Annals of Clinical Biochemistry

Vitamin D supplementation in pregnancy: A word of caution.

Journal:	Annals of Clinical Biochemistry
Manuscript ID	ACB-19-282.R1
Manuscript Type:	Case Report
Date Submitted by the Author:	05-Dec-2019
Complete List of Authors:	Macdonald, Christy; Canterbury District Health Board, Department of Endocrinology Upton, Thomas; Canterbury District Health Board, Department of Endocrinology Soule, Steven; Canterbury District Health Board, Endocrinology; Canterbury District Health Board, General medicine Hunt, Penny ; Canterbury District Health Board, Department of Endocrinology Florkowski, Christopher; Canterbury Health Laboratories, Biochemistry Phillips, Ian ; Canterbury Health Laboratories, Department of Biochemistry Kaufman, Martin Jones, Glenville
Keywords:	Calcium < Analytes, Inborn errors of metabolism < Clinical studies, Mass spectrometry < Laboratory methods

SCHOLARONE[™] Manuscripts

1 2		
- 3 4	1	Vitamin D supplementation in pregnancy: A word of caution.
5 6	2	Familial hypercalcaemia due to disordered vitamin D metabolism
7 8 9	3 4	Christy Macdonald ¹ , Thomas Upton ¹ , Penny Hunt ¹ , Ian Phillips ² , Martin Kaufmann ³ , Chris Florkowski ² , Steven Soule ¹ , Glenville Jones ³
10 11	5	¹ Department of Endocrinology, Christchurch Hospital, New Zealand;
12 13	6	² Canterbury Health Laboratories, Christchurch, New Zealand,
14 15 16	7 8	³ Department of Biomedical and Molecular Sciences, Queen's University, Ontario, Canada
17 18	9	DECLARATIONS
19 20 21	10	Competing interests: None
22 23 24	11 12	Funding : This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.
25 26	13	Ethical approval: not applicable
27 28	14	Guarantor: CM
29 30 31 32	15 16	Contributorship: CM and TU reviewed the literature and wrote the manuscript. All authors reviewed and edited the manuscript and approved the final version.
33 34	17	Acknowledgements: We would like to thank the index case for her consent to publish
35 36 37	18	and the Molecular Genetics Laboratory at Labplus, Auckland for performing the genetic
37 38 39	19	analysis in this case. We acknowledge the loan of the LC-tandem mass spectrometer
40 41 42	20	used in these studies as part of a Waters-Queen's University Research Agreement.
43 44	21	
45 46	22	
47 48	23	Abstract:
49 50 51	24	Disorders of vitamin D metabolism have only recently become more widely recognised.
52 53	25	In 2011, a series reported six children with familial idiopathic infantile hypercalcaemia, a
54 55 56	26	condition in which patients develop hypercalcemia following bolus vitamin D
57 58		Page 1 of 15
59 60		Annals of Clinical Biochemistry

Page 2 of 20

supplementation due to mutations in CYP24A1, formerly known as 24-hydroxylase. This is the chief enzyme in catabolism of 1,25-dihydroxyvitamin D_3 (calcitriol) to inactive 1,24,25-(OH)₃D₃¹. Isolated cases of loss of function CYP24A1 mutations have been reported across a wide spectrum of ages, including three cases first identified during pregnancy in the context of vitamin D supplementation.^{2, 3, 4} We describe a family in which two siblings had hypercalcaemia due to a disorder of calcitriol catabolism as a result of compound heterozygous loss of function mutations of CYP24A1, including a novel mutation K351Nfs*21. The index case, who has kindly given written informed consent for this report, was a female in her mid-20s presenting with symptomatic hypercalcaemia precipitated by vitamin D supplementation in her first pregnancy. In a subsequent pregnancy, she remained normocalcaemic in the absence of supplementation. Her asymptomatic brother was identified through cascade screening. Upregulation of calcitriol production in pregnancy, particularly when combined with vitamin D supplementation, can unmask previously unidentified disorders of vitamin D metabolism. This report emphasises the importance of screening of family members and the need for caution with vitamin D supplementation in pregnancy.

