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Maria Filomena Botelho
Biophysics/Biomathematics Institute, IBILI, Faculty of Medicine, University of Coimbra, Coimbra,
Portugal; Centre of Investigation on Environment, Genetics, and Oncobiology, Faculty of Medicine,
University of Coimbra, Coimbra, Portugal; and Institute of Nuclear Sciences Applied to Health,
University of Coimbra, Coimbra, Portugal

Vitamins are essential nutrients for human metabolism, play-
ing an important role as coenzymes or enzymes in many vital pro-
cesses for the normal functioning of the body. In recent years, it has
become apparent that vitamins are crucial in health and human
disease, due to several studies that studied this relationship. Cur-
rently, it is known that vitamins can have an important role in the
prevention and treatment of cancer, but until now no conclusive
results were obtained. In this review, we will present the work and
more relevant conclusions obtained in recent years of investigation
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about the relationship between vitamins and cancer, namely vita-
min A, vitamin B complex, vitamin C, vitamin D, vitamin E, and
vitamin K.

INTRODUCTION
Cancer is a public health problem whose mortality levels

have increased every year (1). Until now, scientists have tried to
develop numerous strategies to prevent and treat cancer. Pattern
antitumoral therapies such as surgery, chemotherapy, and radio-
therapy have been subject to some improvements but are still
necessary to develop innovative approaches that address the ef-
fective treatment of cancer. A promising approach is associated
with vitamins, so that in recent years its potential chemopreven-
tive has been considerably analyzed.
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Vitamins are a class of organic compounds that are essential
for an adequate diet and are required by various biochemical and
physiological processes of the body (2). Vitamins are subdivided
into fat-soluble (A, D, E, and K) and water-soluble (C and
vitamin B complex). Due to the numerous studies about vitamins
and their role in cancer that have been published lately, it is
necessary to compile all scientific information in a single review
article to clarify the state of art of this subject and set new targets
for research. To this end, we gather diverse information on more
promising vitamins in regard to cancer, i.e., vitamin A, vitamin
B complex, vitamin C, vitamin D, vitamin E, and vitamin K.

VITAMIN A AND RETINOIDS
The retinoids are a class of over 4,000 natural and synthetic

molecules structurally and/or functionally related to fat-soluble
vitamin A (3). These compounds participate in a broad spec-
trum of biological activities, such as reproduction, embryoge-
nesis, growth, differentiation, proliferation, apoptosis, vision,
bone formation, metabolism, hematopoiesis, and immunologi-
cal processes (4).

Given the great importance of the mechanisms by which vi-
tamin A and retinoids act at the cellular level, their application
in the prevention and treatment of cancer early awakened in-
terest. Since the research developed by Wolbach and Howe (5),
and later by Lasnitzki (6), several studies were developed to
demonstrate the important role of vitamin A and retinoids in
the oncogenesis of many tissues (7,8). Lotan (9) demonstrated,
through in vitro and in vivo applications, that these compounds
can influence malignant cell growth in a number of ways, by
producing growth arrest, apoptosis, and redifferentiation in a
variety of cell lines. We know now that the homeostasis of
vitamin A and retinoids is altered in many types of tumors,
including leukemia, breast, skin, oral, prostate, and carcinoma
of the cervix (7,10). The impaired conversion of retinol into
retinoic acid is found in breast cancer cell lines, and recently
Williams et al. observed the same results in ovarian cancer cells
(11,12). These results supports the hypothesis that vitamin A
metabolism contributes to ovarian oncogenesis.

The effects of vitamin A and retinoids on carcinogenesis are
largely mediated through the activity of 2 families of nuclear
receptors: the retinoic acid receptors (RAR), which are acti-
vated by all-trans-retinoic acid and 9-cis-retinoic acid, and the
retinoid X receptors (RXR), only activated by the 9-cis-retinoic
acid. There are 3 RARs and 3 RXRs (α, β, and γ ) isotypes
encoded by different genes (13,14). The action of retinoids at
the cellular stage depends on the level of expression of specific
receptor isotypes in a specific tissue, as well as the type and
concentration of retinoids within the cell. It is thought that the
RAR-β, upregulated in vivo by 13-cis-retinoic acid, may have
an important role in carcinogenesis, because this receptor is
suppressed in premalignant and tumor tissues, as demonstrated
in head and neck malignant lesions, preneoplastic oral cavity
lesions, and breast and esophageal cancer (15). Several studies

have shown that prostate cancer tissue has a lower concentration
of retinoic acid than normal prostate tissue and a lower expres-
sion of RAR-β and RXR-β (16). Therefore, restoring expression
of these receptors through supplementation with vitamin A or
treatment with retinoids could, in theory, promote differentiation
and regression of premalignant prostate lesions (13).

The natural retinoids have been extensively studied over the
past decades, principally 13-cis-retinoic acid and 9-cis-retinoic
acid. Hong et al. (17) showed that pharmacologic administration
of 13-cis-retinoic acid results in regression of lesions in head
and neck, but the lesions reappeared after the therapy was dis-
continued. This natural retinoid also reduced new skin cancer
(nonmelanoma) by 63% in patients with xeroderma pigmento-
sum and completely eradicated oral premalignant lesions (18).
The 9-cis-retinoid-acid induces differentiation and apoptosis in
neuroblastoma, as well as decreases the expression of N-myc,
a characteristic oncogene present in more aggressive forms of
neuroblastoma (19).

All-trans-retinoic acid, a natural retinoid approved by the
FDA for the treatment of patients with acute promyelocytic
leukemia (4), was shown to reduce the number of lesions due to
actinic keratoses with a response rate of about 50%. Topical all-
trans-retinoic acid was also able to suppress the development of
new skin tumors and reduce the number of existing neoplastic
lesions in renal transplant patients (20). Meyskens et al. (21)
demonstrated that all-trans-retinoic acid is effective in treat-
ment of patients with Grade 2 cervical intraepithelial neoplasia,
suggesting that retinoid therapy can inhibit the progression of
early cervical lesions into cancer. In vitro studies demonstrate
that all-trans-retinoic acid can be used as a partly redifferenti-
ating agent in follicular carcinoma cell lines and, moreover, the
13-cis-retinoic acid reduces clonogenic survival and increase
cellular I-131 uptake of these cells. These agents may become
very useful when tumors fail to take up radio-iodine due to loss
of differentiation, and can be used as a solution in the treatment
of differentiated thyroid metastatic cancer (22,23).

In regard to breast cancer, it has been proven that retinoic acid
inhibits mammary carcinogenesis in rodents and inhibits prolif-
eration of human breast cancer cells due to its downregulation
of the progesterone receptor expression and the regulation of
RARα and γ mRNA by progestins (24). In vitro studies showed
that retinoic acid strongly inhibits proliferation of estrogen re-
ceptor positive (ER+) human breast cancer cells through RARs
but does not inhibit the growth of estrogen receptor negative
(ER−) cells. The expression of RARα, increased by estradiol,
is markedly greater in ER+ in comparison with ER− breast
cancer cells, which suggests that the anticarcinogenic effects
of retinoic acid might require estrogens to induce its nuclear
receptors (25,26). Retinoic acid was found to decrease the ex-
pression of c-erbB, a gene linked to more aggressive forms of
breast cancer, suggesting that retinoids may have a role in the
treatment of more aggressive forms of breast cancer (27,28).
On the other hand, retinoic acid also inhibited growth in hu-
man mammary epithelial cells in which the tumor suppressor
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ROLE OF VITAMINS IN CANCER 481

p53 was inactivated (29). This is an important finding because
many tumors lack functional p53 and drugs that work through a
pathway involving this protein are ineffective in these particular
tumors.

