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Abstract. Observational studies strongly supported the association of low levels of circulating 25-hydroxyvitamin D (25OHD)
and cognitive impairment or dementia in aging populations. However, randomized controlled trials have not shown clear
evidence that vitamin D supplementation could improve cognitive outcomes. In fact, some studies reported the association
between vitamin D and cognitive impairment based on individuals aged 60 years and over. However, it is still unclear that
whether vitamin D levels are causally associated with Alzheimer’s disease (AD) risk in individuals aged 60 years and over.
Here, we performed a Mendelian randomization (MR) study to investigate the causal association between vitamin D levels and
AD using a large-scale vitamin D genome-wide association study (GWAS) dataset and two large-scale AD GWAS datasets
from the IGAP and UK Biobank with individuals aged 60 years and over. Our results showed that genetically increased
25OHD levels were significantly associated with reduced AD risk individuals aged 60 years and over. Hence, our findings in
combination with previous literature indicate that maintaining adequate vitamin D status in older people especially aged 60
years and over, may contribute to slow down cognitive decline and to forestall AD. Long-term randomized controlled trials
are required to test whether vitamin D supplementation may prevent AD in older people especially those aged 60 years and
may be recommended as preventive agents.
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INTRODUCTION 27

Alzheimer’s disease (AD) is the most common 28

neurodegenerative disorder [1–4]. It is well known 29

that extracellular deposition of amyloid plaques 30

mainly consisting of amyloid-� (A�) peptide is one 31

of the core pathological features of AD [1, 4–6]. 32

Meanwhile, multiple lines of evidence indicate that 33
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oxidative stress is involved in the pathogenesis of AD34

