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A novel coronavirus (SARS-CoV-2) first detected in Wuhan, China, has spread rapidly
since December 2019, causing more than 80,000 confirmed infections and 2,700 fatalities
(as of Feb 27, 2020). Imported cases and transmission clusters of various sizes have been
reported globally suggesting a pandemic is likely.
Here, we explore how seasonal variation in transmissibility could modulate a SARS-
CoV-2 pandemic. Data from routine diagnostics show a strong and consistent seasonal
variation of the four endemic coronaviruses (229E, HKU1, NL63, OC43) and we pa-
rameterize our model for SARS-CoV-2 using these data. The model allows for many
subpopulations of different size with variable parameters. Simulations of different sce-
narios show that plausible parameters result in a small peak in early 2020 in temperate
regions of the Northern Hemisphere and a larger peak in winter 2020/2021. Variation
in transmission and migration rates can result in substantial variation in prevalence
between regions.
While the uncertainty in parameters is large, the scenarios we explore show that transient
reductions in the incidence rate might be due to a combination of seasonal variation and
infection control efforts but do not necessarily mean the epidemic is contained. Seasonal
forcing on SARS-CoV-2 should thus be taken into account in the further monitoring
of the global transmission. The likely aggregated effect of seasonal variation, infection
control measures, and transmission rate variation is a prolonged pandemic wave with
lower prevalence at any given time, thereby providing a window of opportunity for better
preparation of health care systems.

On Jan 30, 2020, the World Health Organisation
(WHO) declared the spread of a new coronavirus, SARS-
CoV-2 (Gorbalenya, 2020), as a public health emer-
gency of international concern (WHO Emergency Com-
mittee, 2020c). The virus was first identified in pa-
tients with pneumonia in the city of Wuhan in the Hubei
province, China, in December 2019 (Liangjun et al.,
2020). The clinical presentation of the illness caused by
SARS-CoV-2, called COVID-19, appears to range from
mild or asymptomatic to severe and fatal respiratory ill-
ness (WHO Emergency Committee, 2020a), but the ex-
act spectrum of disease presentation is still unclear. The
potential for global spread, i.e. a pandemic, of SARS-
CoV-2 is currently not known, but the virus has spread
at an alarming rate in Wuhan, the epicenter of the out-
break. Furthermore, the virus has spread to all provinces
of China and small clusters of local spread have been re-
ported from several countries, e.g. Singapore, Germany,
and the UK (Rothe et al., 2020; Singapore Ministry of
Health, 2020; WHO Emergency Committee, 2020a).

The basic reproduction number (R0), which describes
the average number of new infections per infected SARS-
CoV-2 case, has been estimated to be around R0 = 2− 3
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(2.2 with 90% high density interval 1.4–3.8 (Riou and Al-
thaus, 2020) or 2.7 with a 95% CrI of 2.47–2.86 (Wu et al.,
2020)). Higher estimates have also been reported (Sanche
et al., 2020; Yang et al., 2020). Importantly, R0 is not a
biological constant for a pathogen, but is affected by fac-
tors such as environmental conditions and the behaviour
of infected individuals. One such environmental factor is
climate which modulates transmissibility throughout the
year. As a result, many respiratory viruses show clear
seasonal variation in prevalence; the most well-known
example being seasonal influenza which peaks every win-
ter in the temperate zone of the Northern Hemisphere
(Petrova and Russell, 2018). A similar pattern is seen
for the four seasonal human coronaviruses: HKU1, NL63,
OC43 and 229E (hereafter collectively referred to as “sea-
sonal CoVs”) (Al-Khannaq et al., 2016; Friedman et al.,
2018; Galanti et al., 2019; Góes et al., 2019; Huang et al.,
2017; Killerby et al., 2018). These viruses cause respi-
ratory infections which usually are mild and primarily
affect young children.

