Micronutrients in autoimmune diseases: Possible therapeutic benefits of zinc and vitamin D

Inga Wessels, Lothar Rink

PII: S0955-2863(19)30833-2
DOI: https://doi.org/10.1016/j.jnutbio.2019.108240
Reference: JNB 108240

To appear in: The Journal of Nutritional Biochemistry

Received date: 21 August 2019
Accepted date: 9 September 2019

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier.
Micronutrients in autoimmune diseases: Possible therapeutic benefits of zinc and vitamin D

Inga Wesselsa, Lothar Rinka*

aInstitute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany, iwessels@ukaachen.de; lrink@ukaachen.de

* Corresponding author / Reprint requests:
Lothar Rink, Prof. Dr. rer. nat.
Institute of Immunology
Medical Faculty, RWTH Aachen University
Pauwelsstr. 30
D-52074 Aachen
Germany
Phone: ++49 241 8080209
Fax: ++49 241 8082613
E-mail: lrink@ukaachen.de
Abstract

A functional immune system is essential for healthy life. This is achieved by the coordinate activation and interaction of different immune cells. One should be aware that activation of the immune response is as important as its de-activation when the pathogens are cleared, as otherwise host tissue can be damaged up to life-threatening levels.

Autoimmune diseases (AID) represent a phenomenon of immune cells attacking host cells and tissue. 5 – 8% of the world’s population are currently affected by 80 – 100 AID. In recent years, the incidence has been constantly increasing reaching alarmingly high numbers particularly for type 1 diabetes mellitus, crohn’s disease, rheumatoid arthritis, sjogren’s syndrome and multiple sclerosis. This indicates a higher societal burden of AID for the future. This article provides an overview of general concepts of triggers and underlying mechanisms leading to self-destruction. Lately, several original concepts of disease etiology were revised and there is a variety of hypotheses on triggers, underlying mechanisms and preventive actions.

This article concentrates on the importance of nutrition, especially zinc and vitamin D, for balancing the immune function. Homespun nutritional remedies seem to re-enter today’s therapeutic strategies. Current treatment approaches are largely symptomatic or suppress the immune system. However, recent studies reveal significant benefits of nutrition-related therapeutic approaches including prevention and treatment of established disease, which offers a cost-efficient and trigger-unspecific alternative addressing balancing rather than suppression of the immune system. Zinc and vitamin D are currently the best studied and most promising candidates for therapeutic intervention.

Keywords: Autoimmunity, Nutritional Immunology, Zinc, Vitamin D, tolerance
1. Current concepts of general and nutritional impacts on origin and development of autoimmunity

In AID, self-tolerance is disturbed. The immune cells are no longer able to efficiently distinguish between foreign and self and are reacting to antigens, including systemically expressed ones as in SLE (systemic lupus erythematosus, autoantibodies against e.g. dsDNA or hyaluronic acid) and sjogren’s syndrome (autoantibodies against e.g. mitochondria or centromer) or organ specific as in MS (against myelin) or T1DM (against pancreatic beta cells) [5]. The classification of psoriasis as AID is discussed but not finally decided. However, it often occurs along with AID and will be included into the discussion here. Generally, organ specific AID are mainly caused by Th1 and Th17 cells. The existence of a mixed Th1/Th17 phenotype has been discussed as well [6]. Systemic AID often involve disturbed Th2 functions, excessive auto-antibody levels and immune-complex deposition, increasing host cell destruction by the complement system. Elevated Th2 responses often come along with highly reactive macrophages, exacerbating tissue destruction.

Although a multitude of triggers have been suggested to elicit AID including hormonal factors, genetic predisposition, pathogens, stress, sunlight and other environmental factors, nutritional deficiencies were shown to be involved in the etiology of but also result from AID. For most AID, decreased levels of certain nutrients, including zinc and vitamin D were detected. The question of cause and consequence is difficult to answer. The loss of nutrients is obvious for diseases such as IBD (inflammatory bowel disease) and especially CD, as the main route of nutrients into the human body is through the intestine. Here, decreased uptake as well as increased loss of nutrients and food refusal play important roles and water- as well as fat-soluble vitamins such as Vitamin D, minerals and trace elements including iron, zinc, selenium, and calcium are affected [7].

Mechanisms underlying the initiation and progression of AID remain poorly understood [8]. Still, some clear similarities between the different autoimmune disorders were observed, in regard to immune-related mechanisms [1]. In a meta-analysis of publicly available gene expression datasets it was found that some common pathway perturbations are shared between the 12 different AID that were tested (T1DM, behcet’s disease, sjogren’s syndrome, MS, PAPA syndrome (pyogenic arthritis, pyoderma gangrenosum, and acne), CD, cryopyrin-associated periodic syndrome, ulcerative colitis, juvenile idiopathic arthritis, tumor necrosis factor receptor-associated periodic
syndrome, mutation in the gene of mevalonate kinase syndrome, hyper IgD Syndrome and SLE). Especially disturbances in phosphoinositol 3-kinase (PI3K)-Akt, Toll-like receptor (TLR), and NF-kappa B signaling, all known to be involved in guiding immune cell polarization, migration, growth, survival and differentiation were commonly disturbed [1].

2. Zinc in healthy immune reactions and autoimmune diseases

Zinc is an essential trace element that needs to be taken up via the diet. Zinc deficiency is highly prevalent in developing countries, where over 25% of the population revealed an inadequate zinc intake [9]. Thus, supplementation programs have been implemented especially for children, as they are in addition to pregnant and lactating women and the elderly one of the risk groups to develop zinc deficiency [10]. Zinc supplementation of children was beneficial and lowered the incidence of diarrhea and pneumonia, diseases known to be more severe in zinc deficient individuals. In developed countries, up to 15% of the population do not take in adequate amounts of zinc as well, as was recently reported [9]. Therefore, zinc supplementation should be considered in those. Apart from its major effects on the immune function including wound healing, stunted growth, skin problems, and loss of appetite are some major symptoms of zinc deficiency [11]. Zinc deficiency is largely caused by under- or malnutrition. Moreover, diets based on phytate-rich foods, such as corn-products, can result in suboptimal zinc intake, as phytates bind zinc and decrease its bioavailability and thus hinder the uptake of zinc by intestinal cells [12]. Finally, defects in transporters, necessary for the intestinal uptake of zinc, such as zinc import protein (Zip)4 in acrodermatitis enteropatica, or illnesses associated with intestinal leakage can result in the decreased uptake or increased loss of zinc from the body.

All cells require zinc and need to maintain a balanced intracellular zinc homeostasis to ensure proper function. This is done by the co-operative action of 24 zinc transport proteins and several intra- and extracellular zinc binding proteins such as metallothionein (intracellular) as well as albumin, α2-macroglobulin, transferrin and calprotectin (extracellular). All cells suffer during zinc deficiency, but cells of the immune system are extremely sensitive and strongly affected. Also, some general basic mechanisms on how zinc deficiency causes deregulated immune responses can be named, as zinc is essential for DNA replication, RNA transcription, cell division, cell
proliferation and cell activation, especially due to its regulatory role in intracellular signaling [13]. Moreover, apoptosis is potentiated by zinc deficiency, zinc has antioxidant functions and is able to stabilize membranes. Thus, increased susceptibility to a wide range of infectious agents and less efficient pathogen clearance are the results, as is an increased risk to develop AID, due to disturbed tolerance as will be detailed in later paragraphs.

In a recent meta-analysis, Sanna et al. (2018) found 26,095 articles, including duplicates though, investigating the association of zinc with autoimmunity. 62 of those were compared in detail, to examine the experimental evidence regarding zinc levels in the serum, plasma, urine and hair of patients with autoimmune disorders. The analysis included T1DM (22 studies), RA (18 studies), MS (7 studies) and 15 papers investigating other AID such as alopecia areata, SLE, pemphigus vulgaris, autoimmune hepatitis, celiac disease, hashimoto thyroiditis, sjogren’s syndrome and juvenile idiopathic arthritis. The most important and consistent finding in this regard is the significantly lower serum and plasma zinc concentration in autoimmune patients compared to healthy controls [14]. A recent MS study in a big cohort offers one of the latest examples [14,15]. For most diseases, it is not entirely clear if zinc is involved in disease etiology or rather a consequence of the pathology.

It was amongst others noted, that serum zinc was decreased in a rat model for RA, while elevated zinc levels were found in the liver. This can be explained by the activation of Zip14 by pro-inflammatory cytokines, which is known to transfer zinc from serum into the liver [16–18]. If zinc is transiently transferred to certain organs in other AID remains to be investigated, but it seems reasonable that serum zinc is reduced in all AID with increased pro-inflammatory cytokine levels in the blood. Especially thyroid-related diseases, such as hashimoto thyroiditis, often come along with serum hypozincemia [19]. A significant correlation of serum zinc levels with thyroid volume in nodular goiter patients, and with thyroid autoantibodies in autoimmune thyroid disease was shown recently in a human study involving 201 subjects in total [20]. However, no data on possible underlying mechanisms are available, yet and supplementation studies are so far missing.

In IBD patients, zinc deficiency is caused by decreased oral intake, malabsorption, and/or previous small bowel resections. The prevalence of zinc deficiency is between 15 and 40% and serum zinc levels were inversely correlated to disease severity [7].
Similar data are available for CD. Here, patients often suffer from skin problems such as fistulas, which was correlated to a low zinc status [21]. Zinc’s role in wound healing, benefits for immune functions and support of intestinal barrier functions explain why normalization of zinc levels in IBD and CD patients improved the status of the subjects. As a balanced diet provides sufficient zinc and as excessive zinc intake might not be helpful in regard to therapy of disease, zinc status should be assessed to decide if zinc should be supplemented. Examples for studies, where zinc supplementation has been tested in AID therapy can be found in table 1.

Patients with alopecia areata suffer from non-scarring, autoimmune, inflammatory hair loss and were often found to be zinc deficient. Duration and severity of disease was inversely correlated with serum zinc levels. Mechanisms are rather unknown, but as zinc is important for functional activities of hair follicles, this might be a starting point for future research. [22].

The role of zinc for development, polarization and function of immune cell subsets were suggested as possible explanations for the associations of zinc and the immune dysregulation in AID. A multitude of effects are due to the regulatory role of zinc in intracellular signaling. Figure 1 gives an overview on the major effects zinc has on immune cells and their functions, in regard to AID signaling pathways, important for immune cell development and functions and known sensitivity for zinc homeostasis.

3. VitD in healthy and autoimmune response

Vitamin D can be endogenously produced. As long as access to sunlight is provided on a regular basis, there is no dietary requirement for this vitamin [23]. However, vitamin D can also be obtained from food sources. After its uptake, vitamin D (cholecalciferol) is converted into 25(OH)D and then into the biologically active metabolite 1,25(OH)_{2}D (calcitriol) in liver and kidneys, respectively. The nomenclature of vitamin D and its metabolites is well defined: the major form of vitamin D, found in the serum and used to define the vitamin D status is 25(OH)D. For experimental approaches, 25(OH)D and 1,25(OH)_{2}D are usually used [24]. To facilitate reading, those forms will be summarized as VitD henceforth. VitD concentrations in the body are tightly controlled, and excessive VitD can be converted into less active 24,25(OH)_{2}D and 1,24,25(OH)_{3}D [25]. Alternatively to the dietary uptake, VitD can also be synthesized from 7-dehydroxycholesterol in response to ultra violet light [26]. When VitD has entered the
cell, it activates gene expression via a nuclear receptor that is also a transcription factor, named vitamin D receptor (VDR). VDR, which is expressed in almost all human cells, can bind to the DNA at the vitamin D response element (VDRE), after receptor conformation has changed due to substrate binding (i.e. VitD) [27]. Inside the cell, VitD plays a key role in regulating proliferation, cellular growth, differentiation, apoptosis, DNA repair and oxidative stress, membrane transport and in cell adhesion [28]. VitD is also important for maintenance of calcium homeostasis, as it regulates the uptake of calcium in the intestine. During VitD deficiency, calcium can however also be mobilized from the bone for a limited time, before symptoms of deficiency such as osteomalacia and rickets occur [29]. VitD is used to induce maturation of myeloid pre-cursors into mature monocytic cells and is applied to treat myeloid leukemia, indicating the importance of VitD for the development of cells from the innate immune system [30,31]. Recent data indicate that VitD deficiency is associated with AID [32] such as MS, IBD, T1DM, SLE and RA, where VitD supplementation was beneficial and ameliorated disease severity [33–38]. The prevalence of VitD deficiencies in AID patients is high. For all diseases mentioned above, clinical trials found benefits of VitD supplementation of human AID patients as well. Existing trials and their outcomes have recently been discussed in great detail [39] and are summarized in table 1. Thus, we will concentrate on the underlying mechanisms here.

