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Abstract
Vitamin D deficiency and insufficiency has become a pandemic health problem with a consequent increase of requests for
determining circulating levels of 25-hydroxyvitamin D [25(OH)D]. However, the analytical performance of these
immunoassays, including radioimmunoassay and ELISA, is highly variable, and even mass spectrometric methods, which
nowadays serves as the gold standard for the quantitatively determination of 25(OH)D, do not necessarily produce
comparable results, creating limitations for the definition of normal vitamin D status ranges. To solve this problem, great
efforts have been made to promote standardization of laboratory assays, which is important to achieve comparable results
across different methods and manufacturers. In this review, we performed a systematic analysis evaluating critically the
advantages and limits of the current assays available for the measure of vitamin D status, i.e., circulating 25(OH)D and its
metabolites, making suggestions that could be used in the clinical practice. Moreover, we also suggest the use of alternatives
to blood test, including standardized surveys that may be of value in alerting health-care professionals about the vitamin D
status of their patients.

Introduction

Vitamin D deficiency and insufficiency has become a pan-
demic health problem mostly related to an inadequate sun
exposure and few food sources that naturally contain

vitamin D. There are in addition several risk factors that
exacerbate the deficiency, including dark skin pigmentation,
pregnancy, malabsorptive syndromes, obesity, and aging
[1]. Historically, 25-hydroxyvitamin D [25(OH)D] was
measured by either a manual radioimmunoassay (RIA) or a
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vitamin D-binding protein (VDBP) assay and many clinical
studies that provide the scientific basis for current clinical
recommendations are based on these results [2, 3]. Over the
past decade, mounting evidence showed that vitamin D
deficiency could be associated with an increased incidence
and progression of many diseases [4], including osteo-
porosis [5], chronic diseases [6–8], cancer progression
[9, 10], autoimmune, and type 2 diabetes [11, 12]. As a
result of these observations, medical laboratories experi-
enced a sharp rise in requests for 25(OH)D determination
and in vitro diagnostic (IVD) companies developed auto-
mated immunoassays and enzyme-linked immunosorbent
assays (ELISAs), which allowed laboratories to cope with
the continuously increasing workload. Quickly, it became
clear that the analytical performance of these immunoassays
was highly variable [13–16]. Even mass spectrometric
methods did not necessarily produce comparable results
[13, 17].

These discordant results provided by different labora-
tories has created limitations such as the definition of nor-
mal 25(OH)D ranges and measurement errors may produce
contradictory clinical conclusions and decisions. Nowadays,
only a few studies compared directly the different assays,
evaluating the different risk of possible bias in the measure
of 25(OH)D levels. To solve this problem, great efforts
have been made to promote standardization of laboratory
assays, which is important to achieve comparable results
across different methods and manufacturers [18].

In this review, we performed a systematic analysis
evaluating critically the advantages and limits of the current
assays available for the measure of vitamin D status, i.e.,
circulating 25(OH)D and its metabolites. We suggest which
assay should be used for the evaluation of the vitamin D
status as well as new methods that could be applicable in the
clinical practice.

Methods: search strategy and selection
criteria

A systematic approach was employed to search and review
the relevant literature. The online databases PubMed
(MEDLINE), Google Scholar, EMBASE, and the Cochrane
Library were searched with the MeSH terms “Vitamin D”
OR “Vitamin D Deficiency” OR “Ergocalciferols” OR “25-
hydroxyvitamin D” OR “24,25-dihydroxyvitamin D” OR
“calcitriol” OR “calcidiol” combined with the title key-
words “Immunoassay” OR “chromatography” OR “LC-
MS/MS” OR “Analytical” OR “C3-epimer” OR “Vitamin
D Metabolism Ratio” OR “Mass screening” OR “Ques-
tionnaire” OR “Detection” OR “External Quality Assurance
Scheme” OR “Standardization Program”. Literature search
were performed without language restriction up until

September 2019 and also identified relevant articles from
the reference lists of any retrieved papers. Studies were first
evaluated by title, and availability of the full text identify
the most relevant paper. Duplications, conference abstracts,
editorials, and letters to the editor were excluded. Manu-
scripts not focused on the topic were later excluded.