[7]. Importantly, A� is toxic in neuronal cell cul-35

tures through a mechanism involving free radicals [7].36

The clearance of A� could protect against apoptosis37

which could usually induce the oxidative stress and38

further cause damage in the brain of AD patients [8].39

Evidence from animal models of AD shows that40

vitamin D could reduce oxidative stress, prevent neu-41

rons from dying, and further mediate the clearance of42

A� plaques by activating macrophages [8]. In addi-43

tion, various studies using animal models of aging and44

AD showed that vitamin D supplementation could45

protect against biological processes associated with46

AD and enhances learning and memory performance47

[9]. Meanwhile, human observational or genetic stud-48

ies have also investigated the role of vitamin D in AD,49

and strongly supported the association of low levels of50

circulating 25-hydroxyvitamin D (25OHD) and cog-51

nitive impairment or dementia in aging populations52

[8–14].53

Importantly, Mendelian randomization studies54

have been used to determine the causal inferences55

and showed that genetically increased vitamin D56

levels could reduce the risk of AD [15–17]. How-57

ever, randomized controlled trials have not shown58

clear evidence that vitamin D supplementation could59

improve cognitive outcomes [9, 18]. In fact, there is60

still a controversial link between vitamin D levels and61

cognitive performance [9]. In a recent review, Lan-62

del et al. discussed the specificity by which vitamin63

D could improve cognitive performance in humans64

[9]. Landel et al. suggested a possible age threshold65

[9]. In brief, some studies reported the association66

between vitamin D and cognitive impairment based67

on individuals aged 60 years and over [9].68

Until now, it is still unclear that whether vitamin69

D levels are causally associated with AD risk in indi-70

viduals aged 60 years and over. Here, we performed a71

Mendelian randomization (MR) study to investigate72

the causal association between vitamin D levels and73

AD using a large-scale vitamin D genome-wide asso-74

ciation study (GWAS) dataset and two large-scale AD75

GWAS datasets from the International Genomics of76

Alzheimer’s Project (IGAP) and UK Biobank with77

individuals aged 60 years and over [19, 20].78

MATERIALS AND METHODS79

Study design80

MR is based on three principal assumptions. Here,81

we described these three principal assumptions using82

the association between vitamin D levels and AD as 83

an example. First, the instrumental variables (genetic 84

variants) should be significantly associated with the 85

exposure (vitamin D levels), such as the genome-wide 86

significant level (p < 5.00E-08) [21, 22]. Second, 87

instrumental variables should not be associated with 88

confounders [21, 22]. Third, instrumental variables 89

should affect the risk of the outcome (AD) only 90

through the exposure (vitamin D levels) [21, 22]. In 91

general, the second and third assumptions are collec- 92

tively known as independence from pleiotropy [23]. 93

Here, MR is based on the large-scale publicly avail- 94

able GWAS summary datasets in vitamin D and AD. 95

All participants have given informed consent in all 96

these corresponding original studies [19, 20]. 97

Vitamin D genetic variants 98

We selected six genetic variants associated with 99

circulating 25OHD levels achieving a genome-wide 100

significant level (p < 5.00E-08) as the poten- 101

tial instrumental variables, which are around six 102

loci including GC, NADSYN1/DHCR7, CYP2R1, 103

CYP24A1, SEC23A, and AMDHD1 from a recent 104

GWAS including 79,366 (all European descent) 105

[24]. These six genetic variants are located at five 106

different chromosomes (Table 1). Two genetic vari- 107

ants rs12785878 (chr11 : 71167449) and rs10741657 108

(chr11 : 14914878) are located the same chromosome 109

5. However, the distance between both variants is 110

56252571 bp. Hence, all these six genetic variants 111

were independent and not in linkage disequilibrium, 112

as described in the original study [24]. Here, we pro- 113

vided the summary results about the effect of each 114

genetic variant on 25OHD levels and the standard 115

errors in Table 1. 116

IGAP AD GWAS dataset 117

The AD GWAS dataset is from the large-scale 118

meta-analysis performed by the IGAP [20]. In stage 119

1, the IGAP performed a meta-analysis of 46 GWAS 120

datasets including 21,982 cases and 41,944 cogni- 121

tively normal controls of European descent from four 122

consortia including the Alzheimer Disease Genetics 123

Consortium (ADGC), Cohorts for Heart and Aging 124

Research in Genomic Epidemiology Consortium 125

(CHARGE), The European Alzheimer’s Disease Ini- 126

tiative (EADI), and the Genetic and Environmental 127

Risk in AD/Defining Genetic, Polygenic and Envi- 128

ronmental Risk for Alzheimer’s Disease Consortium 129

(GERAD/PERADES) [20]. All patients with AD 130
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Table 1
Characteristics of six genetic variants in vitamin D GWAS dataset

SNP Position (hg19) Nearby genes EA/NEA EAF Beta SE p

rs3755967 chr4 : 72609398 GC C/T 0.72 0.089 0.0023 4.74E-343
rs12785878 chr11 : 71167449 DHCR7 T/G 0.75 0.036 0.0022 3.80E-62
rs10741657 chr11 : 14914878 CYP2R1 A/G 0.40 0.031 0.0022 2.05E-46
rs17216707 chr20 : 52732362 CYP24A1 T/C 0.79 0.026 0.0027 8.14E-23
rs10745742 chr12 : 96358529 AMDHD1 T/C 0.40 0.017 0.0022 1.88E-14
rs8018720 chr14 : 39556185 SEC23A G/C 0.18 0.017 0.0029 4.72E-09

SNP, single-nucleotide polymorphism; EA, Effect Allele; NEA, Non-Effect Allele; EAF, Effect Allele Frequency; SE,
standard error. Beta is the regression coefficient based on the vitamin D raising allele (effect allele).