Keywords: CYP24A1, Idiopathic infantile hypercalcemia, Vitamin D supplementation,
 pregnancy, hypercalcaemia, 24,25-(OH)₂D₃

46 Case description

47 A previously healthy primigravida in her mid-20s presented with hyperemesis and
 48 hypercalcaemia at 13 weeks' gestation and was referred for endocrinological
 49 assessment. Prior to the pregnancy, her general practitioner had diagnosed mild vitamin

58 59

60

2 3 4 5 6	50	D deficiency (25-OH-D $_3$ 30 nmol/I [reference interval (RI) 50-150] and prescribed
	51	monthly supplementation (colecalciferol 50,000 units daily for 12 days then monthly for
7 8	52	a total of 3 months). Examination was as expected for gestation and there was no
9 10 11 12	53	clinical suspicion of malignancy, infection or an inflammatory process.
12 13 14	54	Laboratory investigations revealed elevated albumin-corrected plasma calcium 2.9
15 16	55	mmol/L [RI 2.2-2.6] (11.6mg/dL), normal phosphate 1.1 mmol/L [RI 0.8-1.5],
17 18	56	(3.41mg/dL), low parathyroid hormone 0.7 pmol/L [RI 1.6-7.0] (6.6 pg/mL) and normal
19 20 21	57	renal function. 25-OH-D3 was normal at 116nmo/l. Urine calcium excretion was
21 22 23	58	markedly elevated at 2.09 mole ratio [RR 0.06-0.45]. Plasma 1, 25-(OH) $_2D_3$ (calcitriol)
24 25	59	was twice the upper limit of the normal reference range at 380 pmol/L [RI 65-175].
26 27 28 29 30 31 32 33 34	60	Parathyroid hormone related peptide (PTHrP) was undetectable at 20 weeks' gestation.
	61	Abdominal ultrasound showed a 5mm asymptomatic renal calculus and normal uterine
	62	anatomy appropriate for gestation. Chest x-ray was normal, serum angiotensin
	63	converting enzyme (ACE) was normal, and a QuantiFERON-TB Gold test was negative.
35 36 37	64	DEXA bone densitometry performed 2 months prior to pregnancy was normal for age.
38 39 40	65	Vitamin D supplementation was discontinued. A trial of prednisone (20mg daily for 14
41 42	66	days) had no effect on plasma calcium which remained between 2.9-3.3 mmol/
43 44	67	throughout the remainder of her pregnancy. At 36 weeks' gestation she developed
45 46 47	68	idiopathic cholestasis of pregnancy (ICP) and delivered a healthy normocalcemic infant
47 48 49	69	at term. Hypercalcemia resolved by 4 weeks' post-partum, although hypercalciuria
50 51 52	70	persisted.
53 54	71	A diagnosis of disordered calcitriol catabolism was considered and samples were sent
55 56	72	to a specialised international laboratory for the analysis of vitamin D metabolites. The
57		

Page 4 of 20

results are shown in the Table 1, and Figure 1. Quantitative assay of vitamin D
metabolites was performed by modified liquid chromatography- tandem mass
spectrometry (LC-MS/MS) technology using a chromatographic approach that resolves
24,25(OH)₂D₃ from 25,26(OH)D₃. The ratio of plasma 25-OH-D₃ to 24, 25-(OH) ₂D₃ was
markedly elevated. In addition, 1,24,25(OH)₃D₃ levels were undetectable confirming
lack of functional *CYP24A1*.

Genetic analysis using PCR and DNA sequencing of the entire genome coding region
and splice junctions was performed. Compound heterozygous loss-of function mutations
of *CYP24A1* were detected (Figure 1). The E143del mutation has previously been
reported in association with the condition^{1,4,5} and K351Nfs*21 is novel and reported as
likely pathogenic.