25(OH)D and related metabolites

Vitamin D has a secosteroid structure similar to that of
steroids but with a ruptured bond between atoms C9 and
C10. Cholecalciferol (vitamin D3) is the natural form of
vitamin D produced in human skin after exposure to solar
ultraviolet (UV) B (290–315 nm) radiation. Vitamin D3 is
also available in some foods, including oily fish, cod liver
oil, and sun-dried mushrooms, and fortified foods, including
milk, orange juice, margarine, and cooking oil, and from
supplements [10]. Vitamin D2 (ergocalciferol) is of yeast
fungal/plant origin, whereas vitamin D3 is derived from
animals. Vitamin D3 and vitamin D2 are transported in the
bloodstream to the liver, where they are metabolized to 25-
hydroxvitamin D3 [25(OH)D3, also known as calcifediol or
calcidiol] and 25-hydroxvitamin D2 [25(OH)D2], respec-
tively. Both of these 25(OH)D metabolites [designated as
25(OH)D], are converted in the kidneys to its active form
1α,25-dihydroxyvitamin D [1,25(OH)2D], which binds
strongly to the vitamin D receptor (VDR) in the target tis-
sues [10, 19, 20]. It is found in very low concentrations in
the blood and is more hydrophilic than 25(OH)D. Hence,
the measurement of this dihydroxy metabolite is more
challenging and requires pre-analytic manual extraction
steps making the assays more laborious. Research and
clinical practice related to acquired and inherited disorders
of vitamin D metabolism have been hampered because of
the difficulty of measuring its active form in the serum. In
the clinical practice, the measurement of total 25(OH)D [25
(OH)D3 and 25(OH)D2] is the gold standard measurement
for vitamin D status due to its longer half-life and stability
(25 days) and the relative abundance (i.e., ng/mL; 1 ng/mL
= 2.496 nmol/L) in serum. Dihydroxylated bioactive forms
are present in the blood at very low concentrations (i.e., pg/
mL). 1,25(OH)2D, which has a half-life of 4–6 h, is often
normal or even elevated in vitamin D-deficient patients
because of secondary hyperparathyroidism increasing the
renal production of 1,25(OH)2D.

Why 25(OH)D and its metabolites are difficult to
measure

Total 25(OH)D is the widely accepted metabolite to mea-
sure for vitamin D status. Nonetheless, albeit many meth-
odological improvements have been made, its determination
is still a challenge [16, 18, 21]. The reasons include the
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tandem determination of both 25(OH)D2 and 25(OH)D3 and
the compulsory dissociation of the hydrophobic 25(OH)D
from its carrier proteins (VDBP), albumin, and lipoproteins.
On this note, it is particularly important to realize that, when
using automated platform organic solvents, which infer the
best dissociation, cannot be employed, consequently
resulting in use of alternative releasing agents that result in
an inferior dissociation of 25(OH)D from its binding pro-
teins. This is particularly observed when analyzing samples
from the pregnant women or those on estrogen therapy or
patients with chronic kidney disease (CKD) [22–24]. Fur-
thermore, it needs to be emphasized that 25(OH)D2 and 25
(OH)D3 have dissimilar affinity constants for these binding
proteins, as such only an efficient dissociation method will
suffice to produce accurate recovery and quantification of
both the forms. Resulting from an exponential increase in
demand for 25(OH)D testing, automated immunoassays are
favored and as obvious from the Vitamin D External
Quality Assurance Scheme (DEQAS) participants, <1% of
the laboratories use currently RIA (www.deqas.com).
However, a number of studies have reported comparisons
between different automated platforms and RIA, high-
pressure liquid chromatography (HPLC), and liquid chro-
matography tandem mass spectrometry (LC-MS/MS), with
poor agreement [13, 14, 25–31]. For this reason, new
insight into the physiology and analytics of vitamin D may
perhaps allow reconsideration of how we assess vitamin D
status.