At high concentrations, natural retinoids have undesirable
effects such as teratogenicity or chemical hepatitis. Therefore,
in order to minimize toxicity and increase the bioavailability
of retinoids, various synthetic retinoids have been produced
over the years. Retinoids with subtype receptor selectivity may
have better efficacy, fewer side effects, and lower toxicity as
demonstrated by a study with RXR-selective retinoid LGD1069
(Targretin) (Table 1). This synthetic retinoid has been shown
to prevent breast cancer, induced by N-nitroso-Nmethylurea in
an animal model, over 13 wk of treatment without reoccurring
signs of retinoid-associated toxicity (30). Fenretinide is a syn-
thetic retinoid that has been applied to treatment of head, neck,
breast, lung, bladder, and prostate cancer revealing, in several
studies of cell cultures and in animal models, antiproliferative
and apoptotic effects with less toxic properties compared to
natural retinoids (31,32).

CD437, a synthetic retinoid that acts in a receptor (RAR-γ )-
dependent manner, activates and upregulates the transcription
factor AP-1, leading to programmed cell death (33). The in
vitro and in vivo effects of this potent retinoid in various cancer
cells are due to the upregulation of multiple apoptosis-related
genes such as Killer/DR5, Bax, and p21WAF1 c-Myc (3). Ren
(34) demonstrated that CD437 inhibits proliferation and induces
apoptosis and cell cycle arrest in A375 melanoma cell line, thus
revealing a potential effect against melanoma. Another recent
study revealed that CD437 induces apoptosis in hepatocellular
carcinoma via mitochondrial pathways (35).

ALRT1550, a high affinity ligand for all 3 RARs, has shown
to have potent antitumor activity against human oral squamous
carcinoma xenografts in nude mice (36). Toma et al. (37) eval-
uated the in vivo effects of the RAR-α selective antagonist Ro
41-5253 in nude mice transplanted with the MCF-7 breast cell
line. The applied dosages of 10, 30, and 100 mg/kg/day resulted
in an inhibition of cell growth without any toxic effect of the
drug. Although it is not able to activate RARs, Ro 41-5253 re-
tains the ability to block cell growth by interfering with AP-1
activity, showing 80% of proliferation inhibition on the MCF-7
line (38). Eckhardt and Schmitt (39) demonstrated in vivo that
this RAR-α antagonist is not teratogenic, even at higher doses of
300 mg/kg/day, and it is able to significantly reduce teratogenic
effects produced by a preferential RAR-α antagonist.

In recent years, research has shown that vitamin A and
retinoids, natural or synthetic, have a promising role in pre-
vention and treatment of many cancers. However, the pathways
by which these compounds achieve anticarcinogenic effects are
still poorly understood. It is thought that the mechanisms by
which vitamin A and retinoids can inhibit cancerous growth
are related to increased levels of specific inhibitory signaling
pathways, such as the inhibition of the kinase C or reduction of
expression of the oncogene H-ras, but it is necessary to develop
further studies (40).

Despite the positive results already achieved, several studies
have found that retinoids have minimal or no effect on tumor
growth or progression in solid tumors. It should also be noted
that not all studies have results that point to a potential anti-
cancer role of vitamin A and retinoids, as exemplified by the
randomized trial developed by van Zandwijk et al. (41). In this
study, the aim of which was to determine the chemopreventive
effects of vitamin A and N-acetylcysteine in patients with head
and neck cancer or with lung cancer, it can be concluded that
after 2 yr of supplementation with these compounds no benefit
was observed.

To improve the effectiveness of retinoids in the treatment and
prevention of cancer, several strategies should be developed.
Identification of new effective receptor-specific retinoids with
few or no side effects and with lower toxicity is one possibility.
The development of selective inhibitors of retinoid metabolism
or the combination of retinoids and other agents in order to
increase or maintain the effectiveness of retinoids and reduce
their toxicity should be a strategy considered.

VITAMIN B COMPLEX
The vitamin B complex consists in several water-soluble

vitamins: B1 (thiamin), B2 (riboflavin), B3 (niacin), B5 (pan-
tothenic acid), B6 (pyridoxine), B7 (biotin), B9 (folic acid),
and B12 (cobalamin). These vitamins can be found in brewer’s
yeast, liver, whole-grain cereals, rice, nuts, milk, eggs, meat,
fish, fruits, leafy green vegetables, and many other foods. The
B vitamins maintain and increase the metabolic rate, preserve
muscle tone, guarantee the good condition of the skin, improve
the functions of the nervous and immune system and promote
growth and cell division. The role of B vitamins in the preven-
tion and treatment of cancer is unclear, as the result of scarce
and contradictory results published so far.

Vitamin B6, B9, and B12 have been the subject of studies
seeking to clarify its potential role in oncology. Although some
authors suggest that diminished vitamin B6, B9, and B12 status
predisposes to the development of several common cancers,
the evidence arising from epidemiologic, animal models and
clinical intervention studies still do not explain clearly the role
of these nutrients in development and progression of cancer.
With regard to folate, Glynn and Albanes (42) were among the
first authors to draw up a review on its role in cancer.

Vitamin B6, B9, and B12 have a number of interrelated bio-
logical roles that make them potentially important agents in can-
cer. First, they function as coenzymes in the synthesis of purines
and thymidylate for DNA synthesis. When these nutrients levels
are insufficient, the initiation of cancer is facilitated by reduction
of thymidylate synthesis, resulting in an increased incorporation
of uracil in DNA and consequent chromosome breaks, disrup-
tion of DNA repair, and neoplastic transformation (43,44). The
increased chromosome breakage associated with low intake of
folate, vitamin B12, or homocysteine has been demonstrated
(45). Folate and vitamin B12 are critical in methylation reac-
tions in the human body. Methionine synthase, a vitamin B12-
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482 A. C. MAMEDE ET AL.

TABLE 1
Application of synthetic retinoids to oncologic disease

Synthetic Retinoids Authors Outcomes

LGD1069 (Targretin) Gottardis et al. (30) Prevents breast cancer (animal model)
Fenretinide Webber et al. (31)

Sharp et al. (32)
Treatment of head, neck, breast, lung, bladder, and prostate

cancer Reveals in vitro and in vivo antiproliferative and
apoptotic effects with less toxic properties compared to
natural retinoids

CD437 Ren (34)
Webber et al. (31
Smith (3)
Gonda et al. (35)

Inhibition of proliferation, induction of apoptosis, and cell
cycle arrest in A375 melanoma cell line.

Activates and upregulates the transcription factor AP-1,
leading to programmed cell death. Upregulation of multiple
apoptosis-related genes such as Killer/DR5, Bax, and
p21WAF1 c-Myc.