One of the central findings for research in this area was that MS prevalence increases with latitude, probably due to less exposure to sunlight. Similar observations were made for T1DM and IBD [40–42]. For MS in the northern hemisphere, the risk to develop the disease was even higher in April than in October and November [43]. Serum VitD is inversely correlated to AID incidence. Moreover, highest disease severity was correlated with lowest serum VitD values. [44–48]. Finally, polymorphisms in VDR were more often found in patients with AID, including MS, RA, SLE, IBD, T1DM and CD, than in healthy controls [49–53]. Among the common risk single nucleotide polymorphisms found for AID, several are linked with the vitamin D metabolism, such as CYP24A1, CYP27B1, and CYP27B1 as was recently summarized by Lu et al. [54]. All these data support the association of serum VitD levels, VitD intake, and UV light exposure to AID and coined the idea, that VitD supplementation might lower disease susceptibility and severity or improve the responsiveness to current treatment strategies.
for all kinds of AID. Indeed, early childhood VitD supplementation reduced the risk for T1DM by up to 30% [38,55].

The immunomodulatory effect of VitD has been known for ages. Thus, molecular mechanisms underlying the association of VitD to AID are so far mainly postulated to rely on VitD’s importance for balancing the immune response, similar to what was described for zinc earlier. T and B cells as well as monocytes/macrophages and dendritic cells can convert 25(OH)D into 1,25(OH)\textsubscript{2}D which supports the supply of the active metabolite at the side of infection. To explain the molecular basis for the role of VitD in AID, the next paragraphs will describe effects of VitD on the different immune cells, which is also summarized in Figure 2, providing implications for optimizing the therapeutic use of VitD for AID.

4. The adaptive immune system

4.1 T lymphocytes

Self-tolerance is chiefly required from cells belonging to the adaptive immune system, namely B cells and T cells, as they recognize specific antigens through their membrane bound receptors (T cell receptor / TCR, B cell receptor / BCR). T cells can be roughly grouped into CD8+, cytotoxic T lymphocytes (CTL) and CD4+, T helper (Th) cells. The latter can be further sub-grouped into Th1, Th2, Th17 and regulatory T (Treg) cells, to name the most important ones [56]. Phenotyping of the T cell subsets is primarily done by measuring lineage specific transcription factors: Th1 cells: T-box-containing protein expressed in T cells (T-bet), Th2 cells: GATA-3 (GATA-binding protein 3 to DNA sequence [A/T]GATA[A/G]), Th17 cells: RORC2 (Retinoid acid receptor (RAR)-related orphan receptor, ROR\textgamma in mice), Treg cells: forkhead box P3 (Foxp3) [56].

During healthy immune cell development, autoimmunity is prevented by deletion, anergy and suppression of auto-reactive cells. Other cells that bind moderately to MHC complexes receive survival signals and enter the thymic medulla. During deletion T cells are irreversibly eliminated by apoptosis, induced through interaction of Fas and Fas ligand, presenting two of the first molecules found to be altered in patients with AID [57]. Breaking any of those mechanisms of tolerance can cause AID [58].

In general, lymphopenia was often observed pre-ceding AID [59]. Thus, it is important that the numbers of circulating lymphocytes are stable. Especially dysfunctions during early development of T and B cells were suggested as pre-requisites of AID [60,61].
Interestingly, lymphopenia and dysregulated lymphopoiesis are regularly observed during zinc deficiency. The whole set of T cells is strongly depending on sufficient zinc supply. In mice, even a modest zinc deficiency altered the expression of 1,200 genes related to the survival, proliferation, and the response of T cells [62]. This was partly explained by the strong impact of zinc on interleukin (IL)-2 production and the signal transduction induced by this cytokine, as IL-2 is the central factor in T cell proliferation and development [63–65]. The effect of different zinc compounds on the proliferation, differentiation, and activation of human T cells has been established in multiple in vitro studies and was reviewed elsewhere [66]. Zinc was reported to affect components of the TCR signaling pathway. As TCR signaling is indispensable for the survival as well as for cytokine production, this offers another explanation for the strong malfunction of T cells during zinc deficiency [63,67,68]. It was shown that zinc plays a vital part in intracellular signaling, either by affecting the activity of phosphatases and kinases or as second messenger. Various studies revealed zinc’s effect on Mitogen-Activated Protein Kinases (MAPK), TLR and TCR signaling pathways. Zinc acts at several steps in TCR-mediated T cell activation: 1. Zinc directly activates lymphocyte-specific c-src family protein tyrosine kinase (Lck) which is located upstream of all TCR-dependent signaling pathways [69]. Subsequently, Lck is recruited to the TCR signaling complex, where it is auto-phosphorylated [70]. Via zeta-chain associated protein kinase 70 kDa (ZAP70) p38 is subsequently activated, without involvement of MAP kinases, through phosphorylation of tyrosine 323. Consequently, p38 is autophosphorylated at Thr180/Tyr182 residues [71]. Moreover, zinc was shown to inhibit a whole set of phosphotyrosine phosphatases (PTP), which may result in sustained phosphorylation of other signaling pathways involved in the complex network of signaling pathways involved in T cell activation and differentiation of which not all have been successfully studied, yet [13,72]. Therapeutic zinc supplementation is therefore under consideration as a possible option to treat T cell-mediated autoimmunity [73–75]. Similarly, VitD deficiency decreases lymphocyte quantities [76], affects TCR signaling and was related to leukopenia in SLE patients [77]. VDR expressing T cells, especially from Th cell type, seem to play a vital part in MS, as VitD treatment of Experimental Autoimmune Encephalomyelitis (EAE) mice was beneficial in the presence of VDR in T cells, but not in their absence [78]. The finding that VitD was also able to inhibit T cell migration to the central nervous system in EAE mice strengthens this hypothesis as well.
Interestingly, a lot of single nucleotide polymorphisms associated with T-cell-mediated AID are in close proximity to VDR binding motives which underlines that VitD treatment is a promising option for AID treatment [80]. In summary, zinc and VitD deficiency-related lymphopenia are risk factors for AID.

4.2 Th1/Th2 balance

Th1 over-representation and reaction against self-antigens causes tissue destruction, which plays a vital role especially in organ-specific AID. There is evidence that autoimmune diseases such as MS, CD, RA and T1DM are primarily Th1 cell mediated and that often the shift of the Th1/Th2 balance alleviates these diseases. This is underlined by the fact that T-bet deficient mice were protected from EAE [81]. Along with this, transfer of myelin-specific Th1 cells induced EAE [82]. However, since the discovery of Th17, it is debated, that detriments are not caused by Th1 alone but rather by cooperative effects of Th1 and Th17 cells, as detailed later.

Th2 cells on the other hand stimulate the production of antibodies in response to extracellular pathogens and were associated largely with systemic autoimmune disease such as SLE and other chronic conditions [83]. Early studies showed that Th1 cytokines are decreased during zinc deficiency, while Th2 cytokines remained constant, resulting in a decreased Th1/Th2 ratio [84,85]. Moreover, zinc chloride (ZnCl2), zinc oxide (ZnO) or zinc sulfate (ZnSO4) decreased proliferation and cytokine production (IL-6, IL-2, IL-10) by isolated T cells and peripheral blood mononuclear cells (PBMC), activated using mitogens [86]. Zinc aspartate reduced proliferation and poke weed mitogen- and anti-CD3/CD28-induced production and secretion of several T cell cytokines relevant to EAE and MS in vitro, including Th1 (e.g. IL-2, interferon (IFN)-γ; tumor necrosis factor (TNF)-α) and Th2 (e.g. IL-4, IL-5, IL-13) as well as Th17 (IL-17, granulocyte macrophage-colony stimulating factor (GM-CSF)) cytokines. Here, effects that were initially found in EAE mice were verified when human primary PBMCs and murine primary splenocytes were tested [87]. ZnSO4 also decreased IFNγ levels in human mixed lymphocyte culture [88]. Proliferation of freshly stimulated T cells was inhibited by zinc aspartate (up to 150 µM) as was the production of lineage specific cytokines for Th1, Th2 and also Th17 cells [89]. Results from this study were also compared with those for the immunosuppressive drugs cyclosporin A, dexamethasone, and rapamycin, often used in AID therapy. Only zinc aspartate and rapamycin were able to inhibit proliferation and cytokine production of pre-activated T
cells in this particular study. Zinc aspartate might thus be able to suppress proliferation and excessive cytokine secretion of pre-activated human T cells in vitro and might be beneficial as treatment option for T cell-mediated autoimmune diseases [89], which was not tested in vivo in this extend so far. Moreover, the immunosuppressive mechanism (cell cycle arrest, DNA damage, and/or apoptosis) and the signal transduction pathways involved should be explored in more detail. Similarly, VitD can inhibit IFNγ production in T cells via the silencer region BED within the IFNγ promoter [90]. In addition, treatment of activated T cells with VitD inhibited the IL-12-induced tyrosine phosphorylation of Janus kinase (JAK)2, Tyrosine kinase (TYK)2, Signal Transducer and Activator of Transcription (STAT)3, and STAT4 in association with a decrease in T cell proliferation in vitro [91]. However, VitD’s effect might depend on the differentiation status and IL-2 availability as was found in later studies and thus this mechanism might not be the most important in regard to AID treatment [92–96].

Th2 cells were suggested to protect against Th1 and Th17-related AID [97]. VitD induces Th2 cell polarization via GATA-3. It thus increases IL-4 expression, regulated via STAT6 and GATA3 explaining the positive effects of VitD in diseases such as EAE and IBD, while IL-2 expression was inhibited [98]. In STAT6 knock out (KO) mice, no benefits of VitD on EAE development were seen [35,99,100]. Th2 numbers could successfully be increased by VitD treatment in SLE and MS patients [101,102]. However, deviating results were found for the association of VitD, Th2 and AID, when polarizing stimuli were altered. VitD increased IL-4 expression by naïve CD4⁺ T cells and PBMC in some studies, while VitD had no effect, when external IL-4 was added to support polarization, which is in line with results from RA patients, where no increase in IL-4 was detected after VitD treatment. Low IL-4 levels might therefore be an indicator for benefits of VitD treatment for increased Th2 polarization, but the exact mechanisms need to be explored [93,101,103–105].

4.3 Th17/Treg cell balance

While Th1 and Th2 were long described as main mediators in AID, more recent data point to Th17 cells and their pro-inflammatory armor including IL-17A, IL-17F, TNFα and GM-CSF. Polarization into Th17 cells is induced by transforming growth factor (TGF)β combined with IL-6 in mice and TGFβ, IL-1β and IL-23 in humans. IL-23, together with IL-17, was suggested to result in their pathogenicity in EAE and in collagen-induced
arthritis [106,107]. Pathogenic Th17 cells revealed a different expression profile including IFNγ and T-bet, usually found in Th1 cells [108]. In addition to EAE, significantly elevated Th17 cell numbers were observed in RA and SLE patients [109,110]. Especially memory Th17 cells were associated with activation of synovial fibroblasts, augmenting AID such as RA [111]. Detriments of Th17-driven AID are based on a pro-inflammatory feedback loop, amplifying levels of IL-6, IL-17A and tissue destructing enzymes [111].

