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SUMMARY

Vitamin D has multiple roles, including the regulation
of bone and calcium homeostasis. Deficiency of
25-hydroxyvitamin D, the major circulating form of
vitamin D, is associated with an increased risk
of age-related chronic diseases, including Alz-
heimer’s disease, Parkinson’s disease, cognitive
impairment, and cancer. In this study, we utilized
Caenorhabditis elegans to examine the mechanism
by which vitamin D influences aging. We found that
vitamin-D3-induced lifespan extension requires the
stress response pathway genes skn-1, ire-1, and
xbp-1. Vitamin D3 (D3) induced expression of
SKN-1 target genes but not canonical targets of
XBP-1. D3 suppressed an important molecular pa-
thology of aging, that of widespread protein insolu-
bility, and prevented toxicity caused by human
b-amyloid. Our observation that D3 improves protein
homeostasis and slows aging highlights the impor-
tance of maintaining appropriate vitamin D serum
levels and may explain why such a wide variety of
human age-related diseases are associated with
vitamin D deficiency.

INTRODUCTION

Our understanding of the role of vitamin D has grown significantly

over the last several yearswith evidence that low levels of vitamin

D can have a profound effect on human health (Hossein-nezhad

and Holick, 2013). Following the discovery of the vitamin D re-

ceptor (VDR), which is expressed in a wide range of tissues,

the role of vitamin D in the prevention and treatment of chronic

diseases has become an important area of study (Holick, 1992;

Kalueff and Tuohimaa, 2007). Vitamin D deficiency has been

linked to various health problems, including cognitive decline,

depression, cardiovascular disease, hypertension, type 2 dia-

betes, and cancer (Butler et al., 2011; Chan, 2011; Holick,

2003; Ingraham et al., 2008; Ito et al., 2011; Liu et al., 2013). Dur-

ing aging, the risk for vitamin D deficiency significantly increases
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due to reduced nutritional intake of vitamin D, increased

adiposity, and decreased cutaneous synthesis of vitamin D.

This has led to considerable debate regarding vitamin D supple-

mentation in the elderly and whether deficiencies in vitamin D

represent an indicator of ill health or increases one’s susceptibil-

ity to chronic disease (Kupferschmidt, 2012).

Vitamin D is a member of the superfamily of secosteroid

hormones. There are two major forms of vitamin D, vitamin D2

(ergocalciferol; D2), which is produced by the UV radiation of

ergosterol, and vitamin D3 (cholecalciferol; D3), which is a photo-

product produced in the skin from 7-dehydrocholesterol (7DHC)

(Smith and Holick, 1987). The vitamin D photoproduct is biologi-

cally inert, requiring two separate hydroxylation steps by cyto-

chrome P450 enzymes to produce the biologically active form

of vitamin D, 1,25-dihydroxyvitamin D (1,25-(OH)2D3) (Figure 1A).

As the concentrationof 1,25-(OH)2D3 increases,VDRs throughout

the body become activated, resulting in extensive alterations in

gene expression and numerous physiological alterations.

C. elegans is an excellent model for longevity studies and

investigating aspects of chronic disease pathology. Many of

the classical signaling pathways and transcription factors that

modulate stress response and aging have been identified in

the nematode. Enhancing the activity of the FOXO transcription

factor DAF-16, which functions in the insulin/IGF-1 signaling

pathway, significantly increases lifespan (Kenyon, 2005). Addi-

tionally, the activity of the heat shock transcription factor,

HSF-1, and the Nrf2-like xenobiotic and oxidative stress-

response factor, SKN-1, also affect normal aging in the worm

(Tullet et al., 2008). These stress response transcription factors

up- or downregulate a diverse range of target genes.

Protein homeostasis plays an important role in aging and age-

related disease. Normal aging in C. elegans is associated with a

loss in protein homeostasis and an accumulation of insoluble

protein (David et al., 2010; Reis-Rodrigues et al., 2012; Walther

et al., 2015). Neurological diseases including Alzheimer’s dis-

ease (AD), Parkinson’s disease (PD), Huntington’s disease

(HD), and amyotrophic lateral sclerosis (ALS) share common

cellular and molecular features including protein aggregation

and inclusion body formation. Neurotoxic aggregated forms of

endogenous proteins, such as amyloid-b (AD), a-synuclein

(PD), huntingtin (HD), and TAR DNA-binding protein 43 kDa

(TDP-43; ALS) underlie the pathogenesis of these diseases.
orts 17, 1227–1237, October 25, 2016 ª 2016 The Author(s). 1227
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Figure 1. C. elegans-Fed D3 Are Capable of

Synthesizing the Biologically Active Form of

D3, 1,25-(OH)2D3, and Lipid Extracts Derived

from D3-Fed Worms Can Activate Human

Vitamin D Receptor Transcriptional Activity

(A) Diagram of the human vitamin D metabolic

pathway.

(B) Lipid extracts derived from D3-fed worms

activated human VDR transcriptional activity as

evidenced by increased luciferase activity com-

pared to control-treated worms. Data are pre-

sented as relative luciferase units. Error bars indi-

catemean + SEM (**p < 0.05, unpaired t test, n = 3).