satisfied the NINCDS-ADRDA criteria or DSM-IV131

guidelines [20, 25]. The average age at onset for all132

AD cases is ≥73, and the average age at examination133

for 83% controls is ≥76 [20].134

UK Biobank AD GWAS dataset135

The UK Biobank is a large national and interna-136

tional health resource, which could be used to identify137

the causes of many complex diseases in middle aged138

and older individuals (http://www.ukbiobank.ac.uk)139

[26]. A total of 502,536 community-dwelling individ-140

uals aged between 37 and 73 years were recruited in141

the United Kingdom between 2006 and 2010 [26].142

The proportion of women was 56% and the aver-143

age age was 56 (SD 8) in both women and men144

[26]. Here, we selected a large GWAS of AD-by-145

proxy by analyzing 314,278 participants from the UK146

Biobank including 27,696 maternal cases and 14,338147

paternal cases [19]. In this GWAS dataset, a proxy148

phenotype for AD case-control status was assessed149

via self-report [19]. Participants were asked to report150

“Has/did your father or mother ever suffer from151

Alzheimer’s disease/dementia?” Participants whose152

parents were aged less than 60 years, dead before153

reaching age 60 years, or without age information,154

were excluded [19].155

Pleiotropy analysis156

To meet MR assumptions, we performed a compre-157

hensive pleiotropy analysis to assure that the vitamin158

D genetic variants affect AD risk not through biolog-159

ical pathways independent of vitamin D levels. For160

the known AD risk factors, we manually evaluated the161

association of vitamin D variants with the leading AD162

risk factors including low levels of education, midlife163

hearing loss, physical inactivity, high blood pressure164

(hypertension), type 2 diabetes, obesity, smoking,165

depression, and social isolation [27]. The significance166

threshold for the association of these six vitamin D167

variants with known confounders is a Bonferroni cor- 168

rected significance threshold p < 0.05/6 = 0.00833. 169

Here, we provided more detailed information about 170

the manual pleiotropy analysis in the Supplementary 171

Methods. For the unknown confounders, we selected 172

two statistical methods including MR-Egger inter- 173

cept test to assess the presence of potential pleiotropy 174

[28], and Mendelian randomization pleiotropy resid- 175

ual sum and outlier (MR-PRESSO) test to identify 176

the horizontal pleiotropic outliers [29]. Here, we pro- 177

vided more detailed information about the MR-Egger 178

intercept test method in the Supplementary Methods. 179

The threshold of statistical significance for evidence 180

of pleiotropy is p < 0.05. 181

Mendelian randomization analysis 182

We first adjusted the effect alleles of six vitamin 183

D genetic variants to be associated with increased 184

vitamin D levels in Table 1. We then transferred and 185

further aligned the effect alleles of these six genetic 186

variants in diagnosed AD and self-report AD-by- 187

proxy GWAS datasets to be consistent with the effect 188

alleles of these six genetic variants in the vitamin 189

D GWAS dataset. In these six vitamin D genetic 190

variants, rs8018720 (G/C, G with the minor allele fre- 191

quency (MAF) = 0.18) is an ambiguous palindromic 192

variant (i.e., with alleles either A/T or C/G). Hence, 193

we selected its proxy rs2144530 (C/T, C with the 194

MAF = 0.18), which showed high linkage disequi- 195

librium with rs8018720 (r2 = 1 and D′ = 1) using the 196

HaploReg v4.1 based on the linkage disequilibrium 197

information in 1000 Genomes Project (CEU) [30]. 198

Here, suppose we have successfully extracted 199

the summary results including beta coefficients and 200

their standard errors about the associations of each 201

genetic variant Gj (j = 1,. . . ,6) with vitamin D lev- 202

els (β̂Xj, se(β̂Xj)) and AD (β̂Yj, se(β̂Yj)). For a given 203

vitamin D genetic variant, the causal effect of vita- 204

min D levels on AD can be consistently estimated 205

http://www.ukbiobank.ac.uk
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as a simple ratio of association estimate θ̂j = β̂Yj