In contrast to the previously discussed Th types, that increase AID, Tregs’ purpose is to maintain tolerance and prevent or balance overshooting pro-inflammatory immune responses. Via IL-10 and TGFβ, they can downregulate activation of DCs, CTL, macrophages and the remaining Th cell types. Patients with mutations in Foxp3, the central Treg cell transcription factor, suffer from massive autoimmune reactions summarized as IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked) syndrome [112]. In patients with AID such as MS, Treg cells revealed impaired function and reduced Foxp3 expression at the single cell level and in some cases also reduced numbers [113].

Our understanding of the importance of zinc in regulating the Treg/Th17 balance has much improved in the last decade and results are summarized in Figure 3. A disturbed Treg/Th17 balance was amongst others observed in the elderly, a population known to suffer from zinc deficiency [114]. Zinc was shown to inhibit the development of Th17 cells via its effect on the IL-6/STAT3 signaling cascade. Here, the α-helical secondary structure of STAT3 was altered after binding of zinc. This disrupted the association of STAT3 with the JAK2 kinase and also with glycoprotein (gp)130 [115]. In line with this, Th17 polarization was supported by zinc deficient conditions. Here, significantly augmented activation of IL-6-induced JAK/STAT3 signaling was found to underlie the effects of zinc deficiency [116].

It was found that TGFβ1 is able to induce a short zinc influx into the cellular cytoplasm. No such zinc flux was observed for other Treg cell-associated cytokines such as IL-10. Additional zinc supplementation is capable of enhancing the TGFβ1 signaling pathways in T cells and hereby increasing the number of regulatory T cells, which was found investigating PBMC from single donors but also an allogeneic immune reaction using mixed-lymphocyte culture [117,118]. An appropriate intracellular free zinc level in Th cells might be important for proper cellular functions of the cells and intracellular free
Zinc levels were suggested as a biomarker to discriminate Treg cells from other Th cell subsets [119]. Zinc supplementation inhibits the histone deacetylase Sirt-1, resulting in increased acetylation of Foxp3, thereby preventing its degradation [118]. Underlying mechanisms of zinc’s effects on Treg cells also include the elevated activation of the Smad2/3 signaling pathway in cells from mixed-lymphocyte cultures where zinc was added in combination with TGFβ1, compared to a treatment with TGFβ1 alone. Since Smad-binding elements were found in the conserved non-coding sequence (CNS)1 region of the Foxp3 promoter and zinc prevents Foxp3 degradation, zinc might affect Treg polarization in multiple ways. In regard to the activation of Foxp3 expression, p38-mediated signaling is important. As the p38 signaling pathway is a target of zinc, this might play a role in zinc-induced Treg cell polarization, adding one more mechanism for the zinc-induced Foxp3 expression [63,120,121]. In addition to augmenting TGFβ1-induced zinc flux and thus signaling, Zinc and TGFβ1 co-treatment also reduced the secretion of IFNγ, underlining that a rather anti-inflammatory milieu is created [122]. In contrast to TGFβ1, which also induces Th17 development, zinc was specific for Treg cell differentiation, not increasing Th17, Th1 or Th2 polarization, and might thus be a great option for treatment of immune-dysbalance [117]. Surprisingly, zinc deficiency also increased IL-2- and TGFβ-induced Treg cell polarization, causing elevated Treg cell numbers. However, those Treg cells are possibly non-functional, as a low expression of miR146, essential for their activity, was found [116]. In combination with the increased polarization of T cells into Th17 cell subtype during zinc deficiency, benefits of zinc supplementation for AID, where the Treg/Th17 cell balance is disturbed, can be expected, as is also underlined by the positive effects of zinc supplementation in EAE [87,123–125]. Similar to zinc, VitD is a major regulator of the Th17 to Treg cell balance as is illustrated in Figure 4. VitD decreases Th17 cell differentiation which is at least in part due to the autocrine effects of IL-17A and IL-17F, but also due to direct effects of VitD on decreasing RORC2 and chemokine receptor (CCR)6 expression as shown in vitro [92,96,126]. Decreased CCR6 expression explains why less autoreactive Th17 cells are recruited to the central nervous system in VitD treated EAE mice [98]. Cells that were differentiated under high VitD conditions were even less potent in eliciting EAE if transferred between mice [127].
The inhibition of EAE progression and anti-retinal autoimmunity is at least partly due to suppression of Th17 activity by VitD, which disturbs the pro-inflammatory loop between immune and synovial cells [128,129]. *In vitro*, VitD decreased expression of IL-22, IL-17A, and IL-17F by CD4+ T cells including memory cells [105,127,129]. This was even the case in the presents of Th17 polarizing factors [127,130]. In regard to the IL-17A gene, the VDR competes with NFAT for promotor binding and thus blocks activation by the latter, as VDR recruits Runt-related transcription factor (RUNX)1 and histone deacetylase (HDAC) [127]. VitD might also regulate IL-17A in a more indirect way, as VDR forms a complex with retinoid X receptor (RXR), HDAC2, and Smad3 to inhibit Smad7 transcription, thereby preventing IL-17A production [131]. Similar mechanisms have been suggested for inhibition of IL-2 expression. Therefore, this mechanism might play a role in other VitD regulated genes that are regularly activated by Nuclear Factor of Activated T cell (NFAT) [94].

Recently, the existence of a non-classic Th1 cell type, denoted Th17.1 cells was suggested [132,133]. As their functions in AID in relation to VitD are probably similar or a mix of what was suggested for Th1 and Th17 cells, this will not be detailed in here, but results point to an even higher pathogenicity of those cells in AID [134,135].

VitD does not only decrease Th17 polarization, but similar to zinc also supports Treg cell development. When EAE mice were supplemented with VitD, elevated numbers of Treg cells were detected in spinal cord, spleen and lymph nodes. Overall disease status of the patients was improved as well. In this study, IL-10 and its signaling where found as central mechanisms conferring VitD´s effects on Treg cells. Performing Treg cell polarization under high VitD conditions, improved Treg cell differentiation, even in the presence of additional Th17 polarizing agents [130]. In line with this, the suppressive capacity of Treg cells in MS patients was positively correlated to VitD serum [103,126,127,130,131,136,137].

Several suggestions were made on the underlying mechanisms for VitD-induced Treg cell development: The Foxp3 promotor has three binding sites for the VDR, explaining its increased expression during high VitD conditions [127,136]. Moreover, the inhibitory effect of Th17 polarizing cytokines on cytotoxic T lymphocyte associated protein (CTLA)4 might be reversed by VitD, so that CTLA4 expression is activated, favoring Treg cell polarization [130]. The enzyme indoleamine 2,3 dioxygenase (IDO), which catabolizes tryptophan and triggers cellular stress responses, is expressed in dendritic
cells (DC) and involved in the activation of Treg cells by DCs. As a third mechanism, the activation of IDO by VitD was shown, explaining increased Treg cell numbers [138,139]. Although data showing positive effects on Treg development are convincing, there are also some studies, where no effect of VitD on Treg cell polarization was found [102,140]. However, trends were also observed there and the overall effect of VitD treatment in regard to disease outcome was positive.

It can be concluded, that VitD and zinc support differentiation of Treg cells in healthy controls and patients with AID, which might be at least one mechanism of how zinc and VitD are able to re-balance the immune response in the latter group.

4.4 Cytotoxic T cells

CTL support the immune reaction by secreting TNFα and IFNγ [141]. CTL malfunctioning was associated with EAE, where myelin-specific CTL were found. Interestingly, symptoms elicited by CTL during EAE were different from those observed when myelin-specific Th cells were transferred to mice and resembled MS more closely than Th cell associated EAE [142,143]. Increasing evidence exists on the role of regulatory, IL-17-secreting CTL in MS in humans [144]. Moreover, it was suggested that myelin-specific CTL cells are involved in the differentiation of encephalitogenic CD4⁺ T cells in Lewis rats. Interestingly, myelin-specific CTL had far less impact on CD4⁺ T cell priming in dark agouti rats [145,146]. However, the role of CTL in the autoimmune pathology of MS has been both understudied and controversial [147]. In case of T1DM, the importance of CTL in addition to Th cells during pathology has been noticed [148,149]. Autoimmune intestinal inflammation was induced by transferring hsp60-specific CTL into mice [150] and numbers of IL-17 expressing T cells (both Th and CTL) in synovial fluid were correlated to disease severity in patients with psoriatic arthritis, distinguishing this AID from RA, where Th cells are enriched [151].

The number of CTL is decreased in zinc deficient humans [152]. Moreover, the cytotoxic activity of CTL is ameliorated, resulting in decreased anti-allogeneic tumor activity in mice [153]. A direct association between zinc, CTL and AID was so far not investigated, but zinc’s strong effects on IL-2R- and TCR-induced signaling [63,64] suggest that AID, related to dys-functioning CTL in AID might benefit from zinc supplementation.

VDR expression by CTL is even higher than by Th cells. Lack of VDR in CTL contributed to the development of IBD in mice. Interestingly, CTL from VDR KO mice proliferated without antigen stimulation expressed more IL-2 and were more sensitive to
IL-2. Transferring VDR-deficient CTL into Rag KO mice as AID models, also induced IBD. This indicates that expression of the VDR, and thus probably also sufficient levels of VitD, are required to prevent that quiescent CD8^+ T cells including auto-reactive ones, proliferate and become pathogenic CD8^+ T cells that contribute to the development of AID such as IBD and CD [154].

In line with this, VitD inhibited the secretion of TNFα and IFNγ by activated CTL from healthy donors and MS patients [155] and topic treatment of psoriatic lesions with calcipotriol lowered the amount of IL-17A secreting CTL, resulting in clinical and histological improvement [156]. CD8αα^+ T cells, intestinal intraepithelial lymphocytes, are involved in suppressing the immune response against intestinal antigens. Numbers of CD8αα^+ T cells were reduced in VDR KO mice, offering one more connection between VitD and AID, especially affecting the intestine [157].

The role of zinc and VitD in CTL-mediated AID needs to be explored in more detail, but first studies point to benefits of VitD and zinc supplementation during CTL dysfunction.

4.5 Unconventional T cells

Most human T cells express the TCR together with CD8 or CD4. However, there are also cells expressing the TCR but neither CD4 nor CD8 [158] which were denoted as double negative or unconventional T cells. Those cells have a less diverse TCR repertoire, have no major histocompatibility complex (MHC) restriction and amongst others include natural killer T cells (NKT cells), mucosal-associated invariant T (MAIT) cells and γδ T cells. Unconventional T cells do not bind classic peptide antigens but lipids or small metabolites, such as phosphoantigens, alkylamines, isoprenoid pyrophosphates, thus rather “public” antigens [159], and do not necessarily require antigen processing and MHC presentation.

In EAE, collagen induced arthritis, and experimental autoimmune uveitis, enriched numbers of γδ T cells were detected that supported disease development largely by IL-17, IL-23 and GM-CSF production and by activating Th17 cells [160–163]. An association of γδ T cells with various other autoimmune diseases, such as RA, autoimmune thyroid disease, and autoimmune liver disease was described as well [164–166]. Their role in T1DM is discussed controversially and studies showed support of disease progression but also its suppression by γδ T cells [167,168]. γδ T cells are also involved in controlling development of germinal center and autoreactive IgG formation. Details are summarized in a recent review by Paul et al. [169].
No direct connection of zinc to γδ T cell-related AID has been described, so far. One single study was found, investigating an association of VitD, γδ T cells and AID. Here, it was shown that VitD can inhibit phospholigand-induced γδ T cell expansion. IFNγ production and CD25 expression were reduced and Akt as well as Extracellular Signal-Regulated Kinases (ERK) signaling pathways were compromised, resulting in potentiation of antigen-induced cell death of the cells when cells were stimulated under high VitD conditions [170].