Previous influenza pandemics have swept the world in
multiple waves often but not always coinciding with win-
ter months in temperate climates (Amato-Gauci et al.,
2011; Taubenberger et al., 2019; Viboud et al., 2005,
2016). The 1968-1970 global influenza pandemic was
sparked by a new influenza A/H3N2 virus, with a diver-
gent hemagglutinin protein, which replaced the A/H2N2
virus circulating for 10 years previously (Viboud et al.,
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2005). The virus spread rapidly, but the viral dynam-
ics and mortality was not synchronized across countries.
While many experienced two more-severe flu seasons in
the winters of 1969 and 1970, the US had higher mortal-
ity in the first season, while European countries, Japan,
and Australia, had higher mortality in the second, and
Canada had roughly equal mortality in both (Viboud
et al., 2005).

The 2009 pandemic H1N1 virus (A/H1N1pdm09) orig-
inated in March 2009 in Mexico and spread around the
globe within weeks. Only a few European countries saw
substantial circulation of H1N1pdm09 in the spring of
2009. Instead the virus showed low prevalence over the
summer and pronounced peaks in the following autumn
and winter in many countries (Amato-Gauci et al., 2011).
A/H1N1pdm09 has subsequently transitioned into a sea-
sonal pattern causing winter epidemics in temperate cli-
mates.

Here we use data on seasonal variation in prevalence of
seasonal CoVs in Sweden and model the impact of this
variation on the possible future spread of SARS-CoV-2
in the temperate zone of the Northern Hemisphere. We
also explore different scenarios of SARS-CoV-2 spread in
temperate and tropical regions and show how variation in
epidemiological parameters affects a potential pandemic
and the possibility of transitioning to an endemic state.

I. SEASONAL CORONAVIRUS PREVALENCE

Data on seasonal variation of HKU1, NL63, OC43
and 229E diagnoses in respiratory samples was obtained
from the routine molecular diagnostics at the Karolinska
University Hospital, Stockholm, Sweden. The labora-
tory provides diagnostic services to six of seven major
hospitals and approximately half of outpatient care in
the Stockholm county (2.2 million inhabitants). We ex-
tracted pseudonymized data on all analyses for the four
viruses between Jan 1, 2010 and Dec 31, 2019. The
dataset included a total of 52,158 patient samples with
190,257 diagnostic tests, of which 2,084 were positive for
any of the coronaviruses (229E = 319; NL63 = 499; OC43
= 604; HKU1 = 355; OC43/HKU1 = 307). Metadata
included information about date of sampling and age of
patient. In the period of Jan 1, 2010 to Nov 5, 2017, the
coronavirus diagnostic was done using in-house assays
(Tiveljung-Lindell et al., 2009). From Nov 6, 2017 to
Dec 31, 2019, samples were analysed using the commer-
cial kit Allplex Respiratory Panels (Seegene Inc., Seoul
(South Korea)). This commercial kit does not distinguish
between HKU1 and OC43, and for this reason positive
tests for these two viruses were combined for the entire
study period.

The fraction of tests that were positive for the four
seasonal CoVs showed a strong and consistent seasonal
variation, see Fig. 1. From December to April approx-

imately 2% of tests were positive, while less than 0.2%
of tests were positive between July to September, i.e. a
10-fold difference (Fig. 1, right). The strength of varia-
tion of the transmission rate through the year could be
of high relevance to the spread of SARS-CoV-2 in 2020
and following years.

II. BASIC MODEL

We consider simple SIR models (Kermack and McK-
endrick, 1991) with an additional category E of exposed
individuals of the form

d

dt
S = b(1− S)− β(t)SI

d

dt
E = β(t)SI − µE

d

dt
I = µE − (ν + b)I

R = 1− S − I − E

(1)

where β(t) is the rate at which an infected individual in-
fects a susceptible one, µ is the inverse incubation time, ν
is the recovery rate and b is the population turn-over rate.
Depending on the analysis below, we implement several
such populations that exchange individuals through mi-
gration, for details see Supplementary Methods. Stochas-
ticity is implemented through Poisson resampling of the
population once every serial interval µ−1 + (ν + b)−1.
The population turnover b rate is immaterial for a pan-
demic scenario, but important for our analysis of sea-
sonal CoVs, and should be interpreted as the sum of the
birth rate and the rate at which previously immune in-
dividuals become susceptible due to immune waning and
escape. We review general properties of such model in
the Supplementary Materials. Following previous work,
we parameterize transmissibility as

β(t) = β0 (1 + ε cos(2π(t− θ))) (2)

where β0 is the average annual infection rate, ε is the am-
plitude of seasonal forcing which modulates transmissibil-
ity through the year, and θ is the time of peak transmis-
sibility (Chen and Epureanu, 2017; Dushoff et al., 2004).
For simulations of the pandemic, we will add an addi-
tional term to β(t) that accounts for infection control
measures in heavily affected areas, see Supplementary
Materials.

