0158

Random forests 0.0119 0.0113 0.0120 0.0121 0.0116 0.0115 0.0113

Boosting—interaction depth 1 0.0173 0.0163 0.0172 0.0180 0.0164 0.0166 0.0163

Boosting—interaction depth 2 0.0176 0.0165 0.0176 0.0183 0.0165 0.0169 0.0162

Boosting—interaction depth 3 0.0175 0.0164 0.0176 0.0181 0.0165 0.0169 0.0161

Boosting—interaction depth 4 0.0172 0.0162 0.0174 0.0177 0.0163 0.0166 0.0159

Logistic regression 0.0215 0.0197 0.0229 0.0257 0.0224 0.0211 0.0200

Data Sources

Detailed clinical data were obtained by retrospective chart review on a sample of

patients discharged alive from 102 Ontario hospitals between April 1, 1999, and

March 31, 2001. These data were collected as part of the Enhanced Feedback

for Effective Cardiac Treatment (EFFECT) Study, an ongoing initiative intended

to improve the quality of care for patients with cardiovascular disease in Ontario

(Tu et al., 2004; Tu et al., 2009). Data on patient history, cardiac risk factors,

comorbid conditions and vascular history, vital signs, and laboratory tests were

collected for this sample. Patient records were linked to the Registered Persons

Database using encrypted health card numbers to allow us to determine the vital

status of each patient at 3 years following discharge. For this case study we

restricted the sample to 2,342 subjects who were current smokers at time of

hospital admission, who survived to hospital discharge, who had complete data

on baseline covariates of interest, and who had evidence that smoking cessation

counseling had or had not occurred. The outcome of interest was whether the

patient died within 3 years of hospital discharge. The 3-year mortality rate in the



CAUSAL INFERENCE AND MACHINE LEARNING 129

TABLE 6

Monte Carlo Simulations: MSE of Estimated Average Treatment Effect (ATE) for Binary

Outcomes Using Different Machine Learning Methods Across the Seven Scenarios

Estimation Method A C E F G E2 G2

Regression methods to directly impute potential outcomes

Crude 0.00099 0.00125 0.00110 0.00099 0.00124 0.00080 0.00062

Bagging 0.00038 0.00037 0.00041 0.00041 0.00036 0.00046 0.00041
Random forests 0.00042 0.00042 0.00046 0.00045 0.00041 0.00051 0.00041
Boosting—interaction depth 1 0.00037 0.00034 0.00037 0.00039 0.00033 0.00043 0.00044
Boosting—interaction depth 2 0.00039 0.00037 0.00039 0.00041 0.00036 0.00042 0.00041

Boosting—interaction depth 3 0.00040 0.00039 0.00041 0.00042 0.00038 0.00042 0.00042
Boosting—interaction depth 4 0.00041 0.00040 0.00042 0.00043 0.00039 0.00042 0.00044
Imbens method 0.00040 0.00034 0.00040 0.00043 0.00035 0.00051 0.00054

G-computation 0.00040 0.00033 0.00040 0.00041 0.00035 0.00048 0.00053

Inverse probability of treatment weighting

Bagging 0.00032 0.00029 0.00028 0.00037 0.00031 0.00029 0.00046
Random forests 0.00038 0.00028 0.00020 0.00061 0.00049 0.00024 0.00080

Boosting—interaction depth 1 0.00140 0.00152 0.00166 0.00138 0.00144 0.00122 0.00087
Boosting—interaction depth 2 0.00154 0.00156 0.00179 0.00149 0.00143 0.00142 0.00095
Boosting—interaction depth 3 0.00152 0.00153 0.00180 0.00145 0.00139 0.00148 0.00097
Boosting—interaction depth 4 0.00147 0.00149 0.00177 0.00137 0.00132 0.00148 0.00094

Logistic regression 0.00046 0.00039 0.00055 0.00068 0.00058 0.00051 0.00051

study sample was 11.2%. The exposure of interest was whether or not patients

received in-hospital smoking cessation counseling prior to hospital discharge.

The sample consisted of 1,588 subjects who received in-patient smoking ces-

sation counseling and 754 who did not. Baseline characteristics of patients who

did and did not receive in-hospital smoking cessation counseling are described in

Table 7. Patients receiving smoking cessation counseling tended to be younger,

to have a lower burden of comorbid conditions, and were more likely to have

received prescriptions for cardiac medications at hospital discharge compared

with patients who did not receive in-patient smoking cessation counseling. There

were statistically significant differences in 22 of the 33 baseline characteristics

between exposed and unexposed subjects in the study sample. Twenty of the

variables had absolute standardized differences that exceeded 0.10 (Austin, 2009;

Flury & Riedwyl, 1986).