β̂Xj
206

and its approximate variance vj = se(β̂Yj)2

β̂2
Xj

. Here, we207

selected the inverse-variance weighted meta-analysis208

(IVW) as the main analysis to combined the variant-209

specific estimates to get the overall estimate [22].210

In addition, we selected other two sensitivity anal-211

ysis methods including weighted median regression212

and MR-PRESSO [29], which could examine the213

robustness of the estimate with each other. Here, we214

provided more detailed information about the IVW215

and weighted median regression methods in the Sup-216

plementary Methods.217

Meanwhile, we conducted a leave-one-out permu-218

tation analysis by removing each genetic variant and219

recalculating the overall effect estimate, which could220

evaluate the influence of single genetic variant on the221

estimate. The odds ratio (OR) as well as 95% confi-222

dence interval (CI) of AD corresponds to about each223

genetically determined standard deviation (SD) (25224

nmol/L) increase in natural-log transformed 25OHD225

levels. All analyses were conducted using the R pack-226

age ‘MendelianRandomization’ [31]. The threshold227

of statistical significance for the potential genetic228

association between vitamin D levels and AD risk229

was p < 0.05.230

Power analysis231

The proportion of vitamin D variance explained by232

the six vitamin D genetic variants could be estimated233

by R2. It is estimated that these six vitamin D genetic234

variants could explain about 2.84% of the 25OHD235

variance (R2) [24]. The strength of the six vitamin236

D genetic variants could be evaluated using the237

first-stage F-statistic. F > 10 could avoid bias in MR238

studies [32]. Here, we calculated the F-statistic and239

statistical power to estimate the minimum detectable240

magnitudes of association using the web-based tool241

mRnd (https://cnsgenomics.shinyapps.io/mRnd/)242

and a two-sided type-I error rate � = 0.05 [33].243

RESULTS244

AD summary statistics245

Using the six vitamin D genetic variants, we246

extracted their corresponding AD and AD-by-proxy247

summary statistics in the IGAP and UK Biobank248

GWAS datasets, respectively, as provided in Supple-249

mentary Table 1 and Supplementary Table 2.250

Pleiotropy analysis 251

The manual pleiotropy analysis showed that 252

none of these six vitamin D genetic variants was 253

significantly associated with known confounders 254

at the Bonferroni corrected significance threshold 255

(p < 0.05/6 = 0.00833). More detailed results are pro- 256

vided in Supplementary Table 3. MR-Egger intercept 257

test showed no significant pleiotropy in the IGAP 258

GWAS dataset (intercept = –0.001, and p = 0.927) and 259

UK Biobank GWAS dataset (intercept = –0.012, and 260

p = 0.086). In addition, MR-PRESSO test identified 261

no horizontal pleiotropic outliers. 262

Mendelian randomization analysis 263

In the IGAP GWAS dataset, IVW showed that 264

the genetically increased 25OHD levels (per 1 265

SD increase) were significantly associated with 266

the reduced AD (OR = 0.62, 95% CI: 0.46–0.84, 267

p = 0.002). Interestingly, two sensitivity analysis 268

methods support the significant association of genet- 269

ically increased 25OHD levels with the reduced AD 270

with p < 0.05. The estimates from both sensitivity 271

analysis methods were consistent with the IVW esti- 272

mate in terms of direction and magnitude including 273

weighted median (OR = 0.64, 95% CI: 0.46–0.89, 274

p = 0.007) and MR-PRESSO (OR = 0.62, 95% CI: 275

0.51–0.75, p = 0.0047). Figure 1 shows individual 276

genetic estimates from each of the 6 genetic variants 277

in the IGAP GWAS dataset. 278

In the UK Biobank GWAS dataset, all these three 279

methods showed suggestive effect of 25OHD levels 280

on AD risk. The estimates are similar with those from 281

the IGAP in terms of direction. However, the 95% CI 282

included the null including IVW (OR = 0.88, 95% CI: 283

0.73–1.06, p = 0.19), weighted median (OR = 0.94, 284

95% CI: 0.76–1.14, p = 0.51), and MR-PRESSO 285

(OR = 0.88, 95% CI: 0.74–1.06, p = 0.25). Figure 2 286

shows individual genetic estimates from each of the 287

6 genetic variants in the UK Biobank GWAS dataset. 288

In both the IGAP and UK Biobank GWAS 289

datasets, the leave-one-out permutation analysis fur- 290

ther showed that the direction and precision of the 291

estimates between 25OHD levels and AD remained 292

largely unchanged using all these three methods 293

(Table 2). All these findings suggest that our results 294

are robust. 295

Power analysis 296

In the IGAP GWAS dataset, the first-stage F- 297

statistic was 1869.57 > 10. Our study had 80% power 298
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Fig. 1. Individual genetic estimates from each of the 6 genetic variants using the IGAP GWAS dataset.