NKT can be grouped into type I or invariant (i)NKT cells and type II or variant NKT cells due to the expression of invariant and variant TCRs, respectively. Both types secrete IL-4, IL-17A, IFNγ and other pro-inflammatory mediators upon ligation of their TCR. While NKT cells were suggested as being involved in the pathology of collagen induced arthritis, they were protective in EAE, T1DM and SLE [99,171]. Underlying mechanisms have only been weakly investigated so far and the issue if they are protective or detrimental in regard to AID is discussed controversially [172].

iNKT cell develop in the thymus. To differentiate into functionally active cells, VitD-induced T-bet expression is required during their maturation as was shown in VDR KO mice. The response of iNKT cells from VDR KO mice to TCR ligation was disturbed, even when antigen was presented by antigen presenting cells (APC) from wild type mice [173]. Results from another study showed, that in CD1d KO mice, depleted of NKT cells, VitD treatment was less efficient in preventing EAE development than in mice with normal NKT cell development and functions. The authors also showed that VitD altered the cytokine profile of wild type iNKT cells and suggest that especially the decrease of IL-4 in mice lacking iNKT cells might be responsible for the lower protection against EAE. This was underlined by the finding, that VitD did not have any effect in regard to EAE in IL-4 KO mice [99].

As the role of unconventional T cells in AID is not clear yet, detriments or benefits of zinc and VitD supplementation are highly speculative.

4.6 B cells

During B cell development, several check-points can be found that hinder the generation of auto-reactive B cells [174,175]. Suggestions for triggers that disturb those check-points are manifold, but underlying mechanisms are understudied.

Via the B cell receptor, B cells can detect antigens, differentiate into plasma cells and secrete large amounts of antibodies against the detected antigen, which might be a self-
antigen as well, if tolerance is disturbed. This was observed in SLE and RA, where for unknown reasons high amounts of anti-nuclear antibodies (ANA) or anti-citrullinated peptide antibodies (ACPA) were detected in over 95% and 70% of the patients, respectively [176,177]. Sjogren’s syndrome, Grave’s disease and T1DM show a high frequency of autoantibodies as well [178]. In case of the latter antibodies targeting the zinc transporter ZnT8 belong to the four most frequent auto-antibodies [179]. However, as it is rather viewed as a marker, targeting ZnT8 expression does not appear to be a relevant approach in regard to therapy.

B cell receptor-mediated signaling is affected by the zinc status, similar to what was described for TCR-induced signaling. Zinc’s importance for intracellular signaling in B cells includes a variety of pathways and signaling molecules including PTP1B, Lyn, STAT-6, receptorPTPase β, and Src homology region 2 domain-containing phosphatase (SHP)-1, which has recently been investigated and reviewed in great detail [10,66,180]. However, no association between zinc status, B cell receptor signaling and AID has been described so far and an association of zinc with antigen-presentation by B cells was also not addressed.

It was suggested that RA may be induced by B lymphocyte stimulator (BlyS)-mediated B-lymphocyte dysplasia and dysfunction, which was correlated to decreased serum zinc levels [181]. Again, if the alteration in B cell activity causes the loss or redistribution of zinc, or if zinc deficiency comes first is not clear, but in general, correction of the dysbalanced zinc homeostasis is promising. Zinc deficiency results in decreased maturation and function of B cells, affecting especially early developmental stages [182], while B cell activation was recently suggested to come along with increased intracellular zinc levels [183]. Apoptosis is also strongly affected by zinc homeostasis. Here, low but also abnormally high zinc conditions induced cell death in B cell lymphoma lines [184]. Investigations on effects of zinc deficiency on the antibody production did not produce entirely clear data. Studies investigating per-cell production of residual B cells in a limited area of an organ revealed only minor decreases, while most other studies, investigating T cell-dependent and T cell independent antibody production on whole organ bases found decreased antibody production [185–188]. Also, if changes in antibody production are due to an effect of zinc on the B cells or on the T cells, inducing antibody production remains to be finally tested.
Response elements for the VDR were found in key immune response genes of B cells, affecting B cell differentiation, antibody production, cytokine expression and presentation of antigen. B cells undergo distinct developmental stages including class switch and somatic hypermutation. Here, VitD was shown to act rather inhibitory in cells from early developmental stages as it decreases proliferation and class switch but induces apoptosis [189,190]. In contrast, VitD increased differentiation of mature B cells into plasma cells and CCR10 expression, important for mucosal migration towards the site of infection. On a molecular basis this might involve VitD-induced inhibition of nuclear factor kappa B (NFκB) translocation, and thereby blocking CD40-induced signaling [191].

Studies on the association between VitD, AID and B cells are scarce. In regard to cytokine production, VitD-induced VDR binding to the IL-10 promoter induced its gene expression by B cells [192]. However, there was no correlation of VitD serum levels and IL-10 expression in healthy controls or relapsing-remitting MS patients [193]. On the other hand, there are a lot of studies suggesting decreased antibody production including anti-ANA after VitD supplementation, which is in line with low VitD serum levels in patients with high anti-ANA titers and even non-SLE patients with low VitD serum levels had elevated anti-ANA titers [104,189,190,194–197].

The effects of VitD on antigen presentation have only been a topic in one study, where authors found decreased CD86 expression on VitD-primed B cells, which are thus less potent T cell stimulants [198].

The limited amount of studies on B cells in autoimmunity in general and little knowledge on an association between B cell-involving AID with serum zinc and VitD levels, prevents drawing a real conclusion. However, zinc and VitD might be interesting candidates in regard to the development of new therapeutic approaches for AID and normalizing B cell activities.

5. The innate immune system

During the last decades, evidence accumulated that not only adaptive immune cells cause AID but that AID are frequently based on malfunctioning innate immune cells as well. Here, symptoms such as fevers and multi-organ inflammation are common. The term “auto-inflammatory diseases” is often used to distinguish those from diseases elicited primarily by adaptive immune cells [199], but as the general symptoms of self-
tissue directed inflammation are the same as in classic AID, no difference in terminology was chosen here. In addition, often AID cannot easily be categorized. In psoriasis for example, autoreactive Th17 cells cause dysregulation of innate immune cells [200].

5.1 Dendritic cells

Dendritic cells are important for bridging the innate and the adaptive immune system. They are able to take up and process antigens and to present them to T cells via MHC. Deletion of DCs in experimental AID models for psoriasis, SLE, and T1DM ameliorated or even prevented disease, highlighting their importance for AID development [201–203]. Fine tuning of the development and function of DCs is strongly affected by their intracellular zinc levels. Moreover, zinc was suggested to be involved in lipopolysaccharide (LPS)-induced effects, as LPS stimulation caused the downregulation of zinc importer ZIP6 and the upregulation of zinc exporters via TLR4. The resulting reduction in intracellular zinc was associated with increased DC maturation. In line with this, reducing intracellular zinc levels via incubation with a zinc chelator, triggered murine DC maturation in vitro, as monitored via MHC expression [204]. MHC II molecules are located in lysosomal and endosomal compartments in immature DCs and it was shown that export of those molecules is inhibited by zinc. The reduction of intracellular zinc might thus enable translocation of MHC II molecules to the surface and thereby facilitate antigen presentation and subsequent interaction with the adaptive immune system [205]. By presenting (auto-) antigens to T cells, DCs have the potential to induce AID. If zinc deficiency favors the presentation of autoantigens by DCs remains to be tested, but a general increase in presentation might increase the chance that not only foreign antigens are chosen.

It was however shown that exposure of murine bone marrow derived DCs to zinc in vitro induced a tolerogenic phenotype. Here, the expression of programmed death-ligand (PD-L)1, PD-L2, IDO, and surface MHC II were diminished. Furthermore, tryptophan degradation and kynurenine production by DCs was triggered. This resulted in strong suppression of the pro-inflammatory response after stimulation by TLR ligands. The results were verified in vivo, showing that zinc supplementation inhibited presentation of fungal antigen via MHC II on DCs, increased PD-L1 and PD-L2 expression on MHC IIlow DCs and altered the Treg - Th17 balance favoring Treg cell polarization.
Numbers of Th17 cells were decreased. Thus, zinc can shape the tolerogenic potential of DCs in vitro and in vivo and promotes Treg polarization during fungal infection [206]. In vitro studies revealed that human and murine DCs, differentiated from monocytes under high VitD conditions in vitro, remain immature and tolerogenic. For this, VitD has to be added before differentiation is induced. Those DCs express less pro-inflammatory IL-12 and TNFα and have also a potential to induce Treg polarization. It was shown that those tolerogenic DCs induce apoptosis in auto-reactive T cells, but not in T cells specific for foreign antigens. Similar effects of VitD were found for maturation of dermal DCs and plasmocytoid DCs [207,208]. Activation of the PI3K-Akt-mTOR (mammalian target of rapamycin) pathway and thus expression of IDO, immunoglobulin-like transcript(ILT)3 and CC-chemokine ligand (CCL)-2, together with a switch towards glycolysis were suggested to underlie VitD-induced tolerogenic DCs [209,210]. In another study, VitD-mediated IDO induction was suggested to result in DC development [211]. To explain the DC-mediated Treg polarization either induction of herpesvirus entry mediator (HVEM), secretion of TGFβ1 or IL-10 are discussed [207,212]. Figure 5 summarizes so far suggested theories, but more research is needed, to clarify those points. However, zinc and VitD seem to favor a tolerogenic DC phenotype.

5.2 Macrophages

Monocytes, circulating in the blood, differentiate into macrophages when they are activated and infiltrate infected tissue. In addition, especially tissues that are exposed to the environment, harbor tissue specific macrophages, constituting the mononuclear phagocytic system together with the DCs and monocytes [213]. Similar to DCs, macrophages can phagocytose microorganisms, process and present foreign antigens. Depending on the pathogen and cytokine environment, macrophages can polarize into pro-inflammatory M1 or anti-inflammatory M2 macrophages [214]. In contrast to most other cell types, polarized macrophages retain the ability to alter their phenotype in response to changes in the environment [215], which has a critical therapeutic value. Unbalanced M1/M2 polarization was often associated with AID. Especially an increase in the M1/M2 ratio was associated with SLE, IBD, T1DM and RA. [216] [217–219]. In case of RA for example, IL-1β is one of the central factors and also one of the major products of M1 macrophages, explaining the connection [220].
It has long been suggested, that while adaptive immune cells are severely compromised in number and function during zinc deficiency, innate immune cells remain largely constant in numbers and their basal activity is increased, causing a constant low grade inflammatory milieu in zinc deficient individuals [10,221]. Numerous studies have provided evidence that zinc is essential for the differentiation and normal function of monocytes and macrophages [222,223]. For a plethora of pro-inflammatory mediators such as IL-β, TNFα, calprotectin, IL-6 and reactive oxygen species (ROS) zinc deficiency was shown to increase their expression, amongst other by zinc-induced epigenetic alterations [120,224–226]. Zinc deficiency augmented the effect of LPS resulting in the secretion of large amounts of IL-1β, whereas high zinc concentrations diminished secretion by suppressing the LPS-induced monocytic response via inhibition of cyclic nucleotide phosphodiesterases (PDE). Subsequently, cellular cyclic guanosine monophosphate (cGMP) levels increased which suppressed LPS-induced TNF-α and IL-1β production in human monocytes [227,228]. Serum zinc deficiency was also inversely correlated to the severity of inflammatory diseases and the grade of hyper-inflammation as monitored via levels of TNFα and IL-6 [18]. Zinc deficiency augmented synthesis of inducible nitric oxide synthase (iNOS) causing elevated production of NO, which was reversed by zinc supplementation [229]. If this is associated to the hyper-inflammatory response observed in AID has not directly been explored, however, various symptoms in regard to innate immune cells, found during zinc deficiency, closely resemble those found in AID patients.