(C) Liquid chromatography/mass spectrometry

(LC-MS) extracted ion (MRM of m/z 574/314)

chromatogram of detected 1,25-(OH)2D3 from lipid

extracts of wild-type (N2) worms synchronously

grown until the second day of adulthood on either

control or D3 (100 mM) NGM plates. The D3-fed

lipid extracts revealed a signal identical to the 1,25-

(OH)2D3 standard, indicated by the boxed green

signal. There was no 1,25-(OH)2D3 detected in the

control lipid extracts.
Analogous to their effects on longevity, DAF-16, HSF-1, and

SKN-1 all contribute to maintenance of protein homeostasis in

C. elegans (Alavez et al., 2011; Dostal et al., 2010). In

C. elegans, DAF-16 and HSF-1 both regulate the formation of

age-induced polyglutamine-repeat protein aggregates, similar

to those found in HD (Hsu et al., 2003). Deficiency in either

DAF-16 or HSF-1 correlates with premature accumulation of

age-associated insoluble protein (Walther et al., 2015). SKN-1

has also been shown to be required for the maintenance of

protein homeostasis (Alavez et al., 2011). Additionally, SKN-1

activity is associated with another mechanism previously shown

to be important in lifespan extension, the endoplasmic reticulum

unfolded protein response (ER-UPR) (Glover-Cutter et al., 2013),

which is induced in response to proteotoxic stress in the ER to

suppress the accumulation of unfolded or misfolded proteins

(Zhang and Kaufman, 2006). In C. elegans, not only does

SKN-1 play a prominent role in the transcriptional regulation of

the ER-UPR, but specific ER-UPR regulators are also, in turn,

important for SKN-1 target gene expression (Glover-Cutter

et al., 2013). Consistent with the hypothesis that impaired protein

homeostasis can drive aging, we and others have shown that
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normal aging is associated with insoluble

protein accumulation, and genes encod-

ing these insoluble proteins are enriched

for those that determine lifespan (David

et al., 2010; Reis-Rodrigues et al., 2012).

Vitamin D has been shown to extend

lifespan in C. elegans (Messing et al.,

2013). Moreover, short-term treatment

with vitamin D reduces amyloid-b (Ab)

peptide aggregation and improves cogni-

tion in mouse models of AD (Durk et al.,

2014). These observations prompted us

to investigate whether vitamin D pro-

motes widespread cellular protein ho-
meostasis and consequently influences aging. We found that

D3 feeding suppressed the toxicity induced by human b-amyloid

(Ab3-42) aggregation and rescued paralysis of worms expressing

a metastable perlecan protein. Critically, we found that vitamin

D3 treatment slowed proteome-wide, age-related protein insol-

ubility. We examined the mechanism by which vitamin D influ-

ences protein homeostasis and longevity and found that the

beneficial effects of vitamin D3 require the stress response

pathway genes SKN-1, IRE-1, and XBP-1. The role for this se-

costeroid hormone in suppressing age-related proteotoxic

stress provides an explanation for the observed elevated risk

for neurological disease associated with human vitamin D

deficiency.

RESULTS

C. elegans Can Metabolize Vitamin D3 to
1,25-Dihydroxyvitamin D3
To test the suitability of C. elegans as a model for investigating

vitamin D mechanisms, we asked whether worms fed vitamin

D3 have the ability to produce the bioactive form of vitamin D3,



Figure 2. Vitamin D3 Requires skn-1, ire-1, and xbp-1 Stress Response Genes for Lifespan Extension

(A) Kaplan-Meier survival curves of N2 hermaphrodite worms exposed to increasing concentrations of D3 from day 1 of adulthood (p < 0.0001; log-rank test).

(B) D3 (25–250 mM) extended the lifespan of CF1038 [daf-16(mu86)] worms, which lack functional DAF-16 protein, when treated from day 1 of adulthood at 20�C
(p < 0.0001, log-rank test).

(C) D3 (25–100 mM) feeding resulted in marginal lifespan extension in PS3551 [hsf-1(sy441)] (p = 0.0090, log-rank test).

(D) D3 (50 mM) treatment resulted in little or no lifespan extension of the EU31 [skn-1(zu135) IV/nT1 [unc-?(n754) let-?] ] worms (p = 0.002, log-rank test).

(E) D3 (50 mM) treatment shortens the lifespan in RE666 [ire-1(v33)] mutant worms (p < 0.0001, log-rank test).

(F) D3 (50 mM) treatment does not extend lifespan in SJ17 [xbp-1(zc12); zcIs4] mutant worms (p = 0.142, log-rank test).
1,25-dihydroxyvitamin D3 (1,25-(OH)2D3), which is required for

VDR activity. We grew large populations of synchronously aging

N2 wild-type hermaphrodite worms at 25�C on either vitamin-

D3- or control-treated nematode growth media (NGM) plates

and prepared lipid extracts on the second day of adulthood

(5-day-old worms). We tested the worm lipid extracts for biolog-

ical activity in a one-hybrid human cell-based VDR activity assay

and found that lipid extracts made from D3-fed worms showed

enhanced human VDR transcriptional activity, as evidenced by

increased luciferase activity, compared to control-treated

worms (Figure 1B). Addition of vitamin D3 alone to the VDR ex-

pressing cells had no effect on VDR transcriptional activity

(data not shown). This demonstrated that C. elegans worms

are able to metabolize vitamin D3 into a ligand that activates hu-

man VDR. To test whether worms metabolized vitamin D3 to the

known active ligand, 1,25-(OH)2D3, lipid extracts made from

vitamin D3-fed worms were subjected to liquid chromatog-

raphy/mass spectroscopy (LC-MS). A signal identical to the

1,25-(OH)2D3 standard was present in the D3-fed lipid extracts,

but not in extracts from control-treated worms (Figure 1C).