III. MODEL PARAMETERIZATION USING SEASONAL
COV OBSERVATIONS

Seasonal CoVs are endemic throughout the world and
we therefore expect that viruses are imported throughout
the year. We model this import through migration of
susceptible individuals with rate m that return exposed
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FIG. 1 Seasonal variation in the fraction of positive CoV tests in Stockholm, Sweden. The left panel shows test
results between 2010 and 2019. The right panel shows aggregated data for all years. All CoVs show a marked decline in summer
and autumn, with HKU1/OC43 peaking January–December, and NL63 and 229E peaking in February–March.
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FIG. 2 Compatibility of SIER model trajectories with
observations. The heatmap shows the inverse mean squared
deviation between the model trajectories and the observed
seasonal forcing in seasonal CoV prevalence. Model and ob-
servations are compatible (yellow shading) in a region of pa-
rameter values corresponding to low migration/weak season-
ality and second region at high migration/strong seasonality.
Migration refers to the rate per year of a susceptible to return
from a abroad with a CoV infection.

with probability x. Humans develop immune responses
to CoVs rapidly and subsequent challenge studies show
reduced susceptibility and less severe disease for a year
(Callow et al., 1990). Antibodies against SARS-CoV-
1 persist for several years (Guo et al., 2020). This is
consistent with the observation that about 50% of all
positive samples in our data come from patients older
than 10 years with a flat distribution across age groups.
In analogy to the attack rate of seasonal influenza, we

assume humans suffer from a seasonal CoV infection on
average every 10 years (b = 0.1/y). Furthermore, we
use 〈R0〉 = 2.3, a recovery rate of 0.2days−1, and an
incubation period of 5 days.

With these assumptions, we can solve the model
and compare the resulting trajectories to the sea-
sonal variation in prevalence of seasonal CoVs, see
Fig. 2. In Stockholm, seasonal variation of CoVs (espe-
cially HKU1/OC43) is very consistent across years (see
Fig. S3). We therefore fit the SIER model to the av-
erage seasonal variation across years by calculating the
squared deviation of observed and predicted prevalence
relative to their respective mean values. Simulations of
the model are compatible with observations in two sepa-
rate regions of parameter space: If Northern Europe was
very isolated with less than 1 in 1,000 susceptible individ-
uals returning with a seasonal CoV infection from abroad
each year, weak seasonality of around ε = 0.15 would be
sufficient to generate strong variation through the year
compatible with observations (Fig. 2, bottom-left ridge).
In this regime, prevalence is oscillating intrinsically with
a period that is commensurate with annual seasonal os-
cillations giving rise to a resonance phenomenon with an-
nual or biennial patterns even for weak seasonal forcing
(Chen and Epureanu, 2017; Dushoff et al., 2004).

If the rate of import of seasonal CoV infections is
higher, imports dampen the resonance and much stronger
seasonality, with values between ε = 0.3 and 0.7, is re-
quired to fit the observations (Fig. 2, top-right-and-center
ridge). In this regime, seasonal variation in transmissi-
bility modulates the size of micro-outbreaks triggered by
imported cases in a mostly immune population.

These two scenarios differ slightly in the time of year
at which peak transmissibility θ occurs: When trans-
mission is mostly local and seasonality is amplified by
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resonance, θ needs to be around October–November to
fit the data with most cases in December–January. In
the second scenario with high connectivity, θ needs to be
in December–January coinciding with the peak in preva-
lence. Given that most countries are highly connected,
we focus here on exploring the high-import and strong
seasonal forcing scenario. This scenario, with maximal β
in mid-winter, is also more compatible with climate vari-
ation around the year. The qualitative behavior of the
fit is robust to uncertainty in R0 and the frequency of
reinfection b.