Induction of apoptosis in hepatocellular carcinoma via
mitochondrial pathways

ALRT1550 Shalinsky et al. (36) Potent antitumor activity against human oral squamous
carcinoma xenografts in nude mice

Ro 41-5253 Toma et al. (37–38)
Eckhardt and Schmitt (39)

Inhibition of cell growth without any toxic effect of the drug in
nude-mice transplanted with MCF-7 breast cell line. Blocks
the cell growth by interfering with AP-1 activity

Is not teratogenic

dependent enzyme, catalyzes the transfer of a methyl group
from methyltetrahydrofolate to homocysteine to form methio-
nine, thereby ensuring the provision of S-adenosylmethionine
(SAM), the primary methyl group donor for most biological
methylation reactions, including that of DNA (46). Low levels
of folate and vitamin B12 may reduce the availability of SAM
and prevent DNA methylation. Consequently, gene expression
and conformation of DNA are influenced, as well as normal
controls in the expression of protooncogenes (47–49). Vitamin
B6 plays an important role in conversion of homocysteine to
cysteine. Homocysteine is converted to cystathionine to form
cysteine via the transsulfuration pathway, which is facilitated
by 2 pyridoxal 5′-phosphate-dependent enzymes. When levels
of folate, vitamin B6, and B12 are inadequate, high levels of
homocysteine in the blood may be compromised (50). High in-
tracellular levels of pyridoxal 5′-phosphate (the main active form
of vitamin B6) can lead to decreased steroid hormone-induced
gene expression (51).

Several epidemiologic studies have suggested that adequate
folate, vitamin B6, and B12 intake may be important in the pre-
vention of breast cancer (52–55). In a prospective case-control
study with a large number of patient cases of Nurses’ Health
Study, Zhang et al. (55) examined the relationship between fo-
late, vitamin B6, and vitamin B12 intake and risk of breast
cancer, also taking into account the consumption of alcohol be-
cause it alters the normal metabolism of folate in a number of
ways. The authors concluded that high plasma levels of folate,
and possibly vitamin B6, may reduce the risk of developing

this pathology, especially in women at higher risk of devel-
oping breast cancer because of higher alcohol consumption.
Another study conducted by Lajous et al. (56) concluded that
high intake of folate and vitamin B12 were independently as-
sociated with decreased breast cancer risk, particularly among
postmenopausal women.

Hultdin et al. (57) cast doubt on the protective effects of these
nutrients when they published a study that concluded that the
factors contributing to folate status are not protective against
prostate cancer, and vitamin B12 and folate were able to stimu-
late the development of this type of cancer. These results seem
to have been corroborated by Johansson et al. (58), which an-
alyzed circulating concentrations of folate and vitamin B12 in
869 cases and 1,174 controls. The authors concluded that the
study did not produce sufficient results that could involve the risk
of prostate cancer and circulating levels of folate and vitamin
B12, although they believe that high concentrations of vitamin
B12 may be associated with an increased risk or advanced stage
prostate cancer. Figueiredo et al. (59) demonstrated in a clinical
trial that daily supplementation with 1 mg of folic acid was asso-
ciated with an increased risk of prostate cancer. With respect to
vitamin B6, a case-control study of diet and cancer has shown
that vitamin B6 intake was inversely associated with prostate
cancer (60).

In colorectal cancer, some studies deny the potential thera-
peutic effects of folate, vitamin B6, and vitamin B12 in can-
cer. In the study of Cole et al. (61), which aimed to evaluate
the safety and efficacy of 1 mg/day supplementation of folic
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acid, the authors concluded that there was no reduction in the
risk of developing colorectal adenoma after treatment. In con-
trast, many researchers argue that colorectal cancer incidence is
inversely associated with folate concentration in human body,
suggesting that this may be a protective agent against this type of
cancer (62–66). Giovanucci et al. (67), who wanted to evaluate
the relationship between folate intake and incidence of colorec-
tal cancer, concluded that the long-term use of multivitamins
containing folic acid substantially reduce the risk of developing
colorectal cancer by about 75%. The levels of folic acid, vita-
min B12, and homocysteine in patients suffering from colorectal
cancer was assessed by Chandy (68), who found that folate and
homocysteine levels did not differ significantly between the two
groups (controls and cases), while vitamin B12 levels were sig-
nificantly higher among the patients. Dahlin et al. (69) concluded
that increased plasma levels of vitamin B12, alone or together
with other factors involved in 1-carbon metabolism, may reduce
the risk of rectal cancer, whereas the association appears to be
less clear for colon cancer.

Low folate has also been associated with an increased risk
for a number of gastrointestinal cancers, including esophageal
(70,71) and stomach cancers (72–74). Krumdieck (75) studied
the hypothesis of epithelial cancers, such as the cervix, lung,
bladder and oropharyngeal region, could be due to localized de-
ficiencies in folic acid and vitamin B12. In the study of Nacci et
al. (76), in which the objective was to determine plasma levels
of homocysteine, folate, and vitamin B12 in patients suffering
from laryngeal cancer, metabolic alterations of this nutrients
levels, especially hypofolatemia, could be associated with la-
ryngeal cancer. In regard to bladder cancer, a clinical trial with
121 patients developed by Byar et al. (77) showed that when
patients who were followed for less than 10 mo were excluded,
pyridoxine provided better activity than placebo and was as
efficacious as thiotepa in reducing recurrence. However, these
results were not reproduced in other studies (78,79).

The study designed by Pais et al. (80) was performed to de-
termine if an abnormal vitamin B6 status exists in children with
newly diagnosed untreated leukemia, the most common type of
pediatric malignancy. The study was divided into 2 parts, with
the aim of measuring plasma levels of pyridoxal 5′-phosphate by
radioenzymatic assay and high-performance liquid chromatog-
raphy assay in children with leukemia. The authors found that
children with leukemia had significantly lower pyridoxal 5′-
phosphate levels than the controls and that these differences
were significant for acute lymphoblastic leukemia and for acute
nonlymphoblastic leukemia. Finally, it is noteworthy that re-
cent studies indicate the possibility that folate possesses dual
modulatory effects that depend on the timing and dose of folate
administered (81,82). Thus, the administration of this nutrient
before the existence of preneoplastic lesions may prevent tu-
mor development, while the increase of folate in the presence
of lesions may increase tumorigenesis, a fact explained by the
important role that this nutrient plays in the synthesis of nu-
cleotides (83,84).

Vitamin B1 is metabolized to thiamine pyrophosphate, the
cofactor of transketolase, which is involved in the synthesis of
ribose, required for cell proliferation. Despite the fact that vi-
tamin B1 deficiency has already been identified in patients in
advanced cancer, it becomes important to determine the benefits
of thiamine supplementation and consider the need for its use
despite the possible increase in tumor proliferation (85–87).
Comin-Anduix et al. (88) demonstrated, through the use of
oxythiamine (an irreversible inhibitor of transketolase) and the
measurement of tumor growth in mice with Ehrlich’s ascites
tumor, that the administration of thiamine strongly stimulates
ascites tumor growth depending on the dose and state of thi-
amine deficiency of tumor cells. On the other hand, the authors
found that overdoses of thiamine inhibit tumor proliferation.
Another study, developed by Liu et al. (89) established unex-
pected relationships between thiamine metabolism and genes
that may be involved in the oncogenesis of breast cancer.