Quantification of the amount of 1,25-(OH)2D3 in the lipid extracts

derived from D3-fed worms revealed approximately 5.95E-03

pg/worm. By comparison, in humans, plasma 1,25-(OH)2D3

levels range from 10 to 70 pg/mL (Bikle et al., 1984). Since
C. elegans are grown on a live Escherichia coli (E. coli) food

source, we tested whether exposure of E. coli to D3 would result

in 1,25-(OH)2D3 production but found that the bacteria alone did

not make this active form of vitamin D (data not shown). Collec-

tively these data demonstrated that C. elegans are capable of

synthesizing 1,25-(OH)2D3, and that lipid extracts derived from

these worms can activate human VDR, confirming that this crit-

ical component of vitamin D metabolism is conserved between

nematodes and mammals.

Vitamin D3-Induced Lifespan Extension Requires
SKN-1, IRE-1, and XBP-1
We confirmed that vitamin D3 extended C. elegans lifespan

(Messing et al., 2013). Feeding vitamin D3 throughout adulthood

extended lifespan in a dose-dependent manner, and was not

toxic even at the highest concentration (250 mM) tested (Fig-

ure 2A; Table S1). Given that normal aging is modulated by a

network of transcription factors (Hsu et al., 2003; Tullet et al.,

2008), we testedwhethermembers of this networkwere required

for the beneficial effects of vitamin D3 on lifespan in C. elegans.

First, we tested the requirement of DAF-16 in D3-induced life-

span extension. We found that D3 feeding extended the lifespan

of daf-16(mu86) worms, which lack functional DAF-16 protein

(Figure 2B; Table S1). Additionally, D3 treatment did not alter
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the subcellular localization of a DAF-16::GFP fusion protein

(TJ356 strain; data not shown). These data suggest that the ef-

fect of D3 feeding on lifespan extension is independent of

DAF-16. In addition, we found that vitamin-D3-induced lifespan

extension did not require DAF-12 (Figures S1A and S1B; Table

S1), the proposed ortholog of VDR in C. elegans (Antebi et al.,

2000; Mangelsdorf et al., 1995). Furthermore, in a cell-based

luciferase reporter assay, 1,25-(OH)2D3 did not increase DAF-

12 transcriptional activity (data not shown). Taken together, we

conclude that vitamin-D3-induced lifespan extension is indepen-

dent of DAF-12. We next tested the requirement of the HSF-1 in

D3-induced lifespan extension. D3 treatment resulted in mar-

ginal or no lifespan extension in hsf-1(sy441)mutant worms (Fig-

ure 2C; Table S1), suggesting that the effect of D3 on lifespan

may partially require the participation of HSF-1-regulated genes.

Last, we examined the effect of SKN-1 in D3-induced lifespan

extension. We observed no lifespan extension by D3 for skn-

1(zu135) mutant worms, demonstrating that SKN-1 is required

for the effects of D3 feeding (Figure 2D; Table S1).

SKN-1 activity is associated with another mechanism impor-

tant in lifespan extension, the endoplasmic reticulum unfolded

protein response (ER-UPR) (Glover-Cutter et al., 2013). Specif-

ically, SKN-1 regulates transcription of the entire core of the

ER-UPR and many downstream ER stress defense genes.

Moreover, ER stress influences the levels of skn-1 mRNA and

SKN-1 protein (Glover-Cutter et al., 2013). Proteotoxic stress

triggers the ER-UPR by activating the stress sensors ribonu-

clease inositol requiring protein-1 (IRE-1), PERK kinase homolog

(PEK-1), and activating transcription factor-6 (ATF-6) (Calfon

et al., 2002; Shen et al., 2001, 2005). Activation of each sensor

produces a transcription factor that activates genes to increase

the protein-folding capacity in the ER. Of the three stress respon-

sive ER-UPR pathways, IRE-1 is the most conserved. Upon acti-

vation of the UPR, IRE1-dependent splicing of a small intron from

the xbp-1mRNA leads to synthesis of XBP-1 transcription factor,

which, in turn, induces expression of hsp-4 and other ER-UPR-

associated genes. Given the requirement for SKN-1 in D3-medi-

ated lifespan extension and that SKN-1 and the ER-UPR form a

regulatory network, we tested the dependency of each ER-UPR

pathway for the lifespan response to D3 feeding. We found that

the D3-induced increase on survival was dependent on IRE-1/

XBP-1 signaling. Worms carrying the loss-of-function allele,

ire-1(v33), showed significantly reduced lifespan with D3 feeding

compared to vehicle-treated worms (Figure 2E; Table S1). Life-

span of worms maintaining the loss-of-function allele, xbp-

1(zc12), showed no significant change with D3 feeding

compared to vehicle-treated worms (Figure 2F; Table S1). Inter-

estingly, ire-1(v33)mutant worms exhibited a shortened lifespan

upon D3 feeding. In contrast, D3 feeding significantly increased

lifespan in worms maintaining loss-of-function alleles for pek-1

and atf-6 (Table S1; Figure S1C). Collectively, these data specif-

ically implicate the stress response genes SKN-1, IRE-1, and

XBP-1 in vitamin-D3-induced lifespan extension.