Cascade screening of immediate family members was carried out (Figure 2 and Table 1) and identified that her brother, aged in his early teens, was also affected. On review he was asymptomatic but was found to have an albumin-corrected plasma calcium of 2.7 mmol/L (10.8 mg/dL) and hypercalciuria (1.23 mole ratio (RI 0.06-0.45)). Like his sibling, the ratio of plasma 25-OH-D₃ to $24,25-(OH)_2D_3$ was also markedly elevated. Renal tract ultrasound identified no calculi or nephrocalcinosis. He was made aware that he was at increased risk of stone disease and advised to avoid vitamin D supplementation.

92 The index case had a subsequent pregnancy three years later, during which serum
93 calcium was monitored monthly and remained within the normal range (maximum
94 corrected calcium 2.6mmol/l) in the absence of vitamin D supplementation. She
95 developed recurrent ICP and delivered another healthy infant at term.

1 2	
3 4	9
5 6	9
7 8 9	9
, 10 11	9
12 13	10
14 15 16	10
16 17 18	10
19 20 21	10
22 23 24	10
25 26 27	10
27 28 29	10
30 31	10
32 33	10
34 35 36	10
37 38	11
39 40	11
41 42 43	11
44 45	11
46 47	11
48 49 50	11
50 51 52	11
53 54	11
55 56	11
57 58 59	

96	The final diagnosis for this family was of familial hypercalcaemia due to abnormal
97	vitamin D metabolism as a result of heterozygous CYP24A1 loss-of-function mutations,
98	often referred to as idiopathic infantile hypercalcaemia (IIH)/ CYP24A1-
99	hypercalcaemia. Symptomatic hypercalcaemia was unmasked in the index case by
100	vitamin D supplementation. Physiological changes of pregnancy may also be relevant,
101	however, given she remained normocalcaemic in a subsequent pregnancy (without
102	vitamin D supplementation), these are not likely to be the dominant precipitant.
103	Discussion.
104	Disordered vitamin D metabolism and hypercalcaemia due to CYP24A1 mutations
105	Vitamin D is metabolised through a series of hydroxylation steps, first in the liver to 25-
106	OH-D $_3$ and then in the kidney by 1 α -hydroxylase to the active form 1,25-(OH) $_2D_3$
107	(calcitriol). Calcitriol is in turn catabolised to inactive $1,24,25$ -(OH) $_3D_3$ and calcitrioic
108	acid, by cytochrome P450 enzyme CYP24A1, formerly known as 24-hydroxylase, which
109	is also responsible for inactivation of 25-OH-D $_3$. The importance of inactivation of 1,25-
110	$(OH)_2D_3$ in the regulation of vitamin D metabolism and therefore calcium balance has
111	only recently been recognised. In 2011, hypercalcemia following bolus vitamin D
112	supplementation was described in a series of six children. The authors described this
113	condition as 'familial idiopathic infantile hypercalcaemia'. ¹ Affected individuals were
114	identified as harbouring bi-allelic loss of function mutations in CYP24A1, and thus
115	demonstrated increased sensitivity to vitamin D loading. Since then, cases of
116	inactivating CYP24A1 mutations have been reported across a wide spectrum of ages,
117	including three cases first identified during pregnancy, all of which received prenatal
118	supplements containing vitamin D. ^{2,3,4}

Page 6 of 20

IIH/CYP24A1-hypercalcaemia classically presents as symptomatic hypercalcaemia in infancy, however a recent review found that more than a third of currently reported patients with bi-allelic CYP24A1 mutations presented later in life.⁵ Many affected individuals are asymptomatic but hypercalciuria and renal calculi are common.⁵ both of which were identified in our index patient. Chronic kidney disease, with a decline in glomerular filtration rate has also been reported although it is unclear if this is a primary complication of the disease or a result of calculi and/or associated intervention.^{4,6} The variable penetrance is thought to be due to a combination of genetic and environmental factors with the cumulative dose of exogenous vitamin D playing a critical role. The influence of sunlight exposure, thus cutaneous vitamin D may also be important with higher levels of serum and urinary calcium seen during summer months.⁶ Quantification of vitamin D metabolites by liquid chromatography- tandem mass spectrometry (LC-MS/MS) provides a sensitive and specific method for identifying IIH/CYP24A1-hypercalcaemia⁷ and can be carried out by 150-200 specialist