Vitamin B2 deficiency was also implicated as a risk factor
for cancer but the literature relating riboflavin with cancer is
complex. Some studies indicate that riboflavin deficiency in-
creases the risk of cancer at certain sites, whereas others point
to a possible attenuating effect of riboflavin in the presence
of some carcinogens (90). Rao et al. (91) conducted a study
that evaluated plasma levels of riboflavin carrier protein (RCP),
an estrogen-inducible protein, in patients suffering from breast
adenocarcinoma. This study is the result of the observation that
other vitamin carrier proteins are overexpressed in patients suf-
fering from malignant disease. Breast cancer is estrogen-related,
and because other vitamin-binding protein-like folate-binding
protein (92) and retinol-binding protein 4 have been shown to
be overexpressed in malignant breast tissue, it was of interest to
evaluate RCP dynamics in women with breast cancer. The au-
thors analyzed the serum levels of RCP in patients with breast
cancer and with benign breast disease and in healthy controls
by RIA and found that levels of RCP were significantly higher
in women with breast cancer. A serum RCP level of >1.0 ng/ml
was highly predictive of the presence of breast cancer, demon-
strating that the levels of RCP may be useful as new markers for
breast cancer, even in early stages.

Studies in various animal species have shown that riboflavin
deficiency can lead to disruption of the integrity of the epithe-
lium of the esophagus (93), and some epidemiologic studies
have identified a relation between esophageal cancer and diets
low in riboflavin (94). Nevertheless, not all studies support this
relation (95). Recent investigations have shown that riboflavin
deficiency in rats exposed to hepatocarcinogens leads to in-
creased DNA strand breakage. Also supportive of a protective
role of riboflavin in carcinogenesis is the observation that car-
cinogen binding to DNA is increased in riboflavin-deficient rats
(96). Poor riboflavin status has also been implicated as a risk
factor for cervical dysplasia, a precursor condition for invasive
cervical cancer (97). Vitamin B2 has been recognized as an
important factor in breast cancer, as evidenced by a significant
decrease in vitamin B serum levels and elevation of its plasma
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carrier protein (91,98). Tsao et al. (99) carried out a study in
which the aim was to examine the oxidative stress and B vita-
mins status in non-small-cell lung cancer patients at different
stages. The reduced levels of vitamin B2 and B6 in red cells,
inversely correlated with plasma ghrelin, leave us a clue about
the importance of these vitamins in patients with lung cancer.

Hirakawa et al. (100) defined the effects of vitamin B3, a
vitamin with moderate radical scavenging activity, on the prolif-
eration and invasion of hepatoma cells. The effects of niacin and
trigonelline on the proliferation of AH109A cells were examined
by measuring the incorporation of (methyl-3H) thymidine into
the acid-insoluble fraction of cells for 4 h. The authors found that
niacin, trigonelline, and trigonelline-loaded rat serum inhibited
the invasion of AH109A cells and suppressed the reactive oxy-
gen species (ROS)-potentiated invasive capacity of hepatoma
cells. The mechanisms by which niacin and trigonelline inhibit
invasion remain to be elucidated.

VITAMIN C
Vitamin C is a water-soluble antioxidant and enzyme cofac-

tor present in plants and some animals. Unlike most mammals,
humans do not have the ability to synthesize this nutrient en-
dogenously and, therefore, must obtain vitamin C through diet.
There are 2 chemical forms of vitamin C: the reduced form
(ascorbic acid; AA) and the oxidized form (dehydroascorbic
acid; DHA). The reduced form is the more predominant chem-
ical structure in the human body, appearing as an essential mi-
cronutrient involved in many biochemical and biological func-
tions. The maintenance of necessary concentrations of vitamin
C to normal cellular metabolism involves 2 families of vitamin C
transporters: glucose transporters (GLUTs) and sodium-coupled
transporters (SVCTs). The transport of DHA is done through
the GLUTs, mainly GLUT1, 3, and 4, while the intake of AA
is achieved through SVCT1 and 2 (Table 2). Most tumor cells
cannot transport AA directly to his interior, which is why these
cells obtain vitamin C in its oxidized form (101,102).

AA is a potent reducing agent (antioxidant) that efficiently
quenches potentially damaging free radicals produced through
biological processes in many extracellular and intracellular re-
actions (101,103). Vitamin C also acts as a prooxidant, pro-
moting the formation of ROS, such as hydrogen peroxide, hy-

TABLE 2
Forms and types of transport of vitamin C

Vitamin C Principal Transporters

Reduced form Ascorbic acid (AA) Sodium-coupled
transporters 1 and 2
(SVCT1 and 2)

Oxidized form Dehydroascorbic
acid (DHA)

Glucose transporters 1, 3
and 4 (GLUT1, 3,
and 4)

droxyl radicals, and many others. ROS, generated in response to
high concentration of vitamin C, interacts with critical cellular
molecules and organelles and results in oxidative degradation
of these compounds in cancer cells, impairing their viability.
Vitamin C acts selectively on tumor cells because they show a
decrease of several antioxidant enzymes compared to normal
ones, so there is an increased production of ROS when exposed
to vitamin C (101,104). On the other hand, in the presence of
transition metals and due to the increased oxidation of AA to
DHA, this selective cytotoxic effect is enhanced in tumor cells
(105–107).

Taking into account these important characteristics of vita-
min C, several studies have been carried out showing the benefit
of vitamin C employment in prevention and treatment of can-
cer. The use of AA in clinical practice is controversial, although
studies have shown that supplementation of vitamin C in termi-
nal cancer patients improve their symptoms and prolong their
life. The use of vitamin C in clinical practice began in the 1970s
when Ewan Cameron, Linus Pauling, and Allan Campbell used
high doses of vitamin C as a supplement for cancer patients.
Their results were very promising for vitamin use in cancer
treatment (108,109).

In vitro studies showed the selectivity of vitamin C, since
it killed some cancer cells but not normal cells. Chen et
al. (107) showed that AA in pharmacologic concentrations
may act as a prodrug leading to the formation of ascorbate
radical (Asc•−) and hydrogen peroxide in extracellular space
(Table 3). The authors tested this hypothesis in vivo using rats,
which they injected with vitamin C in human pharmacologic
doses (0.25–0.5 mg per g of body weight). The concentration
of ascorbate in blood and in extracellular fluid was measured
by electron paramagnetic resonance (EPR). In the same study,
the differences between the various ways of administration (in-
travenous, intraperitoneal, or oral) of AA were found. Hoffer
et al. (110) demonstrated the antitumor activity of AA alone
or together with other agents in patients with advanced cancer
or hematologic malignancy who were assigned to sequential
groups infused with 0.4, 0.6, 0.9, and 1.5 g AA/kg body weight
3 times weekly. Rozanova et al. (111) conducted a study where
they conjugated vitamin C with extracts of medical herbs for
treatment of cancer cell lines. This study showed that this conju-
gation stimulated apoptosis and disrupted cell cycle. In addition,
20–40% of cells underwent apoptosis within 24 h of completing
treatment. These results suggested that vitamin C can act as a
catalyst in the treatment of cancer.