Vitamin D3 Induces SKN-1, but Not HSF-1, nor ER-UPR
Gene Targets
Given that the effect of D3 feeding on lifespan is dependent on a

genetic network, we next surveyed the downstream target genes
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of HSF-1, SKN-1, and IRE-1/XBP-1. We examined the effect of

D3 feeding on the expression of an HSF-1 target gene encoding

a molecular chaperone, using the transgenic transcriptional re-

porter strain, phsp-16.2::GFP. D3 treatment had no effect on

the expression of this transcriptional reporter (Figures S2A and

S2C). We examined other molecular chaperones not under

direct regulation by HSF-1, hsp-6 (mitochondrial chaperone)

and hsp-4 (ER chaperone). Using the transcriptional reporter

stains phsp-6::GFP and phsp-4::GFP, we found that vitamin

D3 feeding only increased the levels of hsp-4 expression (Figures

S2A, S2B, and S2D). HSP-4 is a direct target of the IRE-1/XBP-1

pathway, and it is upregulated in response to ER stress. Surpris-

ingly, we failed to observe a significant D3-associated upregula-

tion of hsp-4mRNA levels in wild-type N2 worms as assessed by

RNA sequencing (RNA-seq) and quantitative real-time PCR at

various time points (data not shown). These results indicate

that lifespan extension from D3 requires IRE-1/XBP-1 but does

not appear to result in robust constitutive induction of the down-

stream XBP-1 target gene, hsp-4.

We then tested the effects of D3 treatment on the expression

of a target of SKN-1 using a transgenic transcriptional reporter

strain pgst-4::GFP. GST-4 (glutathione transferase-4) is involved

in the phase II oxidative stress response and its expression re-

ports on SKN-1 activity. D3 feeding significantly upregulated

pgst-4::GFP compared to control-treated worms (Figure 3A) in

a SKN-1-dependent manner (Figure 3B). We confirmed this

result by quantitative real-time PCR analysis of endogenous

gst-4 mRNA levels (Figure 3C).

To gain a more detailed picture of the genomic response to

vitamin D3, we undertook a genome-wide analysis of altered

mRNA abundance. Specifically, synchronous populations of

D3 fed and control L4 stage hermaphrodite worms were pro-

cessed for RNA-sequencing. We observed 253 significantly up-

regulated and 78 significantly downregulated genes in response

to vitamin D3 treatment (data not shown). Gene ontology (GO)

analysis of this dataset revealed several clusters of genes with

functional properties that are consistent with previously reported

microarray studies of 1,25-(OH)2D3-regulated genes (Heikkinen

et al., 2011; Hossein-nezhad et al., 2013). These included a sig-

nificant enrichment of genes associated with apoptosis, immune

functions, response to stimulus, transport, cellular component

organization, development, and metabolism.

Given the dependency of HSF-1, SKN-1, and IRE-1/XBP-1 in

D3-induced lifespan extension, we further examined our RNA-

seq dataset to determine whether expression of target genes

of any of these transcription factors might be perturbed by

vitamin D3 treatment. First, we examined whether our RNA-

seq dataset was enriched for heat shock proteins (HSPs), since

HSF-1 has been shown to be a major transcriptional regulator of

these genes. We observed no significant enrichment for HSPs in

the transcriptional effects of D3 feeding. These data are consis-

tent with our previous finding that D3 feeding had no effect on

the molecular chaperone transcriptional reporter strain, phsp-

16.2::GFP. We next examined SKN-1 gene targets from a previ-

ously reported array that examined differential expression

between skn-1 knockdown and control worms, profiled at L4

larval stage (Oliveira et al., 2009). Comparison of our dataset

with the subset of genes found to be downregulated in skn-1



Figure 3. Vitamin-D3-Induced Activation of the SKN-1 Target Gene

gst-4 Is IRE-1 Dependent

(A)Quantification of a reporter strain (CL2166) containingpgst-4::GFP following

D3 feeding (25–100 mM) from L1 larval stage and scored at L4 larval stage at

15�C. Data are represented as GFP Fluorescence (arbitrary units, a.u.).

(B) Reducing SKN-1 by skn-1 RNAi prevents the D3-induced increase in

pgst-4::GFP fluorescence.
knockdown animals revealed a striking enrichment for genes ex-

pressed in response to D3 feeding (empirical p = 10�6; Table S2).

Genes negatively regulated by SKN-1 were not significantly per-

turbed by vitamin D (empirical p = 0.48).