Dierichs et al. identified zinc as a decisive factor during lineage decision. Interestingly, zinc supplementation inhibited the differentiation into M2 macrophages as did zinc deficiency [230]. This suggests that zinc status should be assessed before considering zinc as treatment strategy for M1-mediated AID. Normalization of the patient’s zinc status might re-balance M1/M2 polarization, whereas elevating serum zinc levels might even support the M1 response. However, current results are derived from in vitro experiments using a cell line and should be evaluated in vivo.

More recent studies have revealed a role of zinc transporters in regulation of the inflammatory response. Stimulation of macrophages with LPS caused an increased expression of Zip8 and zinc influx into the cell resulting in elevation of intracellular zinc levels. As zinc serves as a negative regulator of the NF-κB signaling pathways this suppressed activity of monocytes and macrophages [231]. Zip10 in contrast was
decreased after stimulation of bone marrow derived macrophages with LPS. Using Zip10 KO mice, it was shown that macrophage survival during an inflammatory response depends on Zip10-mediated zinc influx, as cells with missing Zip10 and thus zinc influx, die by apoptosis. Generally, cells from Zip10-KO mice were not able to respond significantly to LPS and thus expression of inflammatory cytokines was ameliorated. This however, prevented subsequent liver damage and lowered mortality, when sepsis was induced [232]. Effects of other transporters might be interesting to study.

In summary, zinc deficiency causes increased production of pro-inflammatory cytokines, reactive oxygen species and reactive nitrogen species by M1 macrophages, all shown to be highly elevated in tissues affected during AID. Thus, zinc supplementation should be considered for AID patients with low serum zinc values and high inflammatory parameters.

VitD can be used to induce differentiation of myeloid precursor into monocytic cells and this process is enhanced during zinc deficiency [222]. In the activation and polarization of macrophages, VitD plays a dual role. During early infection stages, it stimulate differentiation of monocytes into macrophages, important to reach sufficient cell numbers for an efficient immune response [233]. Moreover, VitD is important for cathelicidin expression by monocytes and macrophages, as well as for IL-1β production via CCAAT/enhancer binding protein (C/EBP)β or ERK1/2 signaling pathways [30,234,235], all important to enable pathogen clearance.

At later stages, VitD is involved in the resolution of the inflammatory response. VDR deficient mice for example responded to LPS with a hyper-inflammatory reaction [236]. Also, mature macrophages responded to VitD treatment with an increase in IL-10 production and a decrease in expression of Receptor activator of NFκB ligand (RANKL), cyclooxygenase (COX)-2, NO, IL-6, IL-1β and TNFα [236–240]. This suggests that VitD might be able to restore the balance of M1/M2 polarization disturbed during disease, by promoting the M2 phenotype on cost of the M1 phenotype. Moreover, this results in the capability of VitD treated macrophages to activate T cells [240].

Regarding underlying mechanisms, which are described in figure 5, the thioester superfamily member 4 (THEM4) was found to be affected by VitD. THEM4 is an inhibitor of NFκB and prevents its binding to the DNA as was shown for the COX-2 promoter [238]. In addition, induction of Suppresser of Cytokine Signalling (SOCS) via
NFκB-induced miR155 is blocked by THEM4, resulting in decreased IL-6 and TNFα expression [239]. No information on the pathways involved in dampening production of the other pro-inflammatory mediators is available so far.

Targeting M1 derived, pro-inflammatory mediators in therapy of AID has already been proven to be successful, indicating that VitD and zinc might also be applicable.

5.3 Innate lymphoid cells (ILC)

Due to advanced technologies, knowledge and highly sensitive instruments, the so called innate lymphoid cells (ILC) were uncovered recently and grouped into ILC1, ILC2, ILC3 and NK cells [241]. Interestingly, the expression profiles of ILCs match certain types of Th subtypes. All subtypes are important for tissue homeostasis by regulating tissue repair. ILC1 and NK cell polarization is T-bet dependent as is development of Th1 cells and they express IFNγ, indicating their importance during viral infections. ILC2 cells are characterized by their GATA3-dependent development and expression of type 2 cytokines including IL-5 and IL-13, resembling Th2 cells. The development of ILC3 is induced via RORC2 and cells secrete IL-17, similar for what was described for Th17 cells [241].

ILC were identified in peripheral blood of MS patients and in inflamed intestine of IBD patients, amongst others via IL-23-induced IL-17A and IFNγ expression [242–244]. In addition, ILC3 cells were enriched in skin lesions and blood from psoriasis patients, promoting the disease by secretion of IL-22 and IL-17A [171,245]. In patients with sjogren’s syndrome, IL-22 producing ILC3 were enriched in bone marrow, peripheral blood, synovial fluid and in the gut [246]. So far, it is not clear, if ILCs are rather supporting the development of AID or suppressing it, which was recently reviewed [247]. Also, as in most cases all subtypes of ILCs were found in AID patients, the exact assignment of one type to a certain disease is so far barely possible.

The role of zinc in NK cell development and function just recently started to emerge [248–250]. Moreover, so far data suggest that lytic and killing activity of NK cells is decreased during zinc deficiency due to decreased MHC-I recognition and increased when zinc is added to cells in vitro [250].

Results on the association between NK cells, VitD and AID are quite contradictory as well. Investigation of a NK cell line showed that VitD incubation lead to increased activities of benzylxycarbonyl-L-lysine thiobenzyl (BLT) esterase and protein kinase C (PKC) and thereby stimulation of NK cell activity including cytotoxicity [251]. However,
this was not reproduced, when primary human blood cells were investigated [252,253]. Development of NK cells from hematopoietic stem cells, their IFNγ expression and cytotoxicity were even impaired under high VitD conditions [253]. When over-reactive NK cells were isolated from women with recurrent pregnancy loss, VitD could reduce their activity, decrease cytotoxic capacity and the production of pro-inflammatory cytokines [252].

ILC1 and ILC3 cells were enriched in VDR KO mice and it was suggested that expression of the VDR regulates ILC frequencies, IL-22 levels, and susceptibility to Citrobacter rodentium-induced colitis [254]. VitD treatment for two weeks did not alter the amount of ILCs in patients with psoriasis in another study, but VitD still caused clinical improvement by reducing the frequency of IL17-expressing CTL [156]. However, knowledge and data available in this area of research is far too little to draw conclusions and studies should address this field in the future, including not only analysis of cell numbers, but also on their activity.

Collectively, the role of ILCs in AID needs to be clarified before assumptions on effects of zinc and VitD on their functions should be made.

6. Non-immune cells

The damage during AID is mostly done by immune cells and their products. However, the activation and survival of other cells within the body, especially in the area that is affected by the autoimmune reaction add to the severity of the disease. Thus, in some cases, the host cells are not only the target, but take part in disease development themselves. As examples, damage of brain, intestine and pancreas are discussed in the next paragraphs.

6.1 Neuronal cells in MS

The brain is usually protected from the immune cells by the blood brain barrier (BBB). However, excessive activation of matrix-degrading enzymes such as matrix metalloproteinase 9 (MMP-9) can cause BBB disruption and subsequent immune cell infiltration from peripheral blood (figure 7.1) [255]. Other factors, causing the destruction of neurons, subsequently leading to motor dysfunction are primarily excessive levels of reactive oxygen and nitrogen species in the brain [256].
In contrast to what was reported in previous chapters, high zinc concentrations were found in the brains of EAE mice and MS patients, while serum zinc levels are still decreased compared to healthy controls. Similar results were found for non-AID neuronal diseases, such as Alzheimer’s disease, dementia and Parkinson’s diseases to name a few [257]. In the brain, zinc is usually packed into synaptic vesicles and released by ZnT3 to act as a neurotransmitter. However, if zinc concentrations exceed a certain threshold, neurotoxicity is the consequence, which was broadly discussed in a recent review [258]. In a study by Choi et al. (2013), abnormal vesicular zinc release and intracellular zinc accumulation were found and associated with activation of MMP-9, the disruption of the BBB and thus the increased recruitment of immune cells from peripheral blood, responsible for destruction of spinal cord white matter and subsequent motor deficits (figure 7.1). MOG (myelin oligodendrocyte glycoprotein)-induced EAE mice were treated with the metal chelator clioquinol via gavage, which ameliorated disease scores, the disruption of the BBB, and thus immune cell infiltration and myelin destruction. The same effects were found, when zinc release from vesicles was abolished in ZnT3 KO mice (Figure 7.2). Clioquinol gavage was still effective, when disease was already established, resulting in a reduction of clinical scores and less destruction of myelin compared to vehicle treated EAE animals [259]. This led to the hypothesis that excessive zinc, released into the extracellular space, supports destruction of the myelin sheath in the spinal cord white matter and the generation of motor deficits in MS patients, similar to what was observed in mice.

Subsequent studies found that zinc activates the Nicotinamide Adenine Dinucleotide Phosphate Hydrogen (NADPH) oxidase in neuronal cells via protein kinase C thus increasing ROS production [260]. Also, increased synaptic zinc was associated with death of oligodendrocytes, which in healthy subjects built the myelin sheath, but are destroyed during MS. Furthermore, intracellular zinc release increased the toxic effects of peroxynitrite, contributing to the death of oligodendrocytes [261,262]. Peroxynitrite results from the reaction of superoxide with nitric oxide. In line with this, elevated levels of iNOS were found in MS lesions [261,263]. Apoptosis as induced by peroxynitrite is mediated via ERK1/2 signaling, which was shown to be affected by intracellular zinc levels in numerous studies and proven as underlying mechanism in death of oligodendrocytes here as well. In this regard, it was postulated that AMPA receptor activation results in intracellular zinc release [264]. 12-lipoxygenase was identified as a
zinc target involved in ROS production and oligodendrocyte death as well [261]. In another study, cell death was reported to be mediated by protein kinase C, which was also related to neurotoxicity and its activity is affected by the zinc status of the cell [265–267]. A role of zinc in inducing autophagy in neuronal cells was suggested as well [259]. Finally, zinc induces COX-2 in microglia, resulting in their-activation, increased expression of pro-inflammatory cytokines and oxidative stress. Subsequently, this results in the death of dopaminergic neurons through Bax-mediated apoptosis [268]. Together, those data create an obstacle for MS treatment by zinc, as serum levels should be re-balanced by supplementation, but brain zinc not further increased. However, zinc supplementation was still a successful treatment strategy in animal models.

Interestingly, VitD was shown to support the BBB integrity. In a recent study using a human brain microvascular endothelial cell line, it was observed that VitD attenuated the damage of barrier function after exposure to either sera from MS patients (both relapse–remitting and secondary progressive MS) or TNFα. Upregulation of tight junction proteins and downregulation of cell adhesion molecules were found as underlying mechanisms [269]. Therefore, combining zinc with vitamin D might offer a solution.

6.2 Intestinal cells and IBD/CD

Similar to what was just described for neuronal cells, intestinal cells are targets of AID and known to be sensitive to altered zinc homeostasis. Sufficient zinc supply is important to preserve intestinal barrier function and to prevent trans-mucosal leakage [270]. In line with this, the leaky gut syndrome was associated with zinc deficiency. As intestinal injury can cause intestinal loss of zinc and malabsorption causing zinc deficiency, zinc deficiency-induced barrier dysfunctions are self-perpetuating. Literature here is convincing and a lot of great reviews are available [271–274]. Thus, only the most important points will be included here.

In a zinc supplementation study for pigs during weaning, which often develop diarrhea, clear impacts of zinc on colonic morphology, mucin profiles and immune response were observed. It was suggested that those changes might support local defense mechanisms and affect colonic physiology, contributing to the reduction of post-weaning diarrhea, which might be transferrable to AID-induced stress on the intestine [275]. Culturing human intestinal Caco-2 cells under zinc deficient conditions in conjunction
with TNFα exposure, to model existing intestinal inflammation, higher rates of apoptosis were observed compared to cells growing under zinc adequate conditions, explaining the loss of epithelial barrier integrity [276]. This epithelial barrier dysfunction then facilitates recruitment of leukocytes and unregulated leakage of luminal antigens across the epithelial barrier. This leak does normally not take place and causes exposure of the immune cells to auto-antigens thus triggering AID [277]. On a molecular basis, zinc is necessary for the expression of tight junction proteins [278,279]. During zinc deficiency, enterocyte peptidase activity is also altered, resulting in decreased absorption of proteins [280]. Figure 8A summarizes the effects of zinc that were suggested regarding intestinal cells.