Recent in vivo studies have shown that DHA can act as an
antitumor agent, and it can react with homocysteine thiolactone,
a compound present in normal cells in large quantities, convert-
ing it to the toxic compound 3-mercaptopropionaldehyde. The
same effect has been observed in tumor cells (112). Heaney et al.
(113) used 2 cancer cell lines (leukemia and lymphoma), with
and without pretreatment with DHA to study the antagonized ef-
fect in reactive species formed by antineoplastic drugs. They de-
termined the viability, clonogenicity, apoptosis, P-glycoprotein,
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TABLE 3
Application of vitamin C to oncologic disease

Authors and Type of Study Outcomes

Chen et al. (107) In vivo AA in pharmacologic concentrations may act as a prodrug leading to
the formation of ascorbate radical and hydrogen peroxide in
extracellular space.

Hoffer et al. (110) Clinical trial AA alone or together with other agents has antitumor activity in
patients with advanced cancer or hematologic malignancy.

Rozanova et al. (111) In vitro The conjugation of vitamin C with extracts of medical herbs
stimulates apoptosis and disrupts cell cycle in several cancer cell
lines.

Toohey (112) In vitro DHA can act as an antitumor agent and can react with homocysteine
thiolactone, converting it to the toxic compound
3-mercaptopropionaldehyde in normal and tumor cells.

Heaney et al. (113) In vitro DHA causes a dose-dependent attenuation of cytotoxicity after
treatment with all antineoplastic agents tested in 2 cancer cell lines
(leukemia and lymphoma).

Chen et al. (114) In vitro Ascorbate at pharmacologic concentrations was prooxidant,
generating hydrogen peroxide-dependent cytotoxicity towards a
variety of cancer cells without adversely affecting normal cells.

Kuroiwa et al. (115) In vivo and in vitro Combination of vitamin C with sodium nitrite induce genotoxicity
due to oxidative DNA damage and elevate 8-OHdG levels in the
forestomach epithelium, but fail to initiate activity in the 2-stage
carcinogenesis rat model.

Verrax and Calderon
(116)

In vivo and in vitro Pharmacological concentrations of AA killed tumor cell lines with
high efficiency (EC50 ranging from 3 to 7 mM).

Yeom et al. (117) In vivo High concentration of AA can inhibit the angiogenesis in mice with
sarcoma cells.

ROS, and mitochondrial membrane potential of the cells. They
concluded that the pretreatment with vitamin C caused a dose-
dependent attenuation of cytotoxicity, after treatment with all
antineoplastic agents tested.

Chen et al. (114) carried out a study that showed that
ascorbate at pharmacologic concentrations was prooxidant,
generating hydrogen peroxide-dependent cytotoxicity toward
a variety of cancer cells in vitro without adversely affecting nor-
mal cells. These studies suggested that ascorbate as a prodrug
may have benefits in cancers with poor prognosis and limited
therapeutic options. Kuroiwa et al. (115) investigated the combi-
nation of vitamin C with sodium nitrite in promotion of stomach
carcinogenesis in rats and enhanced esophageal carcinogenesis
under acid reflux conditions. The purpose of this study was to
investigate whether oxidative DNA damage-associated geno-
toxicity and tumor-initiating potential are involved in the car-
cinogenesis. The results indicate that these combinations induce
genotoxicity due to oxidative DNA damage in vitro and elevate
8-OHdG levels in the forestomach epithelium but fail to initiate
activity in the two-stage carcinogenesis rat model.

Verrax and Calderon (116) proposed that high doses of AA
possess anticancer effects. This therapeutic potential has been
studied for high doses, both in vitro and in vivo. They used

several lines of cancer cells, which were exposed to AA for 2 h.
They observed that the pharmacological concentrations of AA
killed these tumor cell lines with high efficiency (EC50 ranging
from 3 to 7 mM). An in vivo study has carried out by Yeom et al.
(117) to test the carcinostatic effects of AA in mice with sarcoma
cells. The survival rate was increased by 20% in the group
that received high-dose concentrations of AA, compared to the
control. These results suggested that the high concentrations of
AA can inhibit the angiogenesis in cancer cells.

VITAMIN D
After exposure to UV radiation, 7-dehydrocholesterol is con-

verted into vitamin D in the skin. Vitamin D, also obtained
from diet and supplements, is a fat-soluble compound with an-
tiproliferative effects involved in bone development and im-
mune system (118). In the liver, vitamin D is hydroxylated to
25-hydroxyvitamin D [25(OH)D], which is then converted to
1α,25-dihydroxy vitamin D [1,25(OH)2D] in the kidneys by 1-
α-hydroxylase (119). 1-α-hydroxylase is expressed by a variety
of extrarenal tissues, suggesting that it has an important role for
autocrine/paracrine metabolism in the activity of vitamin D in
local tissues (120). 1,25(OH)2D, or calcitrol, is the active form
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486 A. C. MAMEDE ET AL.

of vitamin D, and its effects are mediated through vitamin D
receptors (VDRs) (118).

VDRs have been postulated to have a protective effect
against tumor proliferation (121,122), controlling serum lev-
els of calcium and phosphorus (123). Only a small percent-
age of 25(OH)D is hydroxylated to 1,25(OH)2D. Its levels are
tightly regulated by serum calcium and phosphate and are lim-
ited by poor renal function (124). Because of its lipophilicity,
1,25(OH)2D enters the cell, binds to the intracellular receptor
and translocates to the nucleus, where it controls the transcrip-
tion of a group of genes (124). Activities of 1,25(OH)2D with
relevance to cancer include the activation of macrophages and
affects on more than 200 genes that influence cellular prolif-
eration, apoptosis, angiogenesis, and terminal differentiation of
normal and cancer cells. Their activation requires the presence
of a vitamin D-binding protein (Gc protein) (125). A large num-
ber polymorphisms at the 3′ end of the VDR gene occur in
strong linkage disequilibrium and are linked with a poly(A) mi-
crosatellite repeat, including Bsm1, Taq1, and Apa1. Results
from in vitro evaluations suggest that these polymorphisms and
the poly(A) are involved in the regulation of gene expression and
the stability of messenger RNA (mRNA) (126). Lundin et al.
(127) found that patients without a particular VDR polymor-
phism (Taq1) had an increased risk of lymph node metastases,
in contrast with and improved survival in patients who were
homozygous for this polymorphism. Other research has shown
that there was an increased risk of breast cancer in patients
homozygous for other VDR polymorphism (bb BSMI VDR
genotype) compared with patients who were heterozygous Bb
or homozygous for the BB genotype (128).

Grant (129) demonstrated that cancer mortality rates for 13
types of cancer are inversely correlated with local solar UV-B
doses. Decreased proliferation of cells from prostate carcinoma
(130), colon carcinoma (131), melanoma (132), non-Hodgkin
lymphoma (133), ovarian carcinoma (134), and renal carcinoma
(135) was observed when vitamin D was added, which also in-
duced differentiation in other cell types, such as colonic HT cells
(136) and endometrial carcinoma cell lines (137). Zhou et al.
(138) investigated the association of surgery season and vitamin
D intake with lung cancer survival and found that patients who
had surgery in summer and patients who had a higher vitamin
D intake improved lung cancer survival.