Since SKN-1 activates the transcription of genes encoding

phase II detoxification enzymes in response to oxidative stress

(An and Blackwell, 2003) and vitamin D induces SKN-1 gene tar-

gets, we next evaluated whether D3 induced oxidative stress. To

test this, we measured reactive oxygen species (ROS) levels,

using the superoxide ROS indicator dihydroethidium (DHE), in

synchronously aged N2 worms grown from eggs on either

vitamin-D3- or control-treated NGM plates. We found that

DHE-derived fluorescent ethidium levels were unchanged be-

tween D3-treated and vehicle-treated worms. In contrast, N2

worms treated with paraquat (PQ), a known oxidative stress

inducer, had significantly increased ROS levels compared to

both vitamin-D3- or control-treated worms (data not shown).

We asked whether vitamin-D3-treated worms differed in their

resistance to PQ. Treatment with either vitamin D3 or vehicle

control during development and subsequent exposure to PQ re-

sulted in no difference in survival between D3 and control worms.

These data indicate that vitamin D does not induce oxidative

stress nor oxidative stress resistance.

We next considered whether ER-UPR gene targets could be

affected by vitamin D feeding. To test this, we used three previ-

ously reported definitions of the ER-UPR pathway: genes anno-

tated in the ER-UPR according to the Gene Ontology consortium

(http://amigo.geneontology.org/amigo); genes dependent on

ire-1 and/or xbp-1 for response to the UPR inducer tunicamycin

(Shen et al., 2005); and genes dependent on pek-1 and/or atf-6

for tunicamycin response. In contrast to our findings with

SKN-1, in each cohort, and in a cohort defined as their union,

we observed no significant enrichment for the transcriptional

effects of D3 feeding (empirical p = 0.17, 0.99, 0.71, and 0.78,

respectively), consistent with our single-gene analyses of

ER-UPR targets (data not shown). Given the IRE-1/XBP-1 and

SKN-1 dependency for D3 lifespan extension, we further exam-

ined the crosstalk between these pathways. Interestingly, we

found that reduction of IRE-1 by RNAi suppressed the D3-

induced increase in gst-4 mRNA levels (Figure 3C). In contrast,

reduction of XBP-1 by RNAi resulted in elevated gst-4 mRNA

levels in D3-treated worms. Although IRE-1 and XBP-1 together

regulate transcription of most inducible ER-UPR genes, there is

evidence that IRE-1 may have additional distinct functions inde-

pendent of XBP-1 (Hollien and Weissman, 2006; Shen et al.,

2005; Urano et al., 2000; Yoneda et al., 2001), and that

xbp-1(RNAi) increases gst-4 mRNA abundance in the absence

of vitamin D treatment (Glover-Cutter et al., 2013).

Vitamin D3 Reduces Age-Dependent Insoluble Protein
Accumulation
Given the connection between lifespan and protein homeosta-

sis, and the known role for IRE-1/XBP-1 and SKN-1 in both
(C) Relative gst-4 mRNA levels (mean + SEM) in N2 worms fed D3 (100 mM).

ire-1 RNAi prevents the D3-induced increase in gst-4 mRNA levels. Data are

presented as relative mRNA levels. (*p < 0.05, unpaired t test, n = 3).
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Figure 4. VitaminD3 FeedingPrevents theAccumulation of Insoluble Proteins in AgedC. elegans andSlowsProtein Aggregation-Associated

Paralysis

(A) SDS-PAGE of the SDS-insoluble fraction of cellular proteins from 2- and 8-day adult TJ1060 worms grown at 25�C. D3 (100 mM) prevents the accumulation of

SDS-insoluble proteins in aged worms.

(B) Gene ontology (GO) analysis of proteins observed in the insoluble fraction of old worms that were suppressed by D3 treatment (as determined by quantitative

mass spectrometry/MS1 filtering). Classification is as assigned by Klusters of Orthologous Groups (KOG).

(legend continued on next page)
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protein homeostasis and longevity, we pursued the hypothesis

that vitamin D3 treatment might control lifespan via improving

protein homeostasis. Using an unbiased biochemical and prote-

omic approach, we tested whether vitamin D3 modulated pro-

tein homeostasis by analyzing the age-dependent accumulation

of SDS-insoluble proteins. We grew large populations of syn-

chronously aged, sterile TJ1060C. elegans and collected worms

at day 2 and day 8 of adulthood at 25�C. Worm protein extracts

were prepared as described in Experimental Procedures. Puri-

fied SDS-insoluble proteins were re-solubilized, subjected to

in-solution tryptic digestion, and analyzed by tandem mass

spectrometry on a TripleTOF 5600 (Tables S3A–S3H). We found

that in aged worms, D3 treatment significantly decreased the

number of detectable and identified SDS-insoluble proteins

compared to control samples (Figures 4A–4D; Table S3). We

next applied a quantitative approach to compare the relative

levels of peptides (and thus proteins) between the D3- and con-

trol-treated samples, using a label-free quantitative proteomics

method referred to as ‘‘Skyline MS1 Filtering’’ (Rardin et al.,

2013; Schilling et al., 2012). We determined that D3 feeding

significantly reduced the abundance of most proteins detected

in aged samples (Figure S3); we observed a 2- to 13-fold reduc-

tion of these proteins (Tables S3I–S3M; Figure S3). GO analysis

revealed that the SDS-insoluble fraction in control older worms

contained a significant enrichment of proteins associated with

ribosomes, translation, mitochondrial function, energy meta-

bolism, growth, and development (Figure 4B). D3 treatment

reduced the formation of insoluble proteins across a wide range

of predicted functions and cellular compartments. Previouswork

found that reducing expression of several genes encoding pro-

teins suppressed by D3 treatment in aged worms by RNAi

resulted in significant lifespan extension (Table S4) (Reis-

Rodrigues et al., 2012). Together, this supports the hypothesis

that decreasing protein insolubility can prolong lifespan.