Assays for vitamin D metabolite measurements

Competitive binding methods and chemiluminescence
immunoassays (CLIAs)

Competitive protein-binding assay (CPBA), RIA, and
CLIAs are all binding assays. CPBAs were used for a short
period of time and included organic solvent extraction and
chromatography prior to assay. CPBAs measured both 25
(OH)D2 and 25(OH)D3 and underestimated 25(OH)D at low
levels and overestimated at high levels [32]. The techniques
were withdrawn from the market due to various technical
problems [33]. Initial RIAs used small samples and I125 as a
tracer. In addition, they were not subjected to nonspecific
interferences, were non-expensive, and also accurate.
However, they required the use of radionuclides and some
of those methods discriminated between 25(OH)D2 and 25
(OH)D3 [4, 23, 32]. CLIAs are based on the dissociation of
25(OH)D from its binding protein (VDBP), then bound to
the specific phase antibody and second to the addition of
magnetic particles coated with antibody against a 25(OH)D-
isolumino tracer. Then the unbound material is removed
with a wash cycle. In the next step, the reagents are added to
initiate the chemiluminescent reaction. The light signal is

detected by a photomultiplier as relative light units; this
measurement is inversely proportional to the concentration
of 25(OH)D [34].

Commercial competing binding assays and immu-
noassays differ among each other according to the cross-
reactivity with different vitamin D metabolites and when
compared to chromatographic methods [35] (Table 1).
Indeed, immunoassays do not detect 3-epi-vitamin D
metabolites, although they may have cross-reactivity with
the 24,25(OH)2D3 and other vitamin D metabolites, which
may increase the risk of bias [36]. The majority of immu-
noassays measures total 25(OH)D [25(OH)D2 and 25(OH)
D3] levels, since they are not able to differentiate 25(OH)D3

and 25(OH)D2 (Table 1). Most of the used automated
immunoassay methods (Abbott Architect, Beckman Dxi,
DiaSorin Liaison, IDS iSYS, Roche, and Siemens) have an
almost constant intra-assay coefficient of variation that
ranges from 4.2% for the new Abbott Architect kits to
15–19% for the Siemens kit [37–42]. In addition, there is
not always complete fidelity in the measurement of 25(OH)
D2 thereby underestimating the total 25(OH)D especially
for patients who were on vitamin D2 [43, 44]. To note,
recently, it has been shown that the new assay from Roche
(Elecsys® Vitamin D total II) had good reactivity toward 25
(OH)D2, with a cross-reactivity of 95.2% for 25(OH)D2 and
92.6% when normalized to 25(OH)D3, overcoming partly
the problem of 25(OH)D2 measurement [41].

Chromatographic methods

Chromatographic assays used to measure vitamin D meta-
bolites include HPLC and LC-MS/MS. Initial studies on 25
(OH)D were based on the use of HPLC, including a lipid
extraction of the serum, after which the 25(OH)D fraction
was submitted to HPLC and the UV absorption to measure
25(OH)D. This procedure was available only for research
laboratories and was not routinely available for the clinical
practice/scenario. However, HPLC-UV lacks the sufficient
sensitivity for the measuring of low levels of 1,25(OH)2D2

and 1,25(OH)2D3 [45]. On the other side, LC-MS/MS is a
powerful analytical technique that combines the separating
power of liquid chromatography with the highly sensitive
and selective mass analysis capability of triple quadrupole
mass spectrometry. LC-MS/MS measures both 25(OH)D2

and 25(OH)D3 and presents a high correlation with the
HPLC (r= 0.96) [14]. LC-MS/MS has an excellent sensi-
tivity for the measuring of analytes in a wide range of
concentrations (0.07 pg/mL to 100 ng/mL), although it has a
poor rate of production. For this reason, LC-MS/MS is
considered as the reference technique used to measure 25
(OH)D, yet requires an expert analyst [46]. Moreover, LC-
MS/MS methods can measure several (in the same sample)
vitamin D metabolites. Despite this concept, the technique
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may produce erroneous results in presence of vitamin D2

and vitamin D3 epimers (e.g., in children or pregnant
women). However, the chromatographic methods of vita-
min D measurements are not always available or are time
consuming; therefore, more simple and practical techniques
have been developed during recent years. In fact, there is no
analytical technology that combines the high detection
capability of LC-MS/MS and the rapid automated properties
of immunoassay methods.