Along with what was just described for zinc, VitD is an important player during intestinal epithelial defense against infectious agents as is illustrated in figure 8B. VitD deficiency was revealed to predispose to increased severity of intestinal injury in an infectious model of colitis in mice [281]. In line with this, VitD supplementation ameliorated intestinal epithelial turnover and thereby improved the integrity as well as the function of the intestinal barrier during liver cirrhosis in rats. One of the underlying mechanisms of those beneficial effects include the effect of VitD on heme oxygenase 1 signaling activation [282]. Moreover, VitD is involved in activating expression of TLR2, NOD2, β defensin, Claudin-2, Claudin-12, ZO1 and ZO2 [283–285].

6.3 Zinc and pancreatic alpha and beta cells in T1DM

In comparison to other cells, pancreatic β cells contain very high zinc concentrations, especially within the insulin secretory granules [286]. ZnT8, one of 24 zinc transport proteins identified in humans, is located in the granule membrane and can increase granular zinc, thus providing sufficient zinc levels for insulin synthesis, storage and stability, as can be seen in figure 9A [287,288].

As early as 1966, publications on decreased secretion of insulin and insulin sensitivity in zinc-deficient rats occurred [289]. Also, zinc plays an important role in the biochemistry of insulin and glucagon and stimulates lipogenesis and glucose uptake in isolated adipocytes [290]. For example, high levels of ZnT5 were detected in insulin secretory granules, while ZnT3 and Znt7 are suggested to support insulin secretion [291–293]. In a recent in vitro study using INS-1E beta cells, Zip14 was found to be important for their functions, which remains to be verified [294]. Alpha cells require ZnT8 for glucagon secretion during hypoglycemia [179,295]. Interestingly, mutations in the gene encoding
ZnT8 were associated with increased risk to develop diabetes, however, majorly T2D [296]. Also, auto-antibodies against ZnT8 were detected in patients with T1DM, but were not directly related to the disease as indicated earlier [179]. High zinc levels were also shown to increase insulin sensitivity in target tissues. In this, zinc inhibits PTP1B, increasing phosphorylation of the insulin receptor and thereby downstream signaling and gene activation [297]. Thus, effects of zinc are similar to those of reactive oxygen species, but mechanisms are different, as was investigated and described in great detail [298,299]. Signaling pathways affected include PI3K and protein kinase B (associated with enhanced glucose uptake), as revealed in 3T3-L1 fibroblasts and adipocytes [300]. This might explain the association of zinc deficiency with increased incidence of diabetes. On the other hand, insulin itself can regulate intracellular zinc levels through NADPH oxidase-generated hydrogen peroxide production, which causes release of zinc from metallothionein or the release of zinc from the endoplasmic reticulum by the zinc transporter Zip7 [301,302]. Finally, zinc is directly involved in regulating insulin function and a part of its structure. The insulin hexamer contains two zinc ions and one calcium ion. Zinc is involved in the transition from inactive “T” state of insulin into “R” state after interaction with phenolic ligands and zinc is co-secreted with insulin [303]. The complex has paracrine effects and induces glucagon secretion from alpha cells and might also be involved in inhibition of hepatic insulin clearance. Zinc ions themselves might affect alpha cells as well [304,305]. Also, zinc inhibits fibrillation of monomeric insulin and dimer formation with amyloid polypeptide in vitro, which remains to be proven in vivo [306].

VitD affects pancreatic beta cell function in various ways, as depicted in figure 9B. After entering the cell, VitD binds to the VDR-RXR complex which subsequently binds to the insulin promoter. Thereby, transcription is activated and insulin is synthesized. In addition, it was suggested that VitD promotes survival of beta cells via downregulation of the Fas-related pathways (Fas/Fas-L). Calbindin, a cytosolic calcium-binding protein found in beta cells, is also regulated by VitD and acts as a modulator of depolarization-stimulated insulin release. Furthermore, calbindin may also protect against apoptosis via its ability to buffer intracellular calcium (figure 10). VitD is also able to regulate extracellular calcium concentrations, which alters calcium flux through the beta cell. Alterations in calcium flux can directly influence insulin secretion, as this is a calcium-dependent process [307]. Recently, VitD was suggested to induce autophagy of
pancreatic β-cells, as well as prevented insulitis in a streptozotocin induced T1DM mouse model and in MIN6 mouse insulinoma β-cells [308], which remains to be explored in more detail.

The presented data indicate that the roles of zinc and VitD especially in MS and T1DM are complex. However, although a multitude of different mechanisms were proposed for zinc’s effects, they are all supporting the usage of zinc to prevent and treat AID, especially in patients that reveal zinc deficiency.

7 Current treatment strategies

If an AID is not treated, severe progression culminating in the destruction of the affected organ and ultimately death can be anticipated. Therefore, early diagnosis and start of therapy are of high priority. However, this often involves interdisciplinary analysis, until the diagnosis is clear as all kinds of organs, organ systems and combinations of organs can be affected. Some AID share several symptoms, but do not respond to the same treatment, whereas others, that produce different signs of disease can be perfectly treated using the same approach such as glucocorticoids [309]. Some current strategies are described in Table 2. However, treatment decision is quite complex and more global strategies are highly warranted, to overcome trial-and-error approaches. Moreover, current treatment regimens are often costly, as is represented especially by the costs for medication used for MS patients and thus alternatives such as zinc or vitamin D, which can be provided by a certain diet, and are also affordable supplements, offer a perfect support or even alternative.

There is a complex interaction of genetic and environmental factors so that in most cases clinical symptoms appear delayed from eliciting events. Also, the same disease might show a variety of symptoms and phenotypes adding another diagnostic obstacle. Although it was found that one immune cell type is largely responsible for the individual AID, it is in most cases the combination of the dysbalance of various immune cells that underlies the pathology. Thus, instead of finding therapeutic options addressing one cell type or even one of its functions, more general approaches for rebalancing should be preferred. Therefore, traditionally, the most common way of treating AID is by unspecific immunosuppressive or anti-inflammatory agents, which has the disadvantage of increased susceptibility to pathogen-induced inflammatory diseases and of significant morbidity.
Targeting intracellular signaling pathways involved in the inflammatory response has shown success, as for example IL-1 blockade in cryopyrinopathies, juvenile idiopathic arthritis and gout [310]. For psoriasis, addressing IL-17, TNFα and IL-12/23 have been successful strategies and RA was controlled by depleting B cells or using janus kinases, IL-6, IL-1β or TNFα as targets [311,312].

Unfortunately, the response of patients to those treatments has been heterogeneously efficient, leaving a lot of unresponsive patients with their symptoms as was the case of 30 – 40% of IBD, RA and psoriasis patients treated with agents blocking TNFα [312]. Thus, alternative strategies are warranted or at least biomarkers that help to predict responsiveness to a certain agent, so that different personalized strategies are used instead.

This might be achieved applying advanced strategies such as transcriptome analysis [313]. Especially new technologies such as next-generation sequencing already generated promising data but are so far rather helpful to increase our knowledge on mechanisms underlying diseases. Gene expression profiling for example uncovered therapeutic targets such as IL-1 in AID characterized by innate immunity and enabled targets for psoriasis analyzing the skin transcriptome [314,315]. As those techniques are quite costly approaches, including them in routine diagnostics might rather be done at a later point, especially for smaller laboratories [316]. Alternatively, defining as many environmental triggers as possible and addressing them, is quite promising if nutritional triggers are involved in disease etiology and deficiencies of certain elements have been found in a patient. Although the use of biologics such as TNFα inhibitors has much improved the success of AID treatment, there is still a far too high number of non-responding patients. New therapeutic approaches should preferably involve oral drugs with little side effects. In this regard, the afore mentioned data strongly suggest taking nutritional strategies into account when developing new treatment schemes for AID.

First promising results from mouse experiments but also some human studies are available, especially for MS/EAE, T1DM, IBD and AID affecting the gastro-intestinal tract in regard to zinc as well as VitD for prevention and treatment. If those strategies are combined with novel diagnostic approaches, individualized therapy might be possible and effective in the future. However, prevention using nutritional approaches would be an advantage in multiple regards to decrease the incidence of AID (Table 1).
Summary and concluding remarks

The incidence of AID is rising, resulting in high amounts of people suffering from diseases that are difficult to treat. Thus patients are subjected to severe symptoms and death. Generally, AID predisposition cannot simply be related to one factor, such as limited sunlight and thus VitD deficiency or being vegan and thus at risk for zinc deficiency. Also, not every VitD or zinc deficient person will develop an AID, as genetics and the total lifestyle play a vital part here as well. However, deficiencies of nutritional elements such as zinc and vitamin D are often found in patients with AID. Their origin as well as the symptoms and complications they cause are manifold, which impedes diagnosis and management. Thus, during clinical care of AID patient’s, possible micronutrient deficiencies should be considered and if observed consequently be treated by monitored supplementation of the deficient element(s). In this regard, more studies concentrating on nutritional element interactions are strongly warranted to be able to optimize treatment strategies for AID patients and stopping the increase in incidence using simple and cost-effective nutritional approaches.
Figure legends

Figure 1: Effects of Zinc on auto-immune-related functions of immune cells

An illustration of the zinc-regulated processes in immune cells, which can be related to autoimmune diseases, as detailed in the text. CTL: cytotoxic lymphocytes; BCR: B cell receptor; DC: Dendritic Cells, GM-CSF: Granulocyte Macrophage-Colony Stimulating Factor; IL: Interleukin; LPS: lipopolysaccharide; Mφ: macrophages; MHC: Major Histocompatibility Complex; MLC: Mixed Lymphocyte Culture; NK: Natural Killer, TCR: T cell receptor; TNF: Tumor Necrosis Factor

Figure 2: Effects of vitamin D on auto-immune-related functions of immune cells

An overview of Vitamin D’s effects on immune cells, which can be related to autoimmune diseases and which are described in the text. CD: cluster of differentiation; COX: Cyclooxygenase; CTL: cytotoxic lymphocytes; DC: Dendritic Cells, IFN: Interferon; IL: Interleukin; ILC: innate lymphoid cells; Mφ: macrophages; MHC: Major Histocompatibility Complex; NK: Natural Killer; NO: nitrogen oxide; TCR: T cell receptor; TNF: Tumor Necrosis Factor; VDR: Vitamin D Receptor

Figure 3: Depending on its concentration, zinc exerts inhibitory or stimulatory effects on signal transduction in Treg (A) and Th17 (B) cells.

(A) For Treg cells, so far effects have been described on transforming growth factor β receptor (TGFβR)-dependent (A) or –independent, but CD28, T cell receptor (TCR) or interleukin (IL)-2R –dependent signaling.

Zinc inhibits mammalian target of rapamycin (mTOR) activity in response to CD28, TCR or IL-2R stimulation in Treg cells, which abolishes TGF-induced Smad signaling. On the other hand, zinc increases the phosphorylation of Smad by inhibiting phosphatases, resulting in increased Smad binding to the forkhead box protein (Foxp3) promoter and a net increase in its expression. Also, zinc blocks calcineurin-mediated Nuclear Factor of Activated T Cell (NFAT)-activation. Zinc increases Akt phosphorylation and thus mTOR induced chromatin remodeling within the Foxp3 promoter. On the other hand, zinc inhibits Protein Kinase A (PKA) and p38-mediated signaling, resulting in decreased Cyclic Adenosine Monophosphate (cAMP)-response-element-binding protein (CREB) and Activator Protein (AP)-1 binding to the Foxp3 promoter. Still the net effect of zinc
are increased cytoplasmic Foxp3 levels, amongst others due to the zinc-mediated decrease in Sirtuin (Sirt)-1 activity and therefore decreased acetylation-induced proteasomal destruction of Foxp3 protein. Finally, zinc activates micro(mi)RNA146a resulting in stronger Treg cell activation. In summary zinc inhibits interferon regulatory factor (IRF)-1, Sirt-1 and Smad, while it induces Kruppel-like factor (KLF)-10, Foxp3, cytotoxic T-lymphocyte-associated protein (CTLA)4 and CD25 in Treg cells.