Robsahm et al. (139) also found that the season of diagnosis
may influence the prognosis of breast, colon, and prostate can-
cer, with studies diagnosed in the fall having a 15% lower fatality
rate compared to cases diagnosed during winter. It has been re-
cently found that, in contrast with normal prostate cells, prostate
cancer cells have reduced 1-α-hydroxylase activity, responding
to 1,25(OH)2D but not to 25(OH)D treatment (140,141). Gio-
vannucci (142) showed that higher 25(OH)D has a protective
effect in the development of colorectal cancer and adenoma.
Feskanich et al. (143) examined the risk of colorectal cancer in
relation to plasma concentration of vitamin D metabolites. A
significant inverse linear association between plasma 25(OH)D

and risk of colorectal cancer was found. The association was
strong for women >60 yr at blood collection but was not appar-
ent for younger women. A beneficial relation was observed for
cancers at the distal colon and rectum but not for those at the
proximal colon. For 1,25(OH)2D, there was no evidence of an
association with cancer risk at any colorectal site. Tworoger et
al. (144) examined weather plasma concentrations of 25(OH)D
and 1,25(OH)2D were associated with risk of epithelial ovar-
ian cancer. No significant association between 25(OH)D and
1,25(OH)2D levels and ovarian cancer risk was found. When
cases diagnosed within 2 yr of blood collection were excluded,
women with adequate 25(OH)D levels had a slightly decreased
risk of ovarian cancer.

An epidemiological study done by Ahonen et al. (145) found
an association between an increased risk for subsequent earlier
appearance and more aggressive development of prostate can-
cer and low levels of 25(OH)D, especially before andropause,
which suggests that the development of prostate cancer is de-
pendent on a relatively high circulating serum androgen level.
A nonsignificant declining trend in risk of breast cancer with
increasing vitamin D intake was demonstrated by Gissel et al.
(146). A trend toward fewer cases of breast cancer in woman
with intakes of vitamin D above 400 IU (10 µg)/day was found,
associated with an 8% reduction in the risk of breast cancer. Shin
et al. (147) found that vitamin D intake of 500 IU or more per
day was associated with a significant 28% lower risk of breast
cancer in premenopausal women.

When considering multiple determinants of vitamin D expo-
sure to estimate sunlight exposure (dietary and supplementary
vitamin D, skin pigmentation, adiposity, geographic residence,
and leisure-time physical activity) in relation to cancer risk,
Giovannucci et al. (148) found that a 25(OH)D increment of
25 nmol/L was associated with 17% reduction in total cancer
incidence, a 29% reduction in total cancer mortality, and a 43%
and 45% reduction in incidence and mortality, respectively, of
digestive-system cancers.

The most investigated VDR polymorphisms for their associ-
ation with various cancers are Fok1 and Bsm1. Fok1 has been
shown to be functionally relevant, resulting in an altered trans-
lation start site (149), whereas Bsm1 seems to be associated
with different diseases (150,151). In a meta-analysis, Gandini
et al. (116) determined that the f allele at the Fok1 restriction
site was associated with a significant increase risk for cutaneous
malignant melanoma, with a risk increase attributable to the
ff genotype estimated at 21% more than the FF genotype. For
nonmelanoma skin cancer, the increased risk for the f allele
was significant, and the risk increase attributable to the ff geno-
type was estimated at 30%. At the Bsm1 restriction site, the B
allele was associated with a significant decrease of cutaneous
malignant melanoma, with a risk decrease attributable to the BB
genotype estimated at 25% less than the bb genotype. Polymor-
phisms in the 3′end (intron 8 and exon 9), the middle (exon 2),
and the 5′upstream regulatory region of the gene may influence
the expression and/or function of the VDR protein (119).

D
ow

nl
oa

de
d 

by
 [

71
.2

12
.5

9.
98

] 
at

 1
9:

55
 2

3 
M

ay
 2

01
2 



ROLE OF VITAMINS IN CANCER 487

Taylor at al. (152) and Ingles et al. (153) reported a three-
to fourfold increased risk of prostate cancer associated with
3′ polymorphisms. Subsequent studies assessing 3′ polymor-
phisms, Taq1, Bsm1, Apa1, and poly-A, or the exon 2 poly-
morphism, Fok1, produced reports of significant (154,155) and
nonsignificant (156,157) associations as well as no association
(158–160). John et al. (117) found significant risk reductions
of advanced prostate cancer with the high activity alleles Fok1
FF or Ff, Taq1 tt, and BglI BB genotypes and a nonsignificant
reduction with Cdx-2 AG or AA genotype in the presence of
high sun exposure. When compared to men with low sun ex-
posure and lack of protective genotypes, men with both high
sun exposure and protective VDR genotypes had a 33% to 54%
risk reduction. Slattery (161) also studied the role of VDR poly-
morphisms in relation to colorectal cancer. It was demonstrated
that the polyA (short), Bsm1 (BB), and Taq1 (tt) variants of the
VDR gene were associated with reduced risk of colon cancer.
Fok1 was not associated with colon cancer risk. Other studies
found that VDR Fok1 polymorphism influences development
of colorectal adenomas and that its effect may be modified by
calcium and vitamin D status. It is also known that vitamin D
plays a role in reducing the risk of colorectal cancer through
interactions with calcium (162,163).

It has been shown that vitamin D has a role in the prevention
of various types of cancer. Evidence for a role of dietary vitamin
D in endometrial cancer is still too scarce, and additional studies
of vitamin D levels are necessary (164). No clear association of
plasma vitamin D levels and ovarian cancer risk were observed
by Tworoger et al. (144). An increase of vitamin D intake above
400 IU/day may help prevent the development of breast cancer
(146). The data for breast cancer suggest a benefit from vitamin
D, but data are limited and inconclusive (142). Much about
the relationship between vitamin D and breast cancer is still
unknown (165).

VITAMIN E
Vitamin E, a fat-soluble antioxidant nutrient, is taken up in

the proximal part of the intestine, bile and pancreatic esterase
and enters the circulation via lymphatic system. It is absorbed to-
gether with lipids, packed into chylomicrons, and transported to
the liver. Vitamin E, an essential compound in cell membranes,
has specific biological activities: regulation of gene expression,
signaling, cell proliferation, and reproduction. There are differ-
ent forms of vitamin E: 4 tocopherols (α, β, γ , and δ) and 4
tocotrienols (α, β, γ , and δ). The α-tocopherol is the only form
that is maintained in human plasma and is the more abundant
form found in nature and in human tissues. After passing to the
liver, only α-tocopherol appears in the plasma due to its spe-
cific selection by the hepatic α-tocopherol transfer protein (α-
TTP). Non-α-tocopherols are poorly recognized by α-TTP. The
α-TTP and plasma phospholipid transfer protein have a well-
characterized importance in cytosol because they are responsible
for the homeostasis of vitamin E levels in the body (166–168).