Comparison between immunoassay vs. chromatographic
methods

In the first decades of their use, variable immunoassay
performance was in large part due to a lack of standardi-
zation and reliable calibrators. This issue was addressed in
2008, with the release of the first standard reference material
from the NIST for 25(OH)D (SRM972), which contained
four samples with different concentrations of 25(OH)D2 and
25(OH)D3 and one pool also contains 3-epi-25(OH)D3 [47].
Later, this standard was modified and now contains also
target values for 24,25(OH)2D (SRM972a). Furthermore,
reference methods for the measurement of 25(OH)D were
developed at the University of Ghent and the Center for
Disease Control (CDC) [48]. With this standardization
effort, it was hoped that the analytical performance of 25
(OH)D methods would improve, allowing a better com-
parability of results. For the purpose of this review, we
analyzed the performance of the most frequently used 25
(OH)D methods in the DEQAS program between 2014 and
2018. Surprisingly, the number of laboratories that used
LC-MS/MS remained constantly high (2014 vs 2018: 150
vs 142), whereas the number of immunoassay users
decreased by 25% (2014 vs 2018: 748 vs 581) (Table 2).
This reduction was mainly driven by a decreased utilization
of the two dominant automated immunoassays in this pro-
gram from IDS and DiaSorin. RIAs are only employed by
very few laboratories and the number is continuously
shrinking. Average inaccuracy for LC-MS/MS methods was
constantly low for both levels tested (<12%). Between-
laboratory variability was 13.5% in 2014 with a constant
decrease until 2018 (10.8%). In contrast, automated immu-
noassays showed highly variable performances with average
inaccuracies from 2.4% to 28.4% at target concentrations
between 20 and 40 nmol/L (1 nmol/L= 0.4 ng/mL) and
from −5.3% to +20% at target concentrations between 50
and 70 nmol/L (Table 2). Four years later, the situation had
not substantially changed. While some assays continued to
have a rather small average bias of <1 nmol/L, others
deviated by 9 nmol/L at both levels. By far, the most fre-
quently used method is the DiaSorin Liaison assay. For this
assay, inaccuracy varied between −6.4 and 5.2 nmol/L for
both levels and across the entire period. IDS ISYS and

SIEMENS ADVIA demonstrated a significantly greater bias
from 1.8 to 11.8 nmol/L and from −0.4 to 9.0, respectively
(Table 2). In recent years, several manufacturers modified
their assays and released new versions. While this helped
some manufacturers to improve their performance in the
DEQAS program, others remained unchanged. For accurate
measurements of 25(OH)D, LC-MS/MS remains the gold
standard and offers additional benefits through the possi-
bility to determine simultaneously 25(OH)D2, 25(OH)D3,
24,25(OH)2D, and other metabolites [49–53]. This fact has
recently been recognized by External Quality Assessment
(EQA) providers, such as DEQAS [54]. In their current
program, target values for 24,25(OH)2D are also included
[55]. Automated immunoassays with <10% bias can be
used safely in clinical practice, whereas methods with
>10–15% of systematic bias are rather critical. Wise et al.
reported an inter-laboratory assessment of the measurement
of total 25(OH)D in 15 different laboratories in order to
compare immunoassays with LC-MS/MS results [56].
Among the investigated kits, only half of the immunoassay
methods reached a coefficient of variation <10% and only 3
of the 8 immunoassays achieved a bias <5% [56].

The variable performance of immunoassays has several
reasons, including matrix effects, poor antibody specificity,
cross-reactivity with other 25(OH)D metabolites, and lim-
ited release of vitamin D from carrier proteins. In particular,
25(OH)D2 and heterophilic antibodies are common causes
for erratic results in daily practice. Most of the interferences
that disturb immunoassays do not influence LC-MS/MS
methods, as they remove proteins and lipids completely
prior to analysis and distinguish common metabolites with
high specificity. In spite of these limitations, chromato-
graphic methods and immunoassay methods have regres-
sion slopes close or near to 1.0 with intercepts [57, 58]. In
fact, current automated assays have an acceptable overall
correlation with LC-MS/MS methods. Thus
Passing–Bablok regression analyses for the most popular
immunoassays have been reported for the assay from
Abbott, DiaSorin, IDS, and Roche with mean bias <3% as
compared to LC-MS/MS [36]. Studies that compared
immunoassays with LC-MS/MS are summarized in Table 3
[24, 59–71].