133 laboratories worldwide at a cost of around US\$40 per sample.⁸ A chromatographic

134 approach that resolves $24,25(OH)_2D_3$ from $25,26(OH)D_3$, as used in this case, is

135 recommended to avoid misleading results due to the contamination of the $24,25(OH)_2D_3$ 136 peak by $25,26(OH)_2D_3$.⁹ In affected individuals, levels of 25-OH-D₃ may be elevated

137 and 1,24,25-(OH)₃D₃ and 24,25-(OH)₂D₃ are very low or undetectable. As

138 measurement 1,24,25-(OH)₃D₃ is technically difficult, measurement of the ratio of 25-

139 OH-D₃ to 24,25-(OH)₂D_{3:} is recommended with the result being markedly elevated

140 (>140 using the method described above).⁹ This ratio correctly predicted both affected

141 cases in our family despite the post-partum return to normocalcemia in the index case.

1 2							
2 3 4	142	Diagnosis is confirmed by genetic analysis. A spectrum of mutations along the entire					
5 6	143	<i>CYP24A1</i> gene have been identified, ^{10,11} however the K351Nfs*21 mutation identified in this case has not previously been reported. The prevalence of IIH/ <i>CYP24A1</i> -					
7 8 9	144						
9 10 11	145	hypercalcaemia is unknown, however, almost 0.7% of the general European population					
12 13	146	have been found to be heterozygous carriers of one of 4 common CYP24A1 loss of					
14 15	147	function alleles. ¹⁰ As there are now over 20 mutations reported the true carrier					
16 17 18	148	frequency is likely to be significantly higher.					
19 20 21	149	Management of IIH/CYP24A1-hypercalcaemia includes avoidance of vitamin					
22 23 24	150	supplementation, a low calcium-diet (if appropriate) and advice regarding sun-protection					
24 25 26	151	and maintenance of hydration. For symptomatic hypercalcaemia usual treatments					
27 28	152	including hydration, glucocorticoids, calcitonin and bisphosphonates have been used successfully. ¹⁰ If hypercalcemia is refractory, consideration can be given to medication					
29 30	153						
31 32 33	154	that induces surrogate vitamin D catabolism. ¹² Treatment with rifampicin, a potent					
34 35	155	inducer of CYP3A4, successfully treated hypercalcaemia in 2 cases of IIH, the					
36 37	156	mechanism postulated to be increased degradation of $1,25-(OH)_2D_3$ or its precursor					
38 39 40	157	25(OH)D ₃ in the absence of CYP24A1. ¹³ Inhibition of vitamin-D synthesising enzymes					
40 41 42	158	by low dose fluconazole has also been successfully used in a small number of reported					
43 44	159	cases. ¹⁴					
45 46 47	160						
48 49 50	161	Calcium physiology during pregnancy					
51 52	162	Maternal calcium metabolism adapts to accommodate the demands of the placenta and					
53 54 55	163	growing fetal skeleton, which contains around 30g of calcium by full term. ¹⁵ Although the					
56 57							
58 59		Page 7 of 15 Annals of Clinical Biochemistry					
60		A mail of childer prochemistry					

Page 8 of 20

majority of the calcium is accumulated during the third trimester, changes to calcium homeostasis begin to occur early in pregnancy. Expansion of circulating plasma volume reduces serum albumin concentrations and thus total serum calcium; however, albumin-corrected and ionized free calcium concentrations remain within the normal non-pregnant reference range. Renal and placental upregulation of calcitriol production, which may lead to a several fold increase in serum concentrations by the third trimester,¹⁵ contribute to this effect. Consequently fractional absorption of calcium from the small intestine increases two fold during the first trimester, a change that is sustained throughout the remainder of pregnancy.¹⁵ This in turn leads to increased renal filtration and urinary calcium excretion which may reach the hypercalciuric range.¹⁶