There are several stereoisomers of α-tocopherol (RRR, RSS,
RSR, SSS, SRR, SSR, and SRS), but the most commonly found
in food is the RRR-α-tocopherol (also called natural or d-α-
tocopherol). The synthetic α-tocopherol (all-rac-α-tocopherol)
is found in food enriched with vitamin E, has a half-biological
activity compared to natural α-tocopherol and is 3 to 4 times
more digestible. Scavenger receptor class B Type 1 (SR-BI)
is also involved in vitamin E transport, due to its wide tissue
distribution and expression on the apical membrane under cer-
tain conditions. It’s believed that α-tocopherol might also have
the function to control pathways based on hypothetical nuclear
receptor binding. There are 2 nuclear receptor classes that re-
spond to modulation by vitamin E: pregnane X receptor (PXR,
which regulates a variety of xenobiotic pathways and responds
to a wide range of potentially toxic foreign compounds) and
the peroxisome proliferator-activated receptors (PPARs; which
have the ability to bind a variety of ligands). The specific vita-
min E α-tocopherol binds to PXR. The PPARs have an action
like a lipid sensor that translates changes in fatty acid concen-
trations into metabolic activity (169,170). Vitamin E deficiency
might be due to the deficiency in the human TTP, which can
lead to an increase of peroxidation of erythrocytes and fatty
acids, some neurological symptomatic symptoms, such as diffi-
culty in walking and severe progression of speech, lipoprotein
abnormalities, and, subsequently, poor fat absorption syndrome
(169,171,172). Therefore, the α-tocopherol is a powerful soluble
antioxidant that inhibits the destruction of lipid chain through
the detoxification of free radicals by acting as a protective agent
against several chronic diseases, such as cardiovascular disease
or cancer.

Cell proliferation and differentiation, along with apopto-
sis, are important cellular regulatory mechanisms that must be
closely controlled, being the protein kinase C (PKC) an impor-
tant signaling molecule that is involved in this process. How-
ever, α-tocopherol has been described as an inhibitor of PKC
in various cell types due to its antioxidant effects. It reacts with
the catalytic domain, inhibiting PKC activity and tumor pro-
motion (168,173). Several studies have clarified the prooxidant
effect of vitamin E and related this as a potential anticancer
agent at high doses (174). These potential effects are due to
the production of α-tocopheroxyl radical, which promotes ox-
idative stress. However, the prooxidant effect of vitamin E is
inhibited in the presence of other coantioxidants such as AA
and ubiquinol. High doses of vitamin E may displace other fat-
soluble antioxidants (e.g., γ -tocopherol), disrupting the natural
balance of antioxidant systems and increasing vulnerability to
oxidative damage, being the ROS involved in the process of
cancer initiation and promotion. Vitamin E may also inhibit hu-
man cytosolic glutathione S-transferases, which help to detox-
ify drugs and endogenous toxins that promote oxidative stress
(175,176).

During the last two decades, scientists have been focused
in the role of vitamin E in cancer, and many studies have
been carried out (177,178). However, many of these studies are
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contradictory. Vitamin E could be an important protective agent
against lung cancer, as demonstrated by Quin et al. (172). These
scientists showed that vitamin E and succinate (VES) reduce
cell proliferation in vitro and in vivo. The human A549 cell line
was exposed to VES for 24 h and, as a result, cell proliferation
was inhibited in a concentration-dependent manner with an IC50

of approximately 18 µg/mL. In vivo studies were carried out
using 25 female athymic nude mice. Tumor inoculation was per-
formed, and, after 7 days, the scientists calculated tumor volume.
One group of mice received a daily dose of 150 mg/kg of VES
during 5 days, followed by 2 days of rest, for 20 days. Twenty
days after initiation of treatment, volume tumor was calculated
and mice were sacrificed. This study confirmed inhibition of
cellular proliferation of human A549 cells to in vitro study of
VES, and an in vivo study demonstrated that tumor growth in
VES mice was significantly decreased relative to control mice
(P < 0.001).

Bermudez et al. (179) studied the effect of vitamin E in sup-
pression of telomerase activity in ovarian cancer cells. They
used 2 cell lines of ovarian cancer that were cultured with and
without D-alpha-tocopheryl acetate (vitamin E). In this study,
it is suggested that, by suppressing telomerase activity, vitamin
E may be an important protective agent against ovarian cancer
cell growth, as well as a potentially effective therapeutic adju-
vant. On the other hand, Mitchel and McCann (177) made an
in vivo study using mice (female SENCAR mice 6–8 wk old)
to study the possibility of vitamin E as a promoter of skin tu-
mor. They applied vitamin E (8 or 80 µmol) twice per week
in the dorsal skin region where a single topical of DMB (7,12-
dimethylbenz(a)anthracene) was previously applied. At the end
of the course of twice-weekly treatments with the tumor promot-
ing agent (vitamin E), the total number of visible tumors on each
mouse was recorded along with the number of live animals in the
group. They concluded that vitamin E has a tumor-promoting
activity at high concentrations. However, when vitamin E was
applied in low concentrations, no tumor was observed. Scientist
believes that vitamin E selectively reacts with the regulatory

domain of PKC, stimulating its activity and signaling for tumor
promotion.

In the last 2 decades, many studies demonstrated the poten-
tial anticancer effects of vitamin E in prostate cancer, alone or
combined with other nutrients. In 2005, it was believed that
vitamin E, alone or combined with selenium, has protective
effects against prostate cancer due to both antioxidant and an-
ticancer properties that inhibit specific cellular processes in the
development of this cancer. Lippman et al. (180) concluded that
selenium, vitamin E, or selenium plus vitamin E did not prevent
prostate cancer in the generally healthy, heterogeneous popula-
tion of men. These findings also compel the medical research
community to continue the search for new, effective agents for
prostate cancer prevention.

VITAMIN K
Vitamin K exists in 3 natural and synthetic different forms

(Table 4). Vitamin K1 (phylloquinone) is a natural form of
the vitamin K and is mostly found in green leafy vegetables.
Vitamin K2 (menaquinone) is also a natural form and is syn-
thesized by the intestinal flora. Vitamin K3 (menadione) is a
synthetic analogue, a derivative of vitamin K1 and K2, and a
provitamin (181). Physiologically, natural vitamin K works as a
cofactor of g-glutamylcarboxylase, which, in turn, catalyzes the
carboxylation of glutamate residues into g-carboxyglutamate in
prothrombin and the vitamin K-dependent coagulation factors
VII, IX, and X, and protein C and S, as well as other proteins.

The investigation of the antitumor action of vitamin K started
in 1947. Vitamin K1 has been found to exhibit anticancer activity
against a number of cell lines, including liver, colon, lung, stom-
ach, nasopharynx, breast, oral epidermoid cancer, and leukemia
(182). Oztopcu et al. (183) found no activity from K1 on the
proliferation of C6 (rat glioma) and low passage human glioma
cell proliferation. In a study conducted by Carr (184), a 20%
tumor response rate was achieved in 40 hepatocellular carci-
noma patients receiving 40 mg of oral K1 daily. Five patients

TABLE 4
Different forms of vitamin K and its suspected anticancer activity

Forms of Vitamin K Suspected Anticancer Activity

K1 (phylloquinone) Natural form Anticancer activity against liver, colon, lung, brain, stomach, nasopharynx,
breast, oral epidermoid cancer, and leukemia

K2 (menaquinone) Natural form Anticancer activity against liver, colon, leukemia, lung, stomach, lymphocyte,
head, nasopharynx, breast, and oral epidermoid cancer

K3 (menadione Synthetic
form

Anticancer activity against liver, cervix, nasopharynx, colon, lung, stomach, and
breast cancer, as well as leukemia and lymphoma. Some results have
suggested that co-administration of vitamin C and K can increase the potential
toxicity of these vitamins. Vitamin K3 administered in combination with
chemotherapeutic agents, enhances their antitumoral abilities.
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survived longer than 1 yr on the treatment. In another study
conducted by the same team, 30 patients with hepatocellular
carcinoma received 40 mg of oral K1 daily. Out of the 30 pa-
tients, 6 had disease stabilization, and 7 had a partial response.
In 15 patients, the undercarboxylated prothrombin normalized,
and in 7 other patients, liver function improved with no resulting
coagulopathy.