SKN-1, IRE-1, and XBP-1 Are Required for the Beneficial
Effects of Vitamin D3 on Protein Homeostasis
We further investigated whether vitamin D could suppress

toxicity associated with expression of the human neurotoxic

peptide, amyloid beta.We employed a well-characterizedmodel

of human proteotoxic disease, the strain CL4176, which ex-

presses an aggregation prone amyloid-b peptide (Ab3-42) (Drake

et al., 2003; McColl et al., 2009). When shifted from a permissive

temperature (15�C) to a restrictive temperature (25�C), worms

expressing this peptide accumulate Ab aggregates and become

paralyzed. D3 feeding decreased the proportion of paralyzed
(C and D) Mass spectrometry quantification of unique proteins in (C) young (day 2)

identified in aged (day 8) D3-treated and aged control worms.

(E) Exposing worms to D3 (10–100 mM) suppresses the paralysis phenotype assoc

34 hr at 25�C. Data are presented as percentage paralyzed. DMSO bars repres

hermaphrodites).

(F) D3 treatment (10–100 mM) rescues the paralysis in the strain HE250 [unc-52(e

DMSO bars represent amount of solvent used for D3 feeding (*p < 0.05, unpaire

(G) Reducing SKN-1 by skn-1 RNAi prevents the D3-induced suppression of pa

centage paralyzed. DMSO bars represent the equivalent amount of solvent used

alpha = 5.0%).

(H and I) Relative gst-4mRNA levels (mean + SEM) in HE250 (H) and CL4176 (I) wo

mean + SEM and represent the average of three to four independent experimen
CL4176 worms in a dose-dependent manner (Figure 4E). To

further probe the suppression of Ab-associated paralysis, we

examined the effect of several vitamin D metabolites, many of

which can be converted to active vitamin D ligand in humans.

We found that all vitamin D metabolites downstream of 7DHC

suppressed Ab-induced paralysis (Figure S4A). We then utilized

a protein folding ‘‘sensor’’ strain, HE250, which carries a muta-

tion in the endogenous gene unc-52 resulting in the expression

of a metastable muscle specific protein, UNC-52 (perlecan). At

25�C, the UNC-52 mutant protein exhibits altered structure

and subsequently causes paralysis (Zengel and Epstein, 1980).

D3 suppressed the paralysis of this mutant (Figure 4F), demon-

strating that D3 prevents a detrimental physiological outcome

of proteostatic loss.

Consistent with our lifespan experiments, we found that

reduction of ire-1, xbp-1, or skn-1 by RNAi prevented D3-

induced suppression of paralysis in the perlecan HE250 strain

(Figures 4G, S4B, and S4C). In contrast, reduction of pek-1

and atf-6 expression by RNAi had no effect on D3-induced sup-

pression of paralysis (Figure S1D). Since vitamin D-induced sup-

pression of paralysis is SKN-1 dependent, we measured gst-4

mRNA expression prior to the onset of paralysis in the protein

misfolding strains. We found that D3 significantly increased

gst-4 mRNA levels in both HE250 and CL4176 strains (Figures

4H and 4I).

DISCUSSION

Numerous hormonal and intracellular signaling pathways are

conserved between nematodes andmammals.We have demon-

strated an apparent conservation of metabolism and action of

the hormone vitamin D in C. elegans. D3-fed worms can synthe-

size physiological levels of bioactive 1,25-(OH)2D3. Unlike mam-

mals, where cholesterol is the major synthesized sterol, the

major sterol found endogenously in C. elegans is the provitamin

D, 7DHC (Chitwood et al., 1983; Lee et al., 2005). Thus worms

have the necessary steroid hormone precursor to synthesize

1,25-(OH)2D3. Populations ofC. elegans species dwell on rotting

fruits (Félix et al., 2013) where they likely have access to sunlight

sufficient to enable the conversion of 7DHC to D3. While it re-

mains to be seen whether C. elegans wild strains utilize vitamin

D in a natural setting, the conserved metabolism we observe

suggests that this organism may be a good model to study the

effects of vitamin D on aging and age-related pathologies.

Our results demonstrate that dietary D3 reduced the age-

dependent formation of insoluble proteins across a wide range
and aged (day 8) control-treated worms, and (D) comparison between proteins

iated with protein aggregation in CL4176 expressing Ab(3-42) in the muscle after

ent amount of solvent used for D3 feeding (*p < 0.05, unpaired t test; n > 50

669su250)] after 42 hr at 25�C. Data are presented as percentage paralyzed.

d t test; n > 50 hermaphrodites).

ralysis in the temperature-sensitive strain HE250. Data are presented as per-

for D3 treatment (*p < 0.05 Multiple t tests comparison, Holm-Sidak method,

rms fed D3 (100 mM) (*p < 0.05, **p < 0.001; unpaired t test). Error bars indicate

ts, 30–40 worms per group, per experiment.
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ofpredicted functionsandcellular compartments.D3 feedingalso

extends lifespan consistentwith the hypothesis that protein insol-

ubility is a factor that determines the rate of aging. The depen-

dency on SKN-1 and the upregulation of SKN-1 gene targets by

D3 treatment further suggests that SKN-1 functions to promote

protein homeostasis during normal aging. SKN-1 regulates a

wide range of stress responses and detoxification factors and is

central to a healthy extended lifespan (Blackwell et al., 2015).