A further consequence of the upregulation of calcitriol is that parathyroid hormone levels
are suppressed during the first trimester to levels that may even fall below the lower
limit of normal.¹⁵ PTHrP, produced by placental and lactating mammary tissue, rises
gradually throughout pregnancy peaking in the post-partum period and being sustained
by lactation.¹⁷

To ensure there is adequate vitamin D to meet this demand and to prevent fetal vitamin D deficiency, guidelines for vitamin D supplementation during pregnancy have recently been introduced in a number of countries. Guidance in Australia¹⁸, New Zealand¹⁹ and United States²⁰ suggests consideration of vitamin D measurement for women at high risk of deficiency (those with darker skin, who avoid sun exposure, take photosensitising medications, or have liver or kidney disease)²¹ and supplementation is advised for pregnant women with low levels. As the index patient wore a hijab she would be considered at high risk for deficiency. Australia and New Zealand guidelines also

Page 8 of 15

DOI: 10.1177/0004563219897691

suggest that supplementation should be considered for all pregnant women at higher risk, without testing vitamin D levels.^{18,19} In the UK it is recommended that all women be advised early in pregnancy to supplement vitamin D.²² These recommendations are based on evidence that, depending on geographical location and climate, a sizeable proportion of women of child bearing age (over one third in NZ²³) have vitamin D levels below the recommended range and there is correlation between maternal vitamin D levels and vitamin D deficiency in the newborn²¹ Widespread blood testing for vitamin D deficiency is not encouraged because the cost of testing is far greater than the cost of treatment and the potential harms from treatment have traditionally been considered small. This case demonstrates that harms from treatment can be significant as, in the setting of disordered calcitriol metabolism, maternal vitamin D supplementation can unmask significant maternal hypercalcaemia. There is also evidence of harm with increased rates of infantile hypercalcaemia being reported in in Australia since the introduction of guidelines in 2006. Of first measured serum calcium in infants under 6 months at a single laboratory hypercalacaemia was detected in 1.1% in 2005-2007 and increased to 8.7% in 2011-2013.²⁴ During the latter period, 13 infants were diagnosed with IIH with raised $1,25-(OH)_2D_3$ in keeping with an abnormality of CYP24A1. Infants had associated significant morbidity including symptomatic hypercalcemia and nephrocalcinosis. Of these infants, twelve had mothers who had received prenatal vitamin D3 supplementation.

208 Overall, hypercalcaemia in pregnancy is rare. Primary hyperparathyroidism (PHPT) 209 accounts for the majority of cases but still affects less than 0.1% of reproductive age

> women⁶. In our patient PHPT was excluded based on suppressed PTH. There are a broad range of other causes of hypercalcaemia in pregnancy including malignancy, granulomatous disease and excessive calcium and alkali ingestion.²⁵ In this case, as clinical assessment was not suggestive of malignancy and the response to steroids was not consistent with granulomatous disease, further investigation was carried out. The very high calcitriol concentration early in the pregnancy raised the possibility of a disorder of vitamin D metabolism. Hypercalcemia due to abnormalities of Vitamin D metabolism include vitamin D intoxication, IIH due to mutations of SLC34A1 (encoding renal proximal sodium-phosphate cotransporter Na-Pi-IIa) and, as identified in this case, IIH due to loss of function mutations of CYP24A1.

220 Conclusion

1	
2 3 4	221
5 6	222
7 8 9	223
9 10 11	224
12 13	225
14 15	226
16 17 18	227
19 20	228
21 22	
23 24	229
25 26	230
27 28	231
29 30	232
31 32 33	233
33 34 35	234
36 37	235
38 39	236
40 41	237
42 43	238
44 45	
46 47	
48 49	
50 51	
52	
53 54	
55 56	
57 58	