Suggested methods for the measurement of
different vitamin D metabolites

Until recently, 25(OH)D was the only vitamin D metabolite
of interest to explore vitamin D status and metabolism.
Unfortunately, the determination of this vitamin D meta-
bolite, as well as the levels that need to be achieved in
healthy or ill individuals are quite problematic and remain
an important matter of debate [21, 22]. Recently, other
vitamin D metabolites, like 24,25(OH)2D, “bioavailable” or

B. Altieri et al.



“free” 25(OH)D, vitamin D itself, and 1,25(OH)2D, have
emerged as potential new players to better understand the
important vitamin D pathway [72, 73].

In the following lines, we will provide a brief overview
on the issues regarding 25(OH)D assays and standardization
and we will evoke the different metabolites as potential
markers of choice to explore vitamin D metabolism.

25(OH)D and standardization program

The first commercially available RIA for 25(OH)D deter-
mination was based on a method described by Hollis et al.
in 1993 [2], and traditional 25(OH)D cut-offs in use today
for vitamin D deficiency (either 20 or 30 ng/ml (50 or
75 nmol/l)) have been defined on the basis of studies that
predominantly used this assay [4, 74, 75]. Today, most of
the major IVD companies propose a method for 25(OH)D
determination. These methods use a competition design,
except the one from Fujirebio on the Lumipulse, which is a
non-competitive (sandwich) method [76]. If HPLC methods
have been described a long time ago, they have been
superseded by LC-MS/MS ones, which have the great
advantage to present an increased sensitivity and selectivity.

Three Reference Measurement Procedure (RMP) have been
described and accepted, which allow the exact quantifica-
tion of 25(OH)D in serum samples.

In these past years, the International Federation for
Clinical Chemistry and Laboratory Medicine has made
great efforts to promote standardization of laboratory assays
[77], which is important to achieve comparable results
across different methods and manufacturers. In 2010, the
Vitamin D Standardization Program was established to
improve the standardization of 25(OH)D assays and a
method is considered as standardized if the coefficient of
variation is <10% and the bias <5% [78, 79]. The list of
these standardized methods can be found on the CDC
website (http://www.cdc.gov/labstandards/pdf/hs/CDC_
Certified_Vitamin_D_Procedures.pdf). Based on these cri-
teria, a retrospective study demonstrated that the standar-
dization of original measurements of serum 25(OH)D had a
significant impact on estimates of vitamin D status, with a
higher means overall and in age- and sex-specific analyses
in standardized levels, demonstrating that the standardiza-
tion of assays for 25(OH)D measurement should become
common practice [80]. In 2019, 19 methods, coming either
from IVD companies or clinical laboratories, were

Table 2 Performance comparison in the DEQAS program of commonly used vitamin D assays.

Method Manufacturer/instrument N
2014/2018

Bias/imprecision Level 1 (20–40 nM/L) Level 2 (50–70 nM/L)

2014 2018 2014 2018

LC-MS/MS Various 150/142 Bias (nM/%)
Imprecision (%)

+3.1/10.6
13.5

+1.9/8.2
12.7

+6.0/12.6
11.6

+3.0/6.7
10.8

Automated immunoassays Abbott Architect (old) 75/8 Bias (nM/%)
Imprecision (%)

+4.2/14.4
11.4

+0.4/1.7
4.7

+2.8/5.9
9.0

−1.9/4.2
5.0

Abbott Architect (new) —/68 Bias (nM/%)
Imprecision (%)

—

—

+0.3/1.3
7.9

—

—

−1.3/2.9
4.3

IDS ISYS (old) 125/43 Bias (nM/%)
Imprecision (%)

+4.5/15.4
16.6

+11.8/50.6
26.9

+9.5/20.0
12.7

+5.6/12.5
8.2

IDS ISYS (new) —/16 Bias (nM/%)
Imprecision (%)

—

—

+2.8/12.0
14.8

—

—

−1.1/2.44
12.6

Roche Total 25(OH)D 137/143 Bias (nM/%)
Imprecision (%)

+1.8/6.2
17.9

+5.3/22.7
14.0

+0.1/0.21
12.4

+0.6/1.3
9.5

Roche Vitamin D Total II —/35 Bias (nM/%)
Imprecision (%)

—

—

+3.9/16.7
16.5

—

—

+0.2/0.33
11.9

Siemens ADVIA Centaur 58/55 Bias (nM/%)
Imprecision (%)