(B) Th17 cells are induced by IL-6 and TGFβ. Zinc binds STAT3, inhibiting its activation by IL-6.

CCL: Chemokine Ligand; ERK: extracellular signal–regulated kinases; GM-CSF: Granulocyte Macrophage-Colony Stimulating Factor; HAT: histone acetylase; IL: Interleukin; JNK: Janus Kinase; P: phosphorylation; PI3K: phosphatidylinositol-3-kinase; STAT: Signal Transducer and Activator of Transcription.

Figure 4: Vitamin D´s effects on Treg (A) and Th17 (B) cells

(A) Vitamin D increases Foxp3 expression via increased binding of the vitamin D receptor (VDR) to the Foxp3 promoter within the calcitriol-dependent enhancer region. In summary, Vitamin D induces Foxp3, cytotoxic T-lymphocyte-associated protein (CTLA)4, Interleukin (IL)-10, Helios and transforming growth factor (TGF)β expression via its receptor (VDR).

(B) After binding of vitamin D its receptor, retinoid X receptor (RXR) is recruited as well as phosphorylated (P) Smad3. The complex binds to the DNA and recruits histone deacetylase (HDAC2), resulting in blockade of Smad7 expression. Moreover, VitD inhibits the translocation of Nuclear Factor of Activated T Cell (NFAT) to the nucleus and transcription of IL-17 mRNA. Translation of IL-17 mRNA to IL-17 protein is also decreased by VitD. In summary, VitD increases expression of Interleukin (IL)-17, IL-23 receptor, IL-22, Interferon (IFN)γ, Retinoic-acid-orphan-receptor-C (RORc), chemokine receptor (CCR)6, extracellular signal–regulated kinase (ERK), Smad3, VDR, IL-10 and IL-4 in Th17 cells.

Figure 5: Proposed effect of Zinc and Vitamin D supplementation on T cell activation by dendritic cells (DC)

Zinc (Zn) (A) as well as Vitamin D (VitD) (B) shape the tolerogenic potential of dendritic cells, which affects Th cell polarization, favoring Treg differentiation over the
development of Th17 cells. Shown are the mechanisms underlying the effects of zinc and vitamin D on DCs proposed so far, which needs to be evaluated in more detail, especially as the amount of available in vivo data is limited.

AG: antigen; CCL: CC-chemokine ligand; CD: cluster of differentiation; IDO: indoleamine 2,3 dioxygenase; IL: interleukin; ILT: immunoglobulin-like transcript; MHC: Major Histocompatibility Complex; mTOR: mammalian target of rapamycin; PI3K: phosphatidylinositol-3-kinase; RXR: retinoid X receptor; TCR: T cell receptor; TLR: Toll-like receptor, TNF: tumor necrosis factor; PD-L: programmed death-ligand; VDR: vitamin D receptor

Figure 6: Vitamin D alters Cytokine expression in macrophages

After ligand binding, Vitamin D receptor (VDR) is recruited to the THEMA4 promoter, resulting in expression of the adjacent gene. THEMA4 then blocks NFκB-induced expression of Interleukin (IL-)6, Tumor Necrosis Factor (TNF)α and COX)-2. In summary, VitD treatment results in decreased expression of the pro-inflammatory mediators IL-1β, IL-6, TNFα and cyclooxygenase (COX)-2, while the expression of anti-inflammatory IL-10 is increased.

Figure 7: Zinc´s Effect on the Blood Brain Barrier and neuronal communication

The effects of zinc within the brain are manifold. 1): matrix metalloprotease (MMP)-9, responsible for degradation of extracellular matrix and thus involved in blood brain barrier (BBB) maintenance, acts zinc dependent. 2) Moreover it was shown that zinc release by ZnT3 into the synaptic space is involved in communication of pre- and postsynaptic neuronal terminals. 3) Within the postsynaptic neurons zinc is involved in activation of protein kinase C (PKC), and thus via NADPH oxidase (NOX), reactive oxygen species (ROS) and Poly(ADP-Ribose)-Polymerase 1 (PARP-1), effects apoptosis. 4) Recently, it was suggested that α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) activation results in intracellular zinc release, inducing apoptosis in oligodendrocytes. 5) Zinc also alters autophagy and 6) activates microglia to produce pro-inflammatory interleukin (IL-)6, IL-1β and tumor necrosis factor (TNF)α as well as ROS, adding to apoptosis of neighboring cells.
Figure 8: Altered zinc or Vitamin D homeostasis can affect gene expression of intestinal epithelial cells

A) Intestinal epithelial cells react to changes in zinc homeostasis with altered expression and phosphorylation of tight junction proteins and membrane location of zona occludens (ZO)-1. This is amongst others associated with zinc’s effects on phospholipase C (PLC) and inositol triphosphate (IP_3). MAP kinase kinase (MKK), AMP-activated protein kinase (AMPK), endoplasmic reticulum (ER).

B) Via the vitamin D receptor (VDR), VitD affects the expression of several genes including toll-like receptor (TLR)-2, nucleotide-binding oligomerization domain-containing protein (NOD)-2, and zona occludens (ZO)-1 and ZO-2 as well as the phosphorylation of occludin.

Figure 9: Illustration of effects of zinc and Vitamin D on insulin-induced signaling and metabolism

A) Zinc is well known for its effect on intracellular signaling. Amongst others, zinc alters activation of protein tyrosine phosphatase (PTEN), tribbles 3 (TRB3), Protein-tyrosine phosphatase (PTP1), subsequently altering phosphatidylinositol-3-kinase (PI3K) and Akt signaling pathways, which affects expression of glucose transporter (Glut)4. Regarding levels of free zinc, available for signaling, the zinc-binding protein metallothionein (MT) plays a major role. Binding of zinc to MT is redox sensitive and thus affected by H_2O_2, produced by the NADPH oxidase (NOX).

B) It was found that the genes for insulin and calbindin have vitamin D receptor (VDR) binding sites in their promoters. Thus, the binding of VitD to its receptor can alter their expression leading to altered release of insulin or apoptosis.
References

[18] Wessels I, Cousins RJ. Zinc dyshomeostasis during polymicrobial sepsis in mice involves zinc transporter Zip14 and can be overcome by zinc supplementation. Am J Physiol Gastrointest Liver Physiol 2015;309(9):G768-78.

[95] Peelen E, Thewissen M, Knippenberg S, Smolders J, Muris A-H, Menheere P et al. Fraction of IL-10+ and IL-17+ CD8 T cells is increased in MS patients in remission and during a relapse, but is not influenced by immune modulators. Journal of Neuroimmunology 2013;258(1):77–84.

[107] Lubberts E, Joosten LAB, van de Loo, F. A. J., Schwarzenberger P, Kolls J, van den Berg, W. B. Overexpression of IL-17 in the knee joint of collagen type II

[158] Brooks EG, Balk SP, Aupeix K, Colonna M, Strominger JL, Groh-Spies V. Human T-cell receptor (TCR) alpha/beta + CD4-CD8- T cells express oligoclonal

[203] Ferris ST, Carrero JA, Mohan JF, Calderon B, Murphy KM, Unanue ER. A minor subset of Batf3-dependent antigen-presenting cells in islets of Langerhans is

[245] Teunissen MBM, Munneke JM, Bernink JH, Spuls PI, Res PCM, te Velde A et al. Composition of Innate Lymphoid Cell Subsets in the Human Skin: Enrichment of

Table 1:

(a) Recommended Daily allowance (RDA, WHO), population reference intake (PRI, EFSA) and upper limits (UL) for zinc and vitamin D. (b) Summary of the most relevant supplementation studies.

<table>
<thead>
<tr>
<th>element</th>
<th>sex</th>
<th>UL per day</th>
<th>LPI</th>
<th>RDA/PRI per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>VitD</td>
<td>m</td>
<td>100 µg / 4000 IU</td>
<td>n. r.⁴</td>
<td>15 µg / 600 IU</td>
</tr>
<tr>
<td>VitD</td>
<td>f</td>
<td>100 µg / 4000 IU</td>
<td>n. r.</td>
<td>15 µg / 600 IU</td>
</tr>
<tr>
<td>zinc</td>
<td>m</td>
<td>25 mg</td>
<td>300 mg 600 mg 900 mg 1200 mg</td>
<td>9.4 mg 11.7 mg 14.0 mg 16.3 mg</td>
</tr>
<tr>
<td>zinc</td>
<td>f</td>
<td>25 mg</td>
<td>300 mg 600 mg 900 mg 1200 mg</td>
<td>7.5 mg 9.3 mg 11.0 mg 12.7 mg</td>
</tr>
<tr>
<td>zinc</td>
<td>m</td>
<td>40 mg</td>
<td>n. s.⁵</td>
<td>11 mg</td>
</tr>
<tr>
<td>zinc</td>
<td>f</td>
<td>40 mg</td>
<td>n. s.</td>
<td>8 mg</td>
</tr>
</tbody>
</table>