221	Hypercalcaemia due to disorders of vitamin D metabolism have previously been
222	described but remain poorly recognized. IIH due to loss of function mutations in
223	CYP24A1 should be considered in the differential diagnosis of hypercalcaemia or
224	hypercalciuria in all age groups. Pregnancy (when there is an upregulation of calcitriol
225	production) and, perhaps more importantly, a trend to supplement vitamin D, can
226	precipitate symptomatic hypercalcaemia in affected patients and result in significant
227	morbidity to both the mother and infant.
228	The ratio of 25-OH-D $_3$ to 24,25-(OH) $_2D_3$ provides a sensitive and specific method for
229	predicting the presence of CYP24A1 mutations, even during periods of normocalcaemia

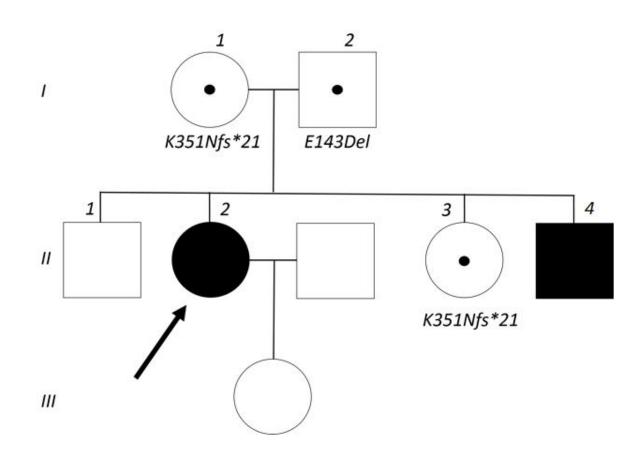
and diagnosis is confirmed through genetic analysis. Cascade screening of family
members of individuals with CYP24A1 mutations is important and should be considered
at adulthood, or earlier if symptomatic. Affected asymptomatic individuals benefit from
diagnosis through prevention of unnecessary investigation of hypercalcaemia and
awareness of the importance of avoiding vitamin D supplementation, particularly in
pregnancy.

3 4 5	239	Refe	erences
6 7	240	1.	Schlingmann, K. P. et al. Mutations in CYP24A1 and idiopathic infantile
8 9 10	241		hypercalcemia. <i>N Engl J Med</i> 2011; 4;365(5):410-21
11 12 13	242	2.	Shah, A. D. et al. Maternal Hypercalcemia Due to Failure of 1,25-
14 15	243		dihydroxyvitamin-D 3 Catabolism in a Patient with CYP24A1 Mutations. J Clin
16 17 18	244		Endocrinol Metab 2015; 100(8):2832-6
19 20 21	245	3.	Woods G.N. et al. A Young Woman with Recurrent Gestational Hypercalcaemia
22 23	246		and Acute Pancreatitis due to CYP24A1 Deficiency. J Bone Miner Res 2016;
24 25 26	247		10:1841-1844.
27 28 29	248	4.	Dinour, D. et al. Loss-of-Function Mutations of CYP24A1, the Vitamin D 24-
30 31	249		Hydroxylase Gene cause Long-standing Hypercalciuric Nephrolithiasis and
32 33 34	250		Nephrocalcinosis. <i>J Urol</i> 2013; 190: 552–557.
35 36 37	251	5.	Nesterova, G. et al. 1,25-(OH) ₂ D-24 hydroxylase (CYP24A1) deficiency as a
37 38 39 40	252		cause of nephrolithiasis. Clin J Am Soc Nephrol 2013; 8: 649–657.
41 42	253	6.	Figueres, ML et al: Kidney function and influence of sunlight exposure in patients
43 44	254		with impaired 24 hydroxylation of vitamin D due to CYP24A1 mutations. Am J
45 46 47 48	255		<i>Kidney Dis</i> 2015; 65:122-126
49 50	256	7.	Kaufmann, M et al. Improved Screening Test for Idiopathic Infantile
51 52	257		Hypercalcaemia Confirms Residual Levels of Serum 24,25-(OH) $_2D_3$ in Affected
53 54 55 56	258		Patients. <i>J Bone Miner Res</i> 2017; 32:1589-1596.
57 58			Page 12 of 15
59 60			Annals of Clinical Biochemistry