+8.3/28.4
17.9

+7.1/30.5
14.0

+9.0/18.9
12.4

+9.0/20.1
9.5

DiaSorin Liaison Total 281/198 Bias (nM/%)
Imprecision (%)

+0.7/2.4
10.4

+2.3/9.9
11.7

−2.5/5.3
9.8

+3.2/7.1
8.2

Manual immunoassays IDS EIA 57/10 Bias (nM/%)
Imprecision (%)

+6.8/23.3
13.3

+5.8/12.2
15.3

+5.8/12.2
13.8

+2.3/5.1
18.2

DiaSorin RIA 10/— Bias (nM/%)
Imprecision (%)

+6.0/20.6
17.4

—

—

+4.9/10.3
24.7

—

—

IDS RIA 5/5 Bias (nM/%)
Imprecision (%)

+8.2/28.0
5.1

+11.4/48.9
18.1

+12.5/26.3
6.5

+12.9/28.7
47.4

25(OH)D 25-hydroxyvitamin D, DEQAS Vitamin D External Quality Assurance Scheme, EIA enzyme immunoassay, IDS Immunodiagnostic
Systems, RIA radioimmunoassay
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Vitamin D testing: advantages and limits of the current assays
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considered as standardized against the RMP, but still sev-
eral assays do not comply with the Vitamin D Standardi-
zation Program requirement [81]. However, the proportion
of the 40 samples that met the bias criterion (<5%) is quite
different from one method to the other and ranged from
23% to 85%, with LC-MS/MS methods presenting better
results than immunoassays [82, 83].

24,25(OH)2D determination and the vitamin D metabolite
ratio (VMR)

24,25(OH)2D can only be measured by LC-MS/MS, which
allows simultaneous quantification of 25(OH)D and allow
calculating the 25(OH)D/24,25(OH)2D ratio, also known as
VMR. The VMR has recently been proposed to better
reflect vitamin D deficiency [84]. Indeed, CYP24A1, the
enzyme allowing the degradation of 25(OH)D and 1,25
(OH)2D into 24,25(OH)2D and 1,24,25(OH)3D sees its
expression increased when there is an increased binding and
activation of the VDR in response to 1,25(OH)2D [85].
Hence 24,25(OH)2D concentration may thus reflect VDR
activity, which is not really the case of 25(OH)D. It has
recently been demonstrated that lower 24,25(OH)2D con-
centration and lower VMR were associated with increased
hip fracture risk in community-living older men and
women, whereas 25(OH)D was not associated with hip
fracture risk. Another interest of 24,25(OH)2D and VMR is
that, although concentrations of 25(OH)D and 24,25(OH)2D
strongly correlate with each other and are both lower in
black Americans than in whites, blacks and whites have
equivalent median VMR values [86]. In CKD patients, it
has been shown that 24,25(OH)2D was better associated
with parathyroid hormone (PTH) than 25(OH)D or 1,25
(OH)2D [87]. On the other hand, it is clearly now demon-
strated that biallelic mutations in CYP24A1 led to idio-
pathic infantile hypercalcemia [88]. Many heterozygous
mutations of CYPA24A1 have recently been described [89].
If they are associated with a less dramatic phenotype than
homozygous mutations, patients suffering from these
mutations often present with hypercalcemia, suppressed
PTH, and renal stones [90]. A VMR ratio >50 or even
80 should lead to a genetic research of a CYP24A1 muta-
tion. Again, this measurement should be standardized.
Fortunately, one candidate RMP has been published [91]
and NIST SRM 2972a proposes four standards with certi-
fied values [92]. DEQAS data report that about ten
laboratories provide 24,24(OH)2D results. These data show
quite a large variability, which can partially be attributed
not only to the low concentration of the analyte but also to
the lack of ongoing standardization program. This latter will
be (probably) even more important than the 25-OHD itself,
since small variations in 24,25(OH)2D have a dramatic
impact on the VMR.