IV. SCENARIOS FOR SARS-COV-2 PANDEMICS IN 2020
AND 2021

The analysis of seasonal CoV prevalence patterns al-
lowed us to constrain parameter ranges and explore dif-
ferent scenarios of SARS-CoV-2 spread around the globe,
in particular in temperate climates like Northern Europe.
Here we explore scenarios where temperate regions have
a seasonal forcing of between ε = 0.3 and 0.7 and mi-
gration rates of 0.01/year. Early estimates suggest an
incubation time of about 5 days and an average serial
interval of 7-8 days (Wu et al., 2020). Our model uses an
average incubation time of 5 days (Backer et al., 2020)
and an infectious period of 5 days.

To match the R0 estimates for the early outbreak with
our parameterization of transmissibility in Eq. 2 we need
to account for the fact that December/January are win-
ter months in Hubei and peak transmissibility in Hubei
likely corresponds to θ ≈ 0 (0 being the beginning of the
year, so a θ in December/January). An R0 ≈ 3 in winter
in Hubei and a seasonal forcing of ε = 0.4 implies an
annual average 〈R0〉 = β0/ν = 2.2. This reasoning leads
to our parameter choice of β0 = 158/year, ν = 72/year,
θ = 0. We assume the outbreak started at t = 2019.8 in
Hubei with one infected individual and use N = 6× 107

as population size. To incorporate infection control mea-
sures, transmissibility is reduced by 50% once prevalence
reached 3% (third order Hill-function, see Supplemental
Material). Introductions to a location like Northern Eu-
rope with ε = 0.5 (i.e. slightly stronger seasonal forcing
then Hubei) are assumed to happen at a rate of 0.01 per
year for each infected individual elsewhere. The simu-
lation of the SIER model in different regions is deter-
ministic, but migration is implemented stochastically by
Poisson resampling of the average number of migrating
individuals. Fig. 3 shows simulated trajectories of SARS-
CoV-2 prevalence in the temperate Northern Hemisphere
assuming the outbreak started in Hubei early Decem-
ber 2019. Depending whether the peak transmissibil-
ity of SARS-CoV-2 in the northern temperate zone is in
November, January, or March, the simulation predicts a
main peak in the first half of 2020, a main peak in winter
2020/2021, or two similarly sized peaks.

To explore possible scenarios more systematically, we
ran such simulations for a range of values for R0 and peak
transmissibility θ and recorded whether we observe and
early peak, a late peak, or a two peaks. The right panel
of Fig. 3 shows the ratio of the height of these peaks for
different values. Rapid growth (high R0) and late trans-
mission peaks result in a large peak in the first half 2020,
while lower R0 and transmission peaks in early winter
favor a large secondary peak. These two scenarios are
separated by a band of parameter values that give rise
to two pandemic waves in the winters of 2020 and 2021
in the Northern Hemisphere. Individual trajectories for
a variety of parameter combinations are given in Fig. S4.
The qualitative behavior is robust to model perturba-
tions and parameter variation as long as seasonal forcing
is strong. With weak forcing (ε = 0.15), the model pre-
dicts a single peak for most combinations of 〈R0〉 and
migration rates (see Fig. S5).

The uncertainty in parameter values and the poten-
tial impact of infection control measures imply that all
scenarios are plausible and should be considered when
developing pandemic prevention and containment strate-
gies.

V. GLOBAL PROJECTIONS

In absence of control measures, outbreaks initially
grow exponentially within well-mixed communities, and
at a certain rate the virus will be carried to other re-
gions and potentially seed new outbreaks. Such export
to new locations is initially unlikely, but becomes next to
certain once the outbreak size exceeds the inverse prob-
ability that a given individual migrates while infected.
We have witnessed such rapid dispersal to SARS-CoV-2
to many countries across the globe during January and
February 2020.