Methods

We considered as predictors of mortality the 33 baseline covariates listed in

Table 7. The different ensemble methods were used to predict the probability

of 3-year mortality in treated and untreated subjects separately. Logistic re-

gression was also used to impute potential outcomes. With logistic regression,
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TABLE 7

Baseline Characteristics of Treated and Untreated Subjects in the Study Sample

Variable

No Smoking

Cessation

Counseling

(N D 754)

Smoking

Cessation

Counseling

(N D 1,588)

Overall

Sample

(N D 2,342)

Absolute

Standardized

Difference

of the Mean p Value

Demographic characteristics

Age 60.48 ˙ 13.26 56.24 ˙ 11.26 57.61 ˙ 12.10 0.35 < .001

Female 220 (29.2%) 397 (25.0%) 617 (26.3%) 0.09 .032

Presenting signs and symptoms

Acute pulmonary edema 34 (4.5%) 48 (3.0%) 82 (3.5%) 0.08 .067

Vital signs on admission

Systolic blood pressure 146.99 ˙ 31.82 146.93 ˙ 29.92 146.95 ˙ 30.53 0.00 .966

Diastolic blood pressure 84.81 ˙ 18.99 85.84 ˙ 18.51 85.50 ˙ 18.67 0.06 .213

Heart rate 83.28 ˙ 22.75 81.10 ˙ 22.54 81.80 ˙ 22.63 0.10 .029

Respiratory rate 21.18 ˙ 5.75 20.18 ˙ 4.64 20.50 ˙ 5.05 0.20 < .001

Classic cardiac risk factors

Diabetes 179 (23.7%) 260 (16.4%) 439 (18.7%) 0.19 < .001

Hyperlipidemia 238 (31.6%) 539 (33.9%) 777 (33.2%) 0.05 .254

Hypertension 295 (39.1%) 541 (34.1%) 836 (35.7%) 0.11 .017

Family history of coronary artery

disease

253 (33.6%) 754 (47.5%) 1,007 (43.0%) 0.28 < .001

Comorbid conditions and vascular history

Cerebrovascular accident/Transient

ischemic attack

62 (8.2%) 67 (4.2%) 129 (5.5%) 0.18 <.001

Angina 198 (26.3%) 412 (25.9%) 610 (26.0%) 0.01 .871

Cancer 22 (2.9%) 20 (1.3%) 42 (1.8%) 0.13 .005

Dementia 21 (2.8%) 6 (0.4%) 27 (1.2%) 0.23 < .001

Previous myocardial infarction 161 (21.4%) 241 (15.2%) 402 (17.2%) 0.16 < .001

Asthma 40 (5.3%) 98 (6.2%) 138 (5.9%) 0.04 .406

Depression 76 (10.1%) 131 (8.2%) 207 (8.8%) 0.06 .145

Peptic ulcer disease 39 (5.2%) 111 (7.0%) 150 (6.4%) 0.07 .093

Peripheral vascular disease 77 (10.2%) 90 (5.7%) 167 (7.1%) 0.18 < .001

Previous coronary revascularization 50 (6.6%) 92 (5.8%) 142 (6.1%) 0.04 .427

Chronic congestive heart failure 24 (3.2%) 24 (1.5%) 48 (2.0%) 0.12 .008

Laboratory tests

Glucose 9.35 ˙ 5.63 8.57 ˙ 4.79 8.82 ˙ 5.09 0.15 < .001

White blood count 11.01 ˙ 4.49 10.77 ˙ 3.55 10.85 ˙ 3.88 0.06 .171

Hemoglobin 141.71 ˙ 19.33 145.83 ˙ 15.47 144.50 ˙ 16.92 0.24 < .001

Sodium 138.75 ˙ 4.54 139.40 ˙ 3.32 139.19 ˙ 3.77 0.17 < .001

Potassium 4.10 ˙ 0.58 4.01 ˙ 0.49 4.04 ˙ 0.52 0.16 < .001

Creatinine 99.59 ˙ 62.86 89.24 ˙ 30.24 92.57 ˙ 43.75 0.24 < .001

Prescriptions for cardiovascular medications at hospital discharge

Statin 193 (25.6%) 637 (40.1%) 830 (35.4%) 0.31 < .001

Beta-blocker 460 (61.0%) 1,192 (75.1%) 1,652 (70.5%) 0.31 < .001

ACE inhibitor/Angiotensin receptor

blockers

344 (45.6%) 850 (53.5%) 1,194 (51.0%) 0.16 < .001

Plavix 29 (3.8%) 74 (4.7%) 103 (4.4%) 0.04 .37

ASA 544 (72.1%) 1,341 (84.4%) 1,885 (80.5%) 0.31 < .001

Note. Continuous variables are presented as means ˙ standard deviation; dichotomous variables are presented as N (%);

ASA D acetylsalicylic acid.
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both classical G-computation and the Imbens approach were used. For each

of the estimation methods, we estimated the ATE, the ATT, and the ATC.