Free 25(OH)D

As a steroid hormone, 25(OH)D circulates bound to carrier
proteins, mainly DBP (>85%), albumin (10–15%), and as a
free form (<1%). In many cells, most of the uptake of
vitamin D is achieved through the megalin system, that
captures the VTD-DBP complex, but the free 25(OH)D can
also passively enters the cells. This free fraction can be
estimated through an equation that takes into consideration
the total amount of 25(OH)D, the DBP, and albumin con-
centrations and their respective affinity for 25(OH)D [93].
This requires an accurate measurement of DBP and it has
been shown that only polyclonal antibodies used to measure
DBP could correctly detect the different DBP alleles. Free
25(OH)D can also be measured by a commercial ELISA,
but there is, up to now, no reference method for this mea-
surement [94]. Even if free 25(OH)D has been proposed as
a new way to define vitamin D deficiency, especially in
African-American, more studies are needed to answer these
assay questions and to characterize associations in diverse
populations and conditions.

25(OH)-C3 epimer

Vitamin D can be metabolized through C3 epimerization, a
minor pathway. The epimer share identical structure but a
different stereochemical configuration and its physiological
importance remains unknown. It is found in a significantly
high percentage (up to 60%) of neonates and children of age
up to 1 year and in adults at a much lower concentration
(6.1% of the total 25(OH)D, ranging from 0% to 47%) [95].
The epimer is not detected by the immunoassays but can
falsely be measured by LC-MS/MS methods that are not
able to separate it from 25(OH)D. Recently, Satoh et al. [96]
described a method that simultaneously measures serum 25
(OH)D3, 3-epi-25(OH)D3, 25(OH)D2, and 24,25(OH)2D3

levels. Serum samples are first subjected to LC-MS/MS,
then ionized by electrospray ionization, and finally detected
by selected reaction monitoring [96]. This type of accurate
approach allows to neutralize overestimated results due to
the 3-epi-vitamin D metabolites observed with LC-MS/MS.

Dried blood spots (DBSs)

Although serum and plasma are standard for measuring the
circulating 25(OH)D concentration, DBSs are increasingly
exploited in large-scale epidemiological studies [97, 98].
There is good agreement between measurements of 25(OH)
D from DBS and plasma, which makes DBS an accurate
and robust method that can be used to screen 25(OH)D
concentrations [99–102]. Also, the use of DBS for mea-
suring 25(OH)D offers several advantages over serum or
plasma. Collection of blood spots is minimally invasive.

Vitamin D testing: advantages and limits of the current assays



Only a small volume is required for the extraction and
quantification of 25(OH)D [103]. In addition, DBSs require
no refrigeration and are stable in the dark at room tem-
perature, are suitable for long-term storage, and can be
easily transported. This creates many opportunities in
medical research; for example, DBS routinely collected on
Guthrie cards at birth can be used to determine how neo-
natal vitamin D status affects health outcomes later in life.

1,25(OH)2D

From clinical perspective, 1,25(OH)2D determination should
be limited to the differential diagnosis of inborn and acquired
disorders in 25(OH)D metabolism and 1,25(OH)2D recogni-
tion [4]. These include disorders like sarcoidosis and other
granulomatous disorders, pseudovitamin D deficiency and
vitamin D-resistant rickets, hypophosphatemic rickets,
hyperparathyroidism, 24-hydroxylase deficiency, and tumor-
induced osteomalacia. Even if 1,25(OH)D levels are
decreased in renal failure, its measurement is not recom-
mended in that context by the Kidney Disease Improving
Global Outcomes guidelines [104]. 1,25(OH)2D determina-
tion is challenging because it circulates in the picomolar
range. If tedious RIAs were the main methods available for its
measurement, automated immunoassays are now proposed by
IDS on the iSYS or DiaSorin on the Liaison. Among these,
the DiaSorin test provides a valuable analytical approach to
estimate 1,25(OH)2D levels, with a total imprecision of 5.2%
comparison with LC-MS/MS (Table 3) [71]. If LC-MS/MS
methods have already been described, there is, up to now, no
reference method available for 1,25(OH)2D