Vitamin K2 has also been proved to have anticancer ef-
fects, which was shown by both in vitro and in vivo studies.
Liver, colon, leukemia, lung, stomach, lymphocyte, nasophar-
ynx, breast, and oral epidermoid cell lines have been screened
(182). Sun et al. (185) showed that vitamin K2 induced growth
inhibition in a dose-dependent manner for glioma cells in both
rat and human cell types via cell cycle arrest and apoptosis. In
a study conducted by Takami et al. (186), an 80-yr-old woman
with myelodysplastic syndrome received an oral dose of 45
mg/day of vitamin K2. After 14 mo, an improvement in her
pancytopenia was seen, and transfusions were no longer needed.
Vitamin K2 induced apoptosis in a dose-dependent manner in
glioma, hepatoma, and leukemia cell lines, as well as induced
cell cycle arrest in the G0G1 transition (185,187). Yaguchi et al.
(188) tested MK-4, a naturally occurring vitamin K2 analogue,
with leukemic blast cells and was found to induce apoptosis in
90% of leukemic blast cells.

Due to its inability to employ 1-electron redox cycling, vi-
tamin K2, and presumably vitamin K1, must initiate apoptosis
through a nonoxidative mechanism, which appears to involve
transcription factors (189). The first mechanism consists of the
production of ROS, via the 1-electron cycling of the quinone.
The oxidative capacity of the cell is surpassed by the increased
redox-cycling of menadione and the production of ROS, which
results in its death. The second mechanism focuses on cell cy-
cle arrest and apoptosis induced by modulation of transcription
factors (190).

Vitamin K3 may act by 2 different mechanisms. At higher
levels, it initiates an oxidative action and necrosis or autochizis.
At lower levels, it acts by a nonoxidative mechanism, inducing
apoptosis (191). Vitamin K3 has been found to exhibit antitu-
mor activity against the liver, cervix, nasopharynx, colon, lung,
stomach, breast, leukemia, and lymphoma cell lines (192,193).
Vitamin K3 acts as a radiosensitizing agent that was discovered
to increase the survival time in inoperable bronchial carcinoma
patients (194). Some results have suggested that coadministra-
tion of vitamin C and K can increase the potential toxicity of
these vitamins. Vitamin C and K3 activate apoptosis or cause
cell necrosis, depending on the dose, duration of exposure, and
the subsequent amount of oxidative stress (195).

When the two vitamins are combined, their interaction stim-
ulates the reduction of vitamin K3 via 1-electron reduction and
increases the rate of redox cycling of the quinone (196). Noto et
al. (197) combined vitamin C and vitamin K3 in a ratio of 100:1.
The combination exhibited specific antitumor activity against
human oral epidermoid, breast, and endometrial tumor cell lines
at lower doses than when either vitamin was administered alone.

In another study, Taper et al. (198) showed that the combina-
tion between vitamins C and K3 is an effective chemosensitizer
and radiosensitizer that induces little systemic or major organ
pathology. Jamison et al. (199) demonstrated vitamin C and K
synergistic antitumor activity against 2 androgen-independent
human prostate cancer cell lines and other urologic tumor cell
lines.

Venugopal et al. (200) reported, more recently, that the
growth rate of solid tumors in nude mice could be significantly
reduced by administration of clinical doses of oral vitamins. As
verified by Noto et al. (185), vitamin K3 (13.8 µg/mL) produced
a 50% inhibition of breast cancer cell lines and, when combined
with vitamin C (99.01 µg/mL), K3 (1.38 µg/mL) increased in-
hibition by 74%. When both vitamin C and K3 concentrations
were increased (104 µmol/L and 105 nmol/L, respectively), a
93% inhibition was produced. Venugopal et al. (188) found that
the co-administration of vitamins K3 and C enhanced the cy-
totoxic antitumor effect by five- to 20-fold over either single
agent in human prostate carcinoma cell lines. What character-
izes the cytotoxic action of the combination of vitamin C and
K3 is a cell death process called autoschizis, in which cyto-
plasm is extruded, leaving an intact nucleus (201). Taper (202)
found that vitamin K3 selectively reactivated alkaline DNAse
in malignant tumor cells, whereas vitamin C exclusively reac-
tivated acid DNase, both of which have been demonstrated to
have their activity inhibited in non-necrotic cells of malignant
tumors in men and in experimental animals, as well as during
the early stages of experimental carcinogenesis (203–204). It
was also found that these 2 vitamins potentiated the effects of
chemotherapy induced by 6 different cytotoxic drugs (198).

Many studies have demonstrated that vitamin K3 admin-
istered in combination with chemotherapeutic agents enhances
their antitumoral abilities (190). In vivo and in vitro studies con-
ducted by Waxman and Bruckner (205) showed a synergistic ef-
fect when vitamin K3 was combined with 5-fluorouracil, a con-
ventional chemotherapeutic agent. This combination enhanced
the action against hepatoma cells. Gold (206) demonstrated a
99% inhibition of tumor growth when combining methotrex-
ate (0.75 mg/kg/day) with menadione (250 mg/kg/day). Nutter
et al. (207) has also shown that vitamin K3 can enhance the cy-
totoxic effect of some clinically useful anticancer agents, having
an action against multidrug resistant human cancer cell lines,
and was thought to have less serious toxic effects (207,208). Ni
et al. (181) found that Cpd5, a synthetic vitamin analog, is a
more potent growth inhibitor and apoptosis inducer than vita-
min K for HepB cells. Various studies demonstrated that cell
death induced by vitamin K3 is associated with apoptosis and
overexpression of c-myc gene, which is considered to be related
to apoptosis (190). It has also been shown that vitamins K1 and
K2 have cell growth inhibitory effects in vitro, although these
effects are weaker than those of vitamin K3 (190).

Vitamin K is a good option for cancer treatment that can be
easily introduced into the classical protocols of clinical cancer
therapy without any risk for patients (209). Another benefit is
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its antitumoral activity on multidrug resistant human cancer cell
lines and the fact it has less serious toxic side effects (207,208).

CONCLUSION
The vitamins and other micronutrients have attracted the

attention of the scientific community in recent decades, and it
has become clear that they play an important role in the etiology
of many diseases, including cancer. With respect to cancer, the
results obtained so far are not conclusive but are optimistic.
To understand if vitamins and other micronutrients may play a
role in the prevention and treatment of cancer, more studies are
needed to clarify the mechanism of action.
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