For example, loss of SKN-1 leads to sensitively to oxidative stress

(An and Blackwell, 2003). Oxidative stress can lead to irreversible

oxidation, nitration, and carbonylation of proteins, which impairs

degradation, and enhances aggregation (Poon et al., 2006;

Squier, 2001). A recent study showed that vitamin D3 deficiency

induces mild oxidative stress in the rat muscle, as observed by

increased protein carbonyls and altered antioxidant enzyme ac-

tivities. Conversely, supplementation with vitamin D3 corrected

all of these oxidative stress defects (Bhat and Ismail, 2015).

In addition to its role as an regulator of antioxidant functions,

SKN-1 plays an important part in maintaining protein homeo-

stasis (Li et al., 2011). SKN-1 maintains protein homeostasis by

regulating proteasome subunit gene expression and activity in

response to perturbations in either protein synthesis or degra-

dation. Furthermore, the connection between SKN-1 and the

ER-UPR indicates cooperativity between these pathways to pro-

mote protein homeostasis (Glover-Cutter et al., 2013). Our results

further these findings, demonstrating that the beneficial effects of

vitamin D3 on lifespan and protein homeostasis are dependent

upon the cooperative actions of this stress response network.

The role of SKN-1 in the regulation of detoxification genes is

also likely to contribute to the benefits of vitamin D supplemen-

tation. Our RNA-seq data revealed that D3 feeding resulted in

upregulation of several phase I (cytochrome P450 and short-

chain dehydrogenase/reductase), phase II (UGT-UDP-glucuro-

nosyltransferase and gluthathione S transferases) genes, and

ATP-binding cassette (ABC) transporters. Collectively, these

five gene classes act together in drug metabolism and excretion.

Previously, it was reported that long-lived C. elegans dauer

larvae and daf-2 mutants shared a significant enrichment for

several classes of detoxification genes (McElwee et al., 2004),

supporting the theory that aging occurs as a result of internal mo-

lecular damage, which gives rise to a wide range of toxic lipo-

philic compounds. This theory postulates that induction of

detoxification genes reduce levels of these toxic species that

limit lifespan. Our findings suggest that vitamin D3 has a

broad effect on systemic detoxification, which, in turn, could

reduce toxic compounds and promote longevity. Thus, further

investigation into the biochemical and cellular processes these

detoxifying genes might be influencing will be important in

understanding the beneficial actions of vitamin D.

In this study, we have shown that vitamin D promotes protein

homeostasis and slows aging via IRE-1, XBP-1, and SKN-1 func-

tions. Our results demonstrate that dietary supplementation of

C. elegans with D3 results in endogenous 1,25-(OH)2D3 produc-

tion at a physiologically relevant range and has profound effects

on lifespan and protein homeostasis. This is an interesting obser-

vation when considered alongside the fact that there is a decline

in efficient vitamin D production with age in humans. While the

benefits of dietary supplementation in humans are highly contro-
1234 Cell Reports 17, 1227–1237, October 25, 2016
versial (de Paula and Rosen, 2012), there are considerable

epidemiological data correlating vitamin D deficiency to multiple

diseases. However, causality has not been clearly established,

with the possibility that low vitamin D levels are a marker of ill

health (Rosen and Manson, 2010). Our results suggest that, in

C. elegans, an absence of vitamin D in the diet accelerates

age-related loss-of-protein homeostasis and shortens lifespan.

Supporting this idea, the vitamin D receptor knockout mouse ex-

hibits some premature aging phenotypes (Keisala et al., 2009),

although mouse models of hypervitaminosis D also appear to

prematurely age (Tuohimaa, 2009). If vitamin D generally affects

aging in mammals, it will be of interest to establish whether Nrf2-

regulated gene networks have a role to play (Nakai et al., 2014).

EXPERIMENTAL PROCEDURES

Strains

Strains were cultured under standard laboratory conditions. All strains used in

this study were obtained from the Caenorhabditis Genetics Center (CGC) and

are detailed in the Supplemental Experimental Procedures.

Lifespan Assays

Lifespan assays were performed as described previously (Lithgow et al.,

1995). Nematodes were transferred to fresh compound plates every

3–5 days. All lifespan experiments were performed at 20�C. Lifespan data

were analyzed by GraphPad Prism v.7.01, and p values were calculated using

the Mantel-Cox log-rank test.

Worm Paralysis Assays

Synchronized populations of HE250 [unc-52(e669su250)II] and CL4176 [dvIs27

[myo::Ab(3-42)-let 30UTR(pAF29); pRF4 (rol-6(su1006))] were used in these

studies. See Supplemental Experimental Procedures for details on the treat-

ment groups, experimental conditions, and scoring of the paralysis assays.