Abbreviations: ¹WHO: World Health Organization, ²EFSA: European Food Safety Authority, ³LPI: level of phytate intake, ⁴n. r.: not relevant, ⁵n.s. not specified
<table>
<thead>
<tr>
<th>Disease</th>
<th>Element</th>
<th>dosage</th>
<th>Period</th>
<th>Effect</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1DM</td>
<td>Zn glycine</td>
<td>7.5-15 mg/d</td>
<td>4 we</td>
<td>Increased erythrocyte zinc & HbA1c</td>
<td>[317]</td>
</tr>
<tr>
<td>T1DM</td>
<td>ZnGlc</td>
<td>30 mg/d</td>
<td>3 mo</td>
<td>Reduced lipid peroxidation</td>
<td>[318]</td>
</tr>
<tr>
<td>T1DM</td>
<td>ZnSO₄ + VitA</td>
<td>10 mg/d 25,000 IU</td>
<td>12 we</td>
<td>Increase in serum Apo-A1, decrease in Apo-B/Apo-A1 ratio</td>
<td>[319]</td>
</tr>
<tr>
<td>T1DM (rat)</td>
<td>ZnGlc</td>
<td>50 mg/d</td>
<td>1 mo</td>
<td>Increased HbA1c</td>
<td>[320]</td>
</tr>
<tr>
<td>T1DM</td>
<td>α-calciodol</td>
<td>10 IU/2x/d</td>
<td>12 mo</td>
<td>stable FCP</td>
<td>[322]</td>
</tr>
<tr>
<td>T1DM</td>
<td>Rocaltrol</td>
<td>10 IU/d</td>
<td>18 mo</td>
<td>no changes</td>
<td>[323]</td>
</tr>
<tr>
<td>T1DM</td>
<td>Cholecalciferol</td>
<td>2000 IU/d</td>
<td>18 mo</td>
<td>decrease CRP</td>
<td>[140]</td>
</tr>
<tr>
<td>EAE (mouse)</td>
<td>ZnAsp</td>
<td>0.3 - 1.5 mg/kg</td>
<td>d1 - 22</td>
<td>lower EAE score, decrease in Th17 cells, increase in Treg cells</td>
<td>[123]</td>
</tr>
<tr>
<td>EAE (mouse)</td>
<td>ZnAsp</td>
<td>1.5 mg/kg</td>
<td>d1-10 or d11-19</td>
<td>reduction of the clinical severity (during first relapse)</td>
<td>[124]</td>
</tr>
<tr>
<td>EAE (mouse)</td>
<td>ZnAsp</td>
<td>6 – 12 µg/d</td>
<td>during relaxing remitting phase</td>
<td>reduced clinical and histopathological signs</td>
<td>[87]</td>
</tr>
<tr>
<td>EAE (mouse)</td>
<td>ZnAsp, IVIG, ZnAsp + IVIG</td>
<td>ZnAsp (30 µg/d), IVIG (10 mg/d) or both (i.p.)</td>
<td>from d11 to d15 or d11 to d19 after immunization</td>
<td>Zn: diminishes clinical signs, IVIG: no effect Zn+IVIG: less severity during acute & relapsing-remitting phase</td>
<td>[125]</td>
</tr>
<tr>
<td>EAE (mouse)</td>
<td>Calcitriol</td>
<td>4 IU/every 2nd d</td>
<td>d2 – 15</td>
<td>less EAE development, abrogated rise in antibody titer to myelin basic protein, less histopathology</td>
<td>[33]</td>
</tr>
<tr>
<td>EAE (mouse)</td>
<td>Calcitriol</td>
<td>Prevention 2 IU/d (f), 4 IU/d (m) Treatment 8 IU/d</td>
<td>d1 - 30</td>
<td>IL-10 dependent protection from EAE development/progression</td>
<td>[325]</td>
</tr>
<tr>
<td>EAE (mouse)</td>
<td>calcitriol</td>
<td>1 IU/d</td>
<td>d1 - 34</td>
<td>complete EAE prevention (pre-treatment), prevention of progression (treatment after onset)</td>
<td>[326]</td>
</tr>
<tr>
<td>EAE (mouse)</td>
<td>calcitriol - treated DCs</td>
<td>1 – 2 nM ((in vitro))</td>
<td>8d pre-treating DCs</td>
<td>d1 – 20 of EAE</td>
<td>prevents EAE, upregulates Treg, down-regulates Th1, Th17</td>
</tr>
<tr>
<td>MS-related depression</td>
<td>ZnSO(_4)</td>
<td>50 mg/d</td>
<td>12 we</td>
<td>decreased depression score, unaltered neurological state</td>
<td>[328]</td>
</tr>
<tr>
<td>MS</td>
<td>Cholecalciferol</td>
<td>up to 280,000 IU/we</td>
<td>52 we</td>
<td>trend towards reduced relapse</td>
<td>[329]</td>
</tr>
<tr>
<td>MS</td>
<td>Cholecalciferol</td>
<td>300,000 IU/mo</td>
<td>6 mo</td>
<td>no effect on EDSS</td>
<td>[330]</td>
</tr>
<tr>
<td>MS</td>
<td>Cholecalciferol</td>
<td>20,000 IU/we</td>
<td>12 mo</td>
<td>trend towards reduced EDSS</td>
<td>[331]</td>
</tr>
<tr>
<td>MS</td>
<td>Cholecalciferol</td>
<td>20,000 IU/we</td>
<td>96 we</td>
<td>no effect on EDSS, relapse, fatigue</td>
<td>[332]</td>
</tr>
<tr>
<td>MS</td>
<td>Cholecalciferol</td>
<td>50,000 IU/we</td>
<td>12 mo</td>
<td>decreased incidence ratio of demyelination plaques, reduced progression risk</td>
<td>[333]</td>
</tr>
<tr>
<td>MS ((CD4^+ T cells, in vitro))</td>
<td>VitD</td>
<td>10 nM ((in vitro))</td>
<td>12h – d7</td>
<td>decreased proliferation of patient’s CD4+ T cells & MBP-specific T cells \textit{in vitro}; enhanced IL-10 producing cells, reduced IL-6 & IL-17 secreting cells</td>
<td>[138]</td>
</tr>
<tr>
<td>PS</td>
<td>zinc (not defined) ((\text{topical: 0.25% Zn + Pyr in an emollient base, 2x/d}))</td>
<td>3 mo</td>
<td>Decreased plaques / PASI score</td>
<td>[334]</td>
<td></td>
</tr>
<tr>
<td>Psoriatic arthritis</td>
<td>ZnSO(_4)</td>
<td>50 mg/3x/d</td>
<td>6 mo</td>
<td>Reduction of joint pain, increase of mobility, decrease of swelling, reduction of serum immunoglobulins, increase of serum albumin</td>
<td>[335]</td>
</tr>
<tr>
<td>RA</td>
<td>ZnSO(_4)</td>
<td>50 mg/3x/d</td>
<td>12 we</td>
<td>Decreased joint swelling, stiffness, walking time</td>
<td>[336,337]</td>
</tr>
<tr>
<td>RA</td>
<td>ZnSO(_4)</td>
<td>50 mg/3x/d</td>
<td>6 mo</td>
<td>no effect on RA, increased alkaline phosphatase</td>
<td>[338]</td>
</tr>
<tr>
<td>RA</td>
<td>ZnSO(_4)</td>
<td>45 mg/3x/d</td>
<td>5 – 6 mo</td>
<td>no effect</td>
<td>[339]</td>
</tr>
<tr>
<td>RA</td>
<td>ZnAsp</td>
<td>260 mg/d</td>
<td>d1 - 15</td>
<td>Decreased ROS of patient’s monocytes \textit{in}</td>
<td>[340]</td>
</tr>
<tr>
<td>Disease</td>
<td>Supplement</td>
<td>Dose</td>
<td>Time</td>
<td>Effect</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>RA</td>
<td>ZnGlc</td>
<td>45 mg/d</td>
<td>2 mo</td>
<td>Increased phagocytosis [341]</td>
<td></td>
</tr>
<tr>
<td>RA</td>
<td>VitD</td>
<td>50,000 IU/we</td>
<td>12 we</td>
<td>Modest improve in tender joint count, swollen joint count, ESR, VAS [342]</td>
<td></td>
</tr>
<tr>
<td>RA</td>
<td>VitD</td>
<td>50,000 IU/we</td>
<td>6 mo</td>
<td>No effect on relapse rate [343]</td>
<td></td>
</tr>
<tr>
<td>RA</td>
<td>VitD</td>
<td>50,000 IU/3x/we - 2x mo</td>
<td>12 mo</td>
<td>No effect on RA, no increase in pain [344]</td>
<td></td>
</tr>
<tr>
<td>CIA/ EAE</td>
<td>Zn (not defined)</td>
<td>≈ 12 – 21 mg/d (3000 ppm in drinking water)</td>
<td>30d before disease induction</td>
<td>Inhibits development of CIA & EAE involving blockade of Th17 cell development [115]</td>
<td></td>
</tr>
<tr>
<td>Colitis (mouse)</td>
<td>Zn carnosine</td>
<td>1.7 mg/kg/d</td>
<td>d1 - 7</td>
<td>Reduced pro-inflammatory cytokine levels and neutrophils accumulation, cytoprotection by overexpression of HSPs [345]</td>
<td></td>
</tr>
<tr>
<td>Colitis (mouse)</td>
<td>ZnO</td>
<td>2.4 mg/d (gavage)</td>
<td>d1 - 6</td>
<td>Reduction of disease activity index (50%), less colon damage [346]</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>VitD</td>
<td>1,200 IU/d</td>
<td>12 mo</td>
<td>Trend to reduced relapse [347]</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>VitD</td>
<td>400 - 2000 IU/d (children)</td>
<td>6 mo</td>
<td>No difference in CDAI, ESR, CRP [348]</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>VitD</td>
<td>2,000 IU/d</td>
<td>3 mo</td>
<td>Stabilized intestinal permeability, reduced CRP, trend to decreased CDAI [349]</td>
<td></td>
</tr>
<tr>
<td>SLE</td>
<td>VitD</td>
<td>2,000 – 4,000 IU/d</td>
<td>12 we</td>
<td>Increased serum VitD, no change in IFN [350]</td>
<td></td>
</tr>
<tr>
<td>SLE</td>
<td>VitD</td>
<td>5,000 IU/d</td>
<td>16 we</td>
<td>Tendency of increased flow-mediated dilation [351]</td>
<td></td>
</tr>
<tr>
<td>SLE</td>
<td>VitD</td>
<td>50,000 IU/we</td>
<td>24 we</td>
<td>Decreased disease activity, improved fatigue [352]</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations:
AID: Autoimmune Diseases
Apo: Apolipoprotein
VAS: visual analogue scale
CD: crohn’s disease
CDAI: crohn’s disease activity index
CIA: collagen induced arthritis
CRP: C reactive protein
DC: dendritic cells
EDSS: Expanded Disability Status Scale
EAE: Experimental autoimmune encephalomyelitis
ESR: erythrocyte sedimentation rate
FCP: fasting C peptide
Hb: Hemoglobin
HSP: heat shock protein
IFN: interferone
IVIG: *in vitro* immune globulins
MBP: myelin basic protein
PASI: Psoriasis Area Severity Index
PS: psoriasis
RA: Rheumatoid Arthritis
ROS: reactive oxygen species
T1DM: type 1 diabetes
VAS: visual analogue scale
ZnGlc: zinc glucinate
ZnSO₄: zinc sulfate
ZnCl₂: zinc chloride
Zn+Pyr: zinc and pyrithione
Table 2:

Example costs for current treatment strategies in US dollar, comparing numbers for Europe (represented by the National Institute for Health and Care Excellence (NICE), UK), Canada (showing numbers from the Canadian Agency for Drugs and Technologies in Health (CADTH) and for the USA as found in recent studies. Supplementation with 10 mg zinc and 1,000 IU Vitamin D will cost less than 22$ (developing countries) and 45 – 58.5$ per year, respectively [353,354].

<table>
<thead>
<tr>
<th>Disease</th>
<th>Medication</th>
<th>Cost / year [$]</th>
<th>Country</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Infliximab, Adalimumab, Golimumab</td>
<td>12,393 – 13,772</td>
<td>UK</td>
<td>NICE, 2015</td>
</tr>
<tr>
<td></td>
<td>Infliximab, Adalimumab, Vedolizumab</td>
<td>46,415</td>
<td>Canada</td>
<td>CADTH 2013 2007</td>
</tr>
<tr>
<td></td>
<td>Infliximab, Adalimumab, Ustekinumab</td>
<td>50,510</td>
<td>USA</td>
<td>Aliyev et al., 2018</td>
</tr>
<tr>
<td>RA</td>
<td>Tocilizumab, Infliximab</td>
<td>5,095 - 11,320</td>
<td>UK</td>
<td>NICE 2017</td>
</tr>
<tr>
<td></td>
<td>Tocilizumab IV, Infliximab</td>
<td>8,154 - 102,706</td>
<td>Canada</td>
<td>CADTH, 2018</td>
</tr>
<tr>
<td></td>
<td>Tocilizumab, Infliximab</td>
<td>14,334 - 24,916</td>
<td>USA</td>
<td>Gu et al., 2016</td>
</tr>
<tr>
<td></td>
<td>Alemtuzumab</td>
<td>9,055</td>
<td>70,880</td>
<td>18,525</td>
</tr>
<tr>
<td></td>
<td>Natalizumab, Glatiramer acetate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>β Interferon, Natalizumab, Glatiramer acetate</td>
<td>18,677 - 25,458</td>
<td>Canada</td>
<td>CADTH, 2018</td>
</tr>
<tr>
<td></td>
<td>β Interferon, Natalizumab, Glatiramer acetate</td>
<td>10,583 – 53,032</td>
<td>USA</td>
<td>Hartung et al., 2015</td>
</tr>
</tbody>
</table>
HIGHLIGHTS

- Immune function during zinc deficiency
- Immune function during zinc supplementation
- Immune function during vitamin D deficiency
- Immune function during vitamin D supplementation
- Clinical trials of zinc and vitamin D supplementation to treat autoimmune diseases