Fig. 2. Individual genetic estimates from each of the 6 genetic variants using the UK Biobank GWAS dataset.

Table 2
Leave-one-out permutation analysis of the association between 25OHD levels and AD in the IGAP and UK Biobank datasets

Dataset Excluded IVW Weighted median MR-PRESSO
SNP OR 95% CI p OR 95% CI p OR 95% CI p

IGAP rs3755967 0.62 0.36–1.06 0.08 0.71 0.37–1.35 0.30 0.62 0.42–0.91 0.07
IGAP rs12785878 0.62 0.45–0.84 2.00E-03 0.64 0.45–0.89 8.00E-03 0.62 0.49–0.77 1.29E-02
IGAP rs10741657 0.61 0.45–0.84 2.00E-03 0.63 0.45–0.88 7.00E-03 0.61 0.49–0.76 1.16E-02
IGAP rs17216707 0.61 0.45–0.83 1.00E-03 0.64 0.46–0.88 7.00E-03 0.61 0.50–0.75 9.17E-03
IGAP rs10745742 0.63 0.46–0.84 2.00E-03 0.64 0.46–0.89 8.00E-03 0.63 0.51–0.77 1.24E-02
IGAP rs8018720 0.65 0.48–0.88 5.00E-03 0.64 0.46–0.89 9.00E-03 0.65 0.58–0.72 1.27E-03
UK Biobank rs3755967 0.77 0.55–1.08 0.13 0.87 0.57–1.32 0.50 0.77 0.55–1.08 0.20
UK Biobank rs12785878 0.87 0.71–1.07 0.19 0.93 0.76–1.15 0.51 0.87 0.71–1.07 0.26
UK Biobank rs10741657 0.88 0.71–1.09 0.25 0.93 0.75–1.14 0.47 0.88 0.71–1.09 0.31
UK Biobank rs17216707 0.90 0.75–1.09 0.28 0.94 0.76–1.15 0.52 0.90 0.76–1.07 0.30
UK Biobank rs10745742 0.90 0.75–1.09 0.29 0.94 0.76–1.15 0.52 0.90 0.78–1.06 0.27
UK Biobank rs8018720 0.90 0.74–1.10 0.31 0.94 0.76–1.15 0.53 0.90 0.74–1.10 0.36

IGAP, International Genomics of Alzheimer’s Project; IVW, inverse-variance weighted meta-analysis; MR-PRESSO, Mendelian random-
ization pleiotropy residual sum and outlier; OR, odds ratio; CI, confidence interval.

to detect an OR of 0.87 or lower per SD (25299

nmol/L) increase in circulating 25OHD levels for AD,300

which are comparable with effect size that have been301

observed in observational studies relating circulating302

25OHD levels to risk of AD with OR = 0.80 [11],303

and OR = 0.69 [12]. The N required for 80% power 304

is 6135. Interestingly, the power is 89% to detect the 305

genetic association between increased 25OHD lev- 306

els and reduced AD risk with OR = 0.62. In the UK 307

Biobank GWAS dataset, the first-stage F-statistic was 308
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9187.39 > 10. Our study had 80% power to detect OR309