RNAi Knockdown of Gene Expression

RNAi bacteria strains expressing double-stranded RNA that inactivates spec-

ified genes were cultured and used as previously described (Timmons et al.,

2001).

Microscopy and Quantification of GFP Fluorescence

See Supplemental Experimental Procedures for details onmounting and imag-

ing of worms expressing GFP.

Lipid Extracts

Lipid extracts were generated by a modification of the method described pre-

viously (Gill et al., 2004). See Supplemental Experimental Procedures for de-

tails on preparation of worm samples, treatment groups, and experimental

conditions.

Liquid Chromatography/Mass Spectrometry

Diels-alder derivatization of 1,25(OH)2D3 was adapted from previously estab-

lished methods (Aronov et al., 2008). See Supplemental Experimental

Procedures for details on preparation of worm samples, treatment groups, in-

strument, and experimental conditions.

Plasmid Construction

We obtained the vitamin D receptor (VDR) clone (Id # 30343975) from Open

Biosystems. VDR amino acid 141–477 was PCR amplified and cloned into

the pBIND vector (Promega) as a BamH1-Xba1 fragment, and the sequence

was verified.

Transfection Assays

HEK293Twere used in these assays. See Supplemental Experimental Proced-

ures for details on preparation of cells, treatment groups, and experimental



conditions. Luciferase activity was normalized to the GFP values. Results are

expressed as mean + SEM for three experiments.

C. elegans Insoluble Protein Extraction

TJ1060 [spe-9(hc88)I; fer-15(b26)II] temperature sensitive mutants were

grown until gravid adults in synchronous mass cultures (Fabian and Johnson,

1994). See Supplemental Experimental Procedures for details on preparation

of worm samples, treatment groups, and instrument and experimental

conditions.

Gel Electrophoresis of SDS-Insoluble Protein Samples

See Supplemental Experimental Procedures for details on preparation of nem-

atode samples. The SDS-insoluble protein fraction was then visualized with

SYPRO Ruby gel staining.

In Solution Digestion and Mass Spectrometric Analysis of the

SDS-Insoluble Protein

See Supplemental Experimental Procedures for details on preparation

of C. elegans samples, treatment groups, instrument, and experimental

conditions.

Bioinformatic Database Searches

Mass spectrometric data were searched using the database search engine

ProteinPilot (Shilov et al., 2007) (AB SCIEX Beta 4.5, revision 1656) with the

Paragon algorithm (4.5.0.0, 1654). A detailed protocol can be found in Supple-

mental Experimental Procedures.

Quantitative Skyline MS1 Filtering Analysis

MS1 chromatogram based quantification was performed in Skyline 1.4

an open source software project (https://proteome.gs.washington.edu/

software/skyline) as previously described in detail by Schilling et al. (2012).

A detailed protocol can be found in Supplemental Experimental Procedures.

Quantitative-Data-Independent Acquisitions, SWATH-MS2 Analysis

Proteomic analysis was generated by SWATH-MS2 analysis (Gillet et al.,

2012). A detailed protocol can be found in Supplemental Experimental

Procedures.

Functional Analysis: Protein Ontology

The web-based programDAVID v.6.7 (The Database for Annotation, Visualiza-

tion and Integrated Discovery) was used for functional analysis and protein

ontology analysis (Huang et al., 2009). A detailed protocol can be found in Sup-

plemental Experimental Procedures.

Raw Data Accession and Panorama Spectral Libraries

The raw and processed data associated with this manuscript may be down-

loaded from MassIVE at https://massive.ucsd.edu/ProteoSAFe/datasets.jsp;

to access the dataset, use theMassIVE ID number MSV000079132. The spec-

tral viewer can be accessed at https://panoramaweb.org/labkey/project/

Schilling/Nature_Lithgow_Celegans_VitaminD3/begin.view?.

RNA Sequencing, Gene Expression Profiling, and Bioinformatic

Analysis

RNAwas extracted and quantified as described in Supplemental Experimental

Procedures. RNA samples were then sent to the University of Minnesota

BioMedical Genomics Center for Illumina HiSeq RNA-seq, where RNA-seq

(50-bp paired-end sequencing) was carried out on a HiSeq2000 according

to the manufacturers protocols (Illumina) after size selecting for an insert aver-

aging �200 bp. Average quality scores for the completed run across all 12

samples was >30, with an average of greater than 20 million reads per sample.

The sequencing reads were then mapped to the worm genome WBcel235

(GenBank ID GCA_000002985.3) for differential gene expression analysis via

the ‘‘seed and vote’’ workflow using the package Rsubread (Liao et al.,

2014) in bioconductor (Gentleman et al., 2004). For the mapped reads, greater

than 95% of sequencing reads in each sample was mapped to the reference

worm genome. RNA-seq data have been deposited in the NCBI GEO under

accession number GSE86493.
RNA Extraction and Quantitative Real-Time PCR

See Supplemental Experimental Procedures for details on preparation of

C. elegans RNA samples, treatment groups, and primer information. Data

were compiled from three independent experiments, and each experiment

was conducted in triplicate.

Statistics

Statistical analysis was performed in GraphPad Prism v.7.01, as detailed in the

figure legends.
ACCESSION NUMBERS

The accession number for the RNA-seq data reported in this paper is NCBI

GEO: GSE86493.
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