Every location has a different socio-economic profile
such that the growth rate of the epidemic (and hence
R0) might differ. The superposition of many such sub-
populations with a range of 〈R0〉 values and seasonal
variation in transmission will result in dynamics that
are qualitatively different from a single population SIR
model. In particular, such variation result in a pandemic
spread out over 2 years before the virus possibly becomes
endemic.

Fig. 4 shows the result of such a simulation of 1,000
populations. Populations were divided between northern
temperate (50%), southern temperate (10%), and tropi-
cal (40%) and assigned parameters as follows:

• 〈R0〉 was drawn from a normal distribution with
mean 2.2 (see Supplementary Fig. 7 for 〈R0〉 = 1.5
and 3.0) and standard deviation 0.5.

• Seasonal forcing ε was drawn from a uniform distri-
bution between 0.25 and 0.75 for temperate regions,
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FIG. 3 Model predictions for SARS-CoV-2 case numbers in temperate zones for a pandemic scenario. The
left panel shows example trajectories assuming SARS-CoV-2 transmissibility peaks in November, January, or March. These
outbreaks in Northern Europe (‘NE’) are assumed to be seeded by the outbreak in Hubei (model trajectory shown as a
dashed line). Within the model, these cases are exported at rate of 0.01/year to temperate Northern Europe with an average
〈R0〉 = 2.2 and seasonal forcing of ε = 0.5. Corresponding graphs for different values of 〈R0〉 and the migration rate are shown
in Supplemental Fig. S4. The right panel shows the ratio of the first and second peak for a range of different combinations of
R0 and θ. The yellow area corresponds to parameter combinations with essentially only an early peak similar to the yellow
line on the left. The blue/purple area shows parameter combinations for which a peak in late 2020 dominates, as with the
purple line on the left, while the central pink/orange band shows the combinations giving rise to two comparable peaks. These
simulations are for ε = 0.5. Similar results were obtained for ε = 0.3 and 0.7, see Supplementary Fig. 6.

between 0 and 0.2 for tropical regions.

• Peak transmissibility θ of temperate regions was
drawn from normal distributions with standard de-
viation 0.1 and peak at 0 for northern regions and
0.5 for southern regions. θ for tropical regions was
chosen uniformly from between 0 and 1.

• Population sizes were drawn from a log-normal dis-
tribution with σ = 1 and a mean such that all pop-
ulations sum to 7.6 billion.

• Migration rates were sampled from a log-normal
distribution with σ = 1 and a mean of 0.01.

For Hubei, we use the same parameters as described in
section IV.

The variation in R0 and migration rate result in a
super-position of fast and slow epidemics seeded at dif-
ferent times. The initial phase is dominated by fast epi-
demics driving rapid dispersal, in particular in the trop-
ics, while slow epidemics dominate later in 2020 and
2021. With the parameter setting used in Fig. 4, the
Northern temperate regions see most circulation in win-
ter 2020/2021. In accordance with Fig. 3, this peak shifts
more towards early 2020 for higher R0, see Supplemen-
tary Fig. 7.

After several years, SARS-CoV-2 could become a sea-
sonal CoV with characteristic winter outbreaks as shown
in Fig. 1. Such a scenario is demonstrated in Fig. 5 where
a simulation similar to the one shown in Fig. 4 is run for

12 years, with the added assumption that after infection
an individual become susceptible to SARS-CoV-2 again
at a rate of 0.1 per year as we assumed for seasonal CoV
above. After a pronounced low in 2020-2024, prevalence
recovers and settles into a seasonal pattern, similar to
that of the four existing seasonal CoVs.

VI. DISCUSSION

We report on the possible influence of seasonal varia-
tion on the spread of SARS-CoV-2 in the Northern Hemi-
sphere, in a pandemic scenario. We find that seasonal
variation in transmissibility has the potential to modu-
late the spread of SARS-CoV-2 with a wide range of pos-
sible outcomes that need to be taken into account when
interpreting case counts and projecting the outbreak dy-
namics. The onset of spring and summer could, for exam-
ple, give the impression that SARS-CoV-2 has been suc-
cessfully contained, only for infections to increase again
in 2020-2021 winter season. Even in Hubei virus circu-
lation might decrease due to containment measures and
the arrival of spring but might increase again towards the
end of the year. Whether a pandemic in the temperate
regions of the Northern Hemisphere would peak early in
2020, late in 2020, or show multiple waves as H1N1pdm
did in 2009, depends on the timing of peak transmissibil-
ity and the rate of spread (R0 and serial interval).