For each of the different estimation methods, standard errors of estimated risk

reductions were estimated using bootstrap methods (Efron & Tibshirani, 1993).

Two hundred bootstrap samples were drawn from the original sample. The risk

reduction was estimated in each of the 200 bootstrap samples and the standard

deviation of the treatment effects was estimated.

For comparative purposes, we used IPTW using the propensity score to

estimate the effect of provision of smoking cessation counseling on mortality.

Boosting regression trees, random forests, bagging regression trees, and logistic

regression were used to estimate the propensity score. Different weights were

used to allow one to estimate the ATE, the ATT, and the ATC. The weights
Z
e

C 1�Z
1�e

, Z C
e.1�Z/

1�e
, and

Z.1�e/

e
C .1 � Z/ allow one to estimate the ATE,

ATT, and the ATC, respectively (Morgan & Todd, 2008). As above, bootstrap

methods were used to estimate standard errors of the estimated treatment effects.

Results

The estimated ATE, ATT, and ATC obtained using the different estimation

methods are reported in Table 8. There existed modest variability in the estimated

treatment effects across the different methods. In the Monte Carlo simulations

described in the previous section, we observed that directly imputing poten-

TABLE 8

Estimated Effects of Smoking Cessation Counseling on 3-year Mortality

Regression Method ATE ATT ATC

Regression methods to directly impute potential outcomes

Logistic regression (Imbens) �0.023 (�0.05, 0.003) �0.015 (�0.039, 0.009) �0.042 (�0.079, �0.004)

Logistic regression (G-computation) �0.027 (�0.054, 0) �0.023 (�0.047, 0) �0.034 (�f0.068, �0.001)

Bagging �0.036 (�0.06, �0.011) �0.028 (�0.052, �0.005) �0.052 (�0.083, �0.02)

Boosting—interaction depth 1 �0.046 (�0.072, �0.02) �0.04 (�0.065, �0.016) �0.058 (�0.09, �0.026)

Boosting—interaction depth 2 �0.035 (�0.06, �0.01) �0.027 (�0.051, �0.004) �0.051 (�0.084, �0.018)

Boosting—interaction depth 3 �0.031 (�0.056, �0.006) �0.023 (�0.046, 0) �0.048 (�0.081, �0.015)

Boosting—interaction depth 4 �0.029 (�0.053, �0.004) �0.02 (�0.043, 0.002) �0.046 (�0.079, �0.013)

Random forests �0.028 (�0.052, �0.003) �0.022 (�0.045, 0.001) �0.040 (�0.072, �0.008)

Inverse probability of treatment weighting using the propensity score

Logistic regression �0.025 (�0.053, 0.003) �0.011 (�0.027, 0.005) �0.014 (�0.028, 0.001)

Bagging: �0.046 (�0.07, �0.023) �0.022 (�0.036, �0.007) �0.024 (�0.035, �0.014)

Boosting—interaction depth 1 �0.037 (�0.062, �0.012) �0.015 (�0.031, 0) �0.022 (�0.033, �0.011)

Boosting—interaction depth 2 �0.028 (�0.052, �0.004) �0.007 (�0.022, 0.007) �0.021 (�0.031, �0.01)

Boosting—interaction depth 3 �0.025 (�0.048, �0.002) �0.003 (�0.017, 0.01) �0.022 (�0.032, �0.011)

Boosting—interaction depth 4 �0.023 (�0.045, �0.001) 0 (�0.013, 0.013) �0.023 (�0.034, �0.013)

Random forests �0.007 (�0.022, 0.008) 0.045 (0.035, 0.054) �0.052 (�0.062, �0.041)

Note. ATE D average treatment effect; ATT D average treatment effect in the treated; ATC D average treatment effect in

the controls.
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tial outcomes using boosting (interaction depths of three or four) or random

forests tended to result in minimal bias when the outcomes model was correctly

specified and also resulted in the best performance when the outcomes model

was nonlinear and additive. The estimated ATE using these three methods were

�0.031, �0.029, and �0.028. The estimated treatment effect was qualitatively

consistent across these three estimation methods. Based on our Monte Carlo

simulations, we suggest that these are the most reliable estimate estimates of

the effect of smoking cessation counseling on mortality.