Alternatives to blood tests

Although effective for correcting hypovitaminosis D, uni-
versal supplementation remains, however, controversial
[105, 106]. Vitamin D intoxication is extremely rare often
due to ingestion of extremely excessive quantities in the
range of 50,000–1 million IUs of vitamin D daily for
months to years and thus is of little concern. However,
patients with granulomatous disorders or 24-hydroxylase
deficiency need to be monitored carefully for their vitamin
D intake because of their increased sensitivity to vitamin D.
Although some have suggested that there is lack of evidence
for vitamin D supplementation to be cost-effective [107],
many health organizations including the Endocrine Society
considers vitamin D deficiency and insufficiency to be a
global health problem and increased food fortification pro-
grams and supplementation are warranted [4, 22]. There is a
misperception about the need to measure 25(OH)D before
instituting supplementation as the Endocrine Society and
other medical societies do not recommend broad screening
before implementing vitamin D supplementation and

treatment. Screening should be made in children and adults
with specific risk factors as outlined in Endocrine Society
Practice Guidelines on Vitamin D [22]. There is also no
evidence that based on baseline blood levels of 25(OH)D
that the vitamin D dose needs to be adjusted even though it
has been suggested that it is required [108]. The reason for
this is that there are at least 4 different 25 hydroxylases in
the liver that have different binding affinity for the vitamin
D receptor. Patients with blood level of 25(OH)D of 10 ng/
mL, for example, will quickly raise their blood level of 25
(OH)D into the range of 15–20 ng/mL. However, once a
level of approximately 20 ng/mL is achieved it has been
reported that for every 100 IUs of vitamin D ingested the
blood level will raise by approximately 0.6–1 ng/mL.
Patients who are obese require 2–3 times more vitamin D
[19]. Unfortunately, these misconceptions have led to
marked increases in the ordering of serum 25(OH)D levels,
especially in primary care.

On evaluating results from previous studies on alter-
natives to blood tests, we identified a final number of
12 studies in human beings that were designed and/or tested
a questionnaire for the identification of people with hypo-
vitaminosis D (Table 4) [109–120]. The studies tested the
performance of already existing dietary questionnaires
[111, 112, 114] or general physical questionnaires
[116, 117, 120] or isolated questions [113, 115] to detect
hypovitaminosis D. Almost all of them used conventional
linear statistical methods, and only one used artificial neu-
ronal network methods (i.e., artificial intelligence) [118].
Whatever the model tested, results showed rather good
sensitivity to hypovitaminosis D (range, 46–91%)
[115, 118] but only modest specificity (range, 35–89%)
[116, 118], and each time only a single metrological quality
was observed (either sensitive or specific), except with the
Vitamin D Status Predictor tool [118]. The latter 16-item
questionnaire was able to identify vitamin D insufficiency
≤75 nmol/L with a diagnostic efficacy >96% in community-
dwelling older adults [118] and was also effective in hos-
pitalized geriatric inpatients [121]. It can be used as a het-
eroquestionnaire but is also suitable as a self-administered
questionnaire [122]. Other dedicated questionnaires are also
available, such as the one developed from the results of the
SUVIMAX study and applicable to the general middle-aged
population [119].

These findings open new perspectives for the screening
for hypovitaminosis D. Such inexpensive and non-invasive
tools may undoubtedly help clinicians in decisions to sup-
plement their patients without routinely resorting to an
expensive blood test. Consistently, their potential interest in
clinical practice was highlighted in recent French guidelines
for vitamin D supplementation [123]. Further investigations
are needed to determine the feasibility, cost-effectiveness,
and clinical utility of such tools in routine practice to
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promote appropriate medical decisions. Their efficiency for
replacing monitoring blood tests after the initiation of
vitamin D supplements should also be questioned.

Conclusion

There has been significant progress in the development of
assays for 25(OH)D and its metabolites. LC-MS/MS con-
tinues to serve as the gold standard to quantitatively
determine one of the clinically relevant vitamin D meta-
bolites in the circulation. The accurate measurement of total
25(OH)D has made a significant contribution for the clinical
management of vitamin D deficiency in patients who are at
high risk [22]. This assay, however, should not be used for
screening purposes [22]. Whether the free level of 25(OH)D
or 24, 24(OH)D will offer any further insight into vitamin D
status remains to be determined and is not recommended
based on the literature at this time. The assay for 1,25(OH)

2D should only be used for inherited and acquired disorders
in vitamin D metabolism and recognition and is of no value
in determining vitamin D status. The use of a variety of
standardized surveys may be of value in alerting health-care
professionals about the vitamin D status of their patients.
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