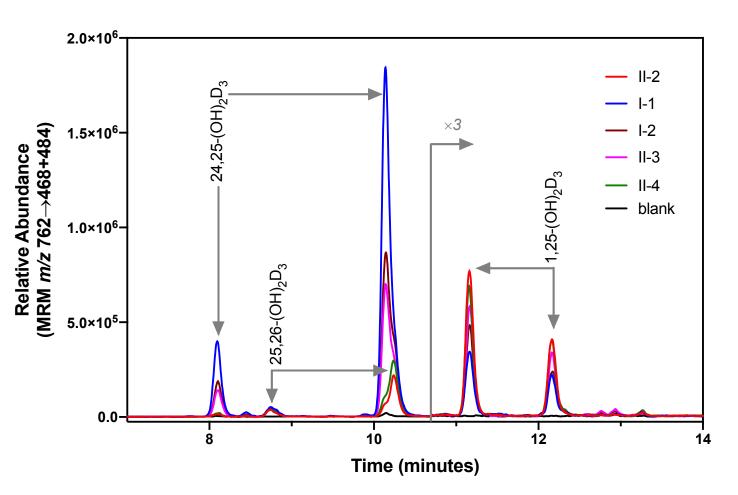
Page 13 of 20

1

2 3	259	8.	Carter GD et al. Hydroxyvitamin D assays: An historical perspective from DEQAS.
4 5 6	260		J Steroid Biochem Mol Biol. 2018; 177: 30-35
6 7 8			
9 10	261	9	Kaufmann, M. et al. Clinical Utility of Simultaneous Quantitation of 25-
11 12	262		Hydroxyvitamin D and 24,25-Dihydroxyvitamin D by LC-MS/MS Involving
13 14 15	263		Derivatization With DMEQ-TAD. J Clin Endocrinol Metab 2014; 99: 2567–2574.
16 17	264	10	Jones, J. Schlingmann, K.P Hypercalcemic States Associated with Abnormalities
18 19 20 21	265		of Vitamin D metabolism. Front Horm Res 2018, vol 50, pp 89-113.
22 23	266	11	Molin, A. et al. CYP24A1 Mutations in a Cohort of Hypercalcemic Patients:
24 25	267		evidence for a recessive trait. J Clin Endocrinol Metab 2015; 100(10):E1343-
26 27 28	268		5220.
28 29 30	000	40	
31 32	269	12	Wang Z et al Enhancement of the hepatic 4-hydroxylation of 25-hydroxyvitamin
33 34	270		D2 through CYP3A4 induction in vitro and in vivo: implications for drug-induced
35 36	271		osteomalacia. <i>J Bone Miner Res</i> 2013; 28: 1101-1116
37 38 39	272	13.	Hawkes, CP et al CYP3A4 induction by rifampin: an alternative pathway for
40 41	273		vitamin D inactivation in patients with CYP24A1 mutations. J Endocriol Metab
42 43	274		2017; 102: 1440-1446
44 45 46	075	4.4	Covers Let al Cussossfull treatment of hypersolasemic associated with a
40 47 48	275	14.	Sayers J et al Successfull treatment of hypercalcaemia associated with a
49 50	276		CYP24A1 mutation with fluconazole. <i>Clin Kidney J</i> 2015; vol 8:4, 4553-455
51 52	277	15	Kovacs, C. S. Maternal Mineral and Bone Metabolism During Pregnancy,
53 54 55	278		Lactation, and Post-Weaning Recovery. Physiol Rev 2016; 96: 449–547
56 57			
58 59			Page 13 of 15
60			Annals of Clinical Biochemistry