DISCUSSION

We used an extensive series of Monte Carlo simulations to examine the relative

ability of ensemble methods to estimate causal treatment effects by directly

imputing potential outcomes. Although no method had uniformly superior per-

formance for estimating linear treatment effects for continuous outcomes, the use

of boosted regression trees of depth three or four to impute potential outcomes

tended to have very good performance compared with competing approaches

across a range of scenarios. In particular, these methods performed well even

when the outcomes model was nonlinear and nonadditive. When estimating risk

differences for binary outcomes, methods based on directly imputing potential

outcomes tended to result in estimates with lower bias compared to IPTW

estimates. As with continuous outcomes, using boosted regression trees of depth

three to directly impute potential outcomes tended to have good performance,

measured using bias, compared with competing approaches. In particular, the

use of this method resulted in lower bias than any of the seven IPTW methods

in six of the seven scenarios (in the one remaining scenario (A), the relative bias

was �4.9% vs. �2.2%).

The proposed method of using ensemble-based methods to predict potential

outcomes differs from classic G-computation in that it does not rely on a para-

metric regression model that includes an indicator variable denoting treatment

status. However, Snowden et al. (2011) suggested that G-computation could be

implemented using machine learning methods. Our proposed methods could be

described as ensemble-based G-computation. The literature on the use of data

mining and machine learning methods for estimating causal effects is limited.

A handful of papers have either proposed different machine learning methods

for estimating propensity scores or have compared the relative performance

of different methods for estimating propensity scores on a single data set.

Westreich, Lessler, and Funk (2010), when reviewing alternatives to logistic

regression for estimating propensity scores, suggested that boosting and regres-

sion trees showed potential for estimating propensity scores (Westreich et al.,

2010). However, they noted that extensive simulation studies were necessary to
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establish their utility in practice. In an empirical analysis of a single data set,

Luellen, Shadish, and Clark (2005) compared inferences when using regression

trees, bagged regression trees, and logistic regression to estimate propensity

scores for use with stratification on the propensity score (Luellen et al., 2005).

They suggested that there is a need for greater study of these methods, both

through simulations and through the analysis of real data. Using an existing

data set, McCaffrey et al. (2004) used IPTW to estimate treatment effects. They

compared estimates of treatment effects when boosted regression trees were

used to estimate the propensity score with when logistic regression was used

to estimate the propensity score (McCaffrey et al., 2004). Finally, in a recent

study, Hill, Weiss, and Zhai (2011) proposed that Bayesian Adaptive Regression

Trees be used to directly estimate causal effects using an approach similar to

that which we have outlined in the current study (Hill et al., 2011).

To the best of our knowledge, only two studies have used simulations to study

the relative performance of different data mining methods to estimate propensity

scores. As noted earlier, both Setoguchi et al. (2008) and Lee et al. (2010) have

examined the performance of these methods for estimating propensity scores.

The former paper examined the use of logistic regression, regression trees, and

neural networks for estimating the propensity score when using propensity score

matching to estimate treatment odds ratios. They found that data mining methods

resulted in propensity scores with higher c-statistics compared to when logistic

regression was used. Furthermore, the use of neural networks resulted in the least

biased estimates of the competing methods. The latter paper examined the use of

logistic regression, regression trees, bagged regression trees, random forests, and

boosted regression trees to estimate propensity scores for use with IPTW when

estimating linear treatment effects with continuous outcomes. They found that

when the treatment-selection model was subject to both moderate nonadditivity

and moderate nonlinearity the tree-based methods had substantially better perfor-

mance compared with logistic regression. Under conditions of either nonlinearity

or nonadditivity alone, all methods displayed generally acceptable performance.

There are certain limitations to the current study that suggest directions for

future research. First, the majority of our statistical simulations were based on

data-generating processes used in two prior studies. There is a need to repeat our

analyses in other settings with different data-generating processes. In particular,

one should examine the relative performance of the different methods when

the number of baseline covariates is very large. Second, we compared directly

estimating causal treatment effects with estimates obtained using IPTW using the

propensity score. Due to space limitations, alternate propensity score methods

were not considered in this paper. Matching on the propensity score allows one

to estimate the ATT. In future research, the ability of propensity-score matching

to estimate the ATT should be compared with directly estimating the ATT using

ensemble-based G-computation.
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In summary, we found that using ensemble methods to directly estimate causal

treatment effects warrants consideration for application in applied analyses. In

particular, the use of boosted regression trees of depth three or four to directly

impute potential outcomes when outcomes are continuous or binary tended to

resulted in estimates of average treatment effects with low bias.
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