This study is meant as an exploration of how such a
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FIG. 5 Transition to an endemic seasonal virus. If
previously infected individuals can be reinfected after some
time, as for example by seasonal influenza virus, SARS-CoV-
2 could develop into a seasonal CoV that returns every winter.
This would typically happen at much lower prevalence than
peak pandemic levels. These simulations assume reinfection
on average every 10 years.

pandemic could unfold, not as a prediction of any partic-
ular scenario. The results we present are critically depen-
dent on the assumptions i) that the outbreak will develop
into a pandemic, ii) that the transmissibility of SARS-
CoV-2 shows seasonal variability of sufficient strength
(range ε = 0.3 to 0.7), and iii) that parameters like R0

estimated from the early phase of the outbreak are com-
parable in other populations.

These assumptions are not implausible but not cer-
tain: cases of SARS-CoV-2 has been in several countries
in Asia apart from China, as well as in Europe, Africa,
North America, and Australia (WHO Emergency Com-
mittee, 2020b), and mild or asymptomatic cases make
detection and thus prevention of spread by isolation chal-
lenging, e.g. airport screening as a preventive measure is
unlikely to prevent spread and local seeding (Quilty et al.,
2020). Person-to-person transmission of the virus has
been documented in several countries outside of China,
including large outbreaks in Iran, South Korea, and Italy
(European Centre for Disease Prevention and Control
(ECDC), 2020). It is likely that not all exported cases
have been detected, and some may have seeded outbreaks
outside of China that have yet to be detected.

The seasonal CoVs show a strong and consistent sea-
sonal variation, and modeling suggests that this requires
strong variation in transmissibility throughout the year.
It should be noted, however, that SARS-CoV-2 does
seem to transmit in tropical climates like Singapore, and
so winter is not a necessary condition of SARS-CoV-2
spread. Furthermore, our models are compatible with
work by Luo et al. (2020) showing that recent trends in
different regions across East-Asia imply that seasonality
alone is unlikely to end SARS-CoV-2 spread. Precise val-
ues for the underlying model parameters and the effect of
infection control measures are currently unavailable. For
this reason we explored a range of parameter values to
assess the robustness of the results to model assumptions.

The simulations presented here are scenarios that
emerge from simplified abstract models, but they never-
theless demonstrate that a wide variety of outcomes are
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compatible within the limits of the current knowledge
about the outbreak. The implications of our work are
that: 1) reductions in prevalence need not be attributable
to successful interventions, but could be due to seasonal
variation in transmissibility, 2) sub-population dynamics
can differ greatly, meaning that case count trajectories
in one country should be used cautiously to inform pro-
jections in a second country, even in the same climate
zone, 3) seasonal variation might slow down a pandemic
and thereby provide a window of opportunity for better
preparation of health care systems world-wide by scal-
ing up capacity for care and diagnostics, and potentially
through rapid development of antivirals and vaccine, and
4) after several years SARS-CoV-2 could develop into an
endemic seasonal CoV similar to the transition of the
2009 A/H1N1 pandemic influenza virus into a seasonal
influenza virus.

The overall impact of a potential SARS-CoV-2 pan-
demic depends critically on the case fatality ratio (CFR),
which we have not modelled here. At present, uncer-
tainty in the CFR is high due to likely over-representation
of severe cases in the statistics and a delay between diag-
nosis and recovery/death (Battegay et al., 2020). Even
with this unknown, seasonal variation in transmissibil-
ity of SARS-CoV-2 and underlying differences in migra-
tion, introduction times, and attack rate should thus
be taken into account when monitoring and projecting
global transmission, planning further surveillance of the
epidemic, and developing pandemic prevention and con-
tainment strategies.

VII. CODE AND DATA AVAILABILITY

All relevant data and script that generate the graphs
are available in a dedicated github repository at github.
com/neherlab/CoV_seasonality.
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