16. Gertner, J. M. et al. Pregnancy as state of physiologic absorptive hypercalciuria. Am J Med 1986; 81(3): 451-456 17. Kovacs, C. S. Osteoporosis presenting in pregnancy, puerperium, and lactation. *Curr Opin Endocrinol Diabetes Obes* 2014; 21(6):468-75 18. Vitamin and mineral supplementation and Pregnancy. Royal Australian and New Zealand College of Obstetricians and Gynaecologists retrieved from https://www.ranzcog.edu.au 19. Ministry of Health. Companion Statement on Vitamin D and Sun Exposure in Pregnancy and Infancy in New Zealand. 2013; 978-0-478-40247-6 20. ACOG Committee Opinion No. 495: Vitamin D: Screening and supplementation during pregnancy. Obstet gynecol 2011; 118(1): 197-8 21. Andiran N, Yordam N, Ozön A. Risk factors for vitamin D deficiency in breast-fed newborns and their mothers. Nutrition 2002;18: 47-50. 22. National Institute for Health and Care Excellence. Quality Standard No.62. Antenatal Care for uncomplicated pregnancies. 2008, updated 2019. Retrieved from https://www.nice.org.uk/guidance/cg62 23. Ministry of Health. 2012. Vitamin D Status of New Zealand Adults. Findings from the 2008/09 New Zealand Adult Nutrition Survey. Retrieved from https://www.health.govt.nz/publication/vitamin-d-status-new-zealand-adults 24. Amato LA et al. Increased rate of infantile hypercalcaemia following guidelines Page 14 of 15 Annals of Clinical Biochemistry

2 3	299		for antenatal vitamin D3 supplementation. Int J Pediatr Endocrinol 2015; (Suppl
4 5 6	300		1): O42.
7 8			·
9 10	301	25.	Picolos, M. K. et al. Milk-Alkali syndrome in Pregnancy. Obstet Gynecol 2004;
11 12 13	302		104: 1201–1204.
14 15	303		
16 17 18	304		
19 20 21 22	305		
23 24	306		
25 26 27	307		
27 28 29 30 31 32 33	308		
	309		
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	310		
56 57 58			Page 15 of 15
59 60			Annals of Clinical Biochemistry


	Calcium (mmol/L) (2.2-2.6)	РТН (pmol/L) (1.6-7)	Urine Ca:Cr ratio (mole ratio) (0.06-0.45)	25-OH-D₃ (nmol/L) (50-150)	1,25-(OH)₂D₃ (pmol/L) (65-175)	24,25-(OH)₂D₃ (nmol/L)	25-OH- D ₃ :24,25- (OH) ₂ D ₃ Ratio (5-25)
Index (II-2) 13 weeks pregnant	2.9	0.7	2.09	116	380		
Index (II-2) Post-partum	2.6	1.8	0.76	57	210	0.10	594
Index (II-2) Second pregnancy 19 weeks	2.6	1.5	1.14	29	436		
I-1	2.4	3.0	0.37	78	98	6.9	11.3
I-2	2.5	3.4	0.26	61	134	2.1	28.6

II-3	2.4	3.9	0.14	50	183	2.5	19.8
11-4	2.7	0.9	1.23	82	188	0.04	2277

Table 1. Summary of biochemical investigations undertaken for each consenting family member.

Figure 2. The index case (II-2) is indicated by the bold arrow. Affected family members are shown as solid black symbols. Family members carrying either mutation are indicated with a black dot. The patient's brother (II-1) refused consent for mutation testing.

Figure 1: LC-MS/MS analysis of 24,25-(OH)₂D₃ and 1,25-(OH)₂D₃. Quantitative assay of vitamin D metabolites including 24,25-(OH)₂D₃ and 1,25-(OH)₂D₃ involves dilution with specific deuterated internal standards, protein precipitation, extraction, and derivatization with DMEQ-TAD prior to LC-MS/MS analysis. A representative chromatogram of m/z 762 \rightarrow 468+484 is shown, based on immunoextraction with anti-1,25-(OH)₂D₃ antibody. Derivatization of vitamin D metabolites with DMEQ-TAD yields both 6*S* and 6*R* isomers, which are chromatographically resolved. As 24,25-(OH)₂D₃ and 1,25-(OH)₂D₃ share the same molecular mass and certain fragment ions, both metabolites can be observed on the m/z 762 \rightarrow 468+484 trace.

Page 20 of 20

DOI: 10.1177/0004563219897691