of 0.91 or lower per SD (25 nmol/L) increase in circu-310

lating 25OHD levels for AD. The N required for 80%311

power is 160,101. Interestingly, the power is 95%312

to detect the genetic association between increased313

25OHD levels and reduced AD risk with OR = 0.88.314

DISCUSSION315

Until now, there has been an increased research316

interest for observational studies, genetic association317

studies, and randomized controlled trials exploring318

the impact of vitamin D intake (diet and supple-319

ments) on AD, due to its roles beyond bone health320

and calcium homeostasis [8]. Observational studies321

have reported that vitamin D deficiency is associated322

with an increased risk of AD [8–12]. However, ran-323

domized controlled trials have not provided strong324

evidence that vitamin D supplementation could325

improve cognitive outcomes [9]. Evidence shows that326

vitamin D supplementation may improve cognitive327

outcomes in individuals aged 60 years and over [9].328

Until now, it remains unclear whether there is a causal329

association between increased vitamin D levels and330

reduced AD risk in individuals aged 60 years and331

over. Hence, we performed a MR study. Our main332

analysis using IVW method showed that genetically333

increased 25OHD levels were significantly associ-334

ated with reduced AD risk individuals aged 60 years335

and over. Importantly, the estimates from other two336

sensitivity analysis methods were consistent with the337

IVW estimate in terms of direction and magnitude.338

A leave-one-out permutation further suggested that339

these estimates were robust.340

Comparison with randomized controlled trials341

In 2004, Dhesi et al. selected 139 ambulatory sub-342

jects with vitamin D insufficiency (aged 65 years343

and over), and found that 25OHD levels in the treat-344

ment group increased significantly after 6 months345

post-intervention [34]. Importantly, vitamin D sup-346

plementation could improve functional performance,347

reaction time and balance [34]. In 2011, Stein et al.348

first performed a pilot study of 13 AD individuals349

aged > 60 with median Folstein Mini-Mental State350

Examination (MMSE) score 21.5 [35]. These 13 AD351

cases were treated with open label 3000 IU vita-352

min D2 tablets for 8 weeks, with dose adjustments353

to maintain 25OHD 135–160 nM [35]. Their results354

showed that the median 25OHD levels increased from355

66 to 140 nM [35]. Median baseline AD assess-356

ment scale-cognitive subscale (ADAS-cog) was 25 357

and median improvement in ADAS-cog score was 358

6.0 points [35]. The Disability Assessment in Demen- 359

tia (DAD) score increased in 11 out of 13, which 360

indicated less disability [35]. In 2011, Dean et al. 361

conducted a randomized controlled trial to investi- 362

gate the effects of vitamin D supplementation on 363

cognitive and emotional functioning in 128 young 364

adults with the mean age of 21.8 years including 365

63 individuals in treatment group and 65 individ- 366

uals in placebo group for 6 weeks [36]. Their 367

results showed no significant changes in working 368

memory, response inhibition, cognitive flexibility, 369

hallucination-proneness, psychotic-like experiences, 370

and ratings of depression, anxiety, or anger [36]. 371

In brief, randomized controlled trials have pro- 372

vided evidence that vitamin D supplementation could 373

improve cognition in individuals aged 60 years and 374

over, but not in young adults. Hence, our find- 375

ings are consistent with those from randomized 376

controlled trials. 377

Comparison with Mendelian randomization 378

studies 379

Until now, MR studies have been conducted to test 380

whether genetically vitamin D levels are associated 381

with AD [15–17]. There are three main differences 382

between our current study and previous studies. First, 383

previous MR studies selected four genetic variants 384

including rs2282679, rs12785878, rs10741657, and 385

rs6013897 [15, 16]. The effect sizes about these 386

four genetic variants on 25OHD levels were esti- 387

mated in the Canadian Multicentre Osteoporosis 388

Study (N = 2,347) [15, 16]. Hence, compared with 389

2,347 samples, the effect of each variant on 25OHD 390

levels from 79,366 individuals will be more accurate, 391

as we used in the current study [24]. Second, previ- 392

ous MR studies only selected the AD GWAS dataset 393

from the IGAP including 17,008 cases and 37,154 394

controls without any replication dataset [15–17]. 395

Here, we selected the IGAP GWAS dataset including 396

21,982 cases and 41,944 controls as the discovery 397

dataset, and the UK Biobank dataset as the repli- 398

cation dataset. Third, previous studies reported that 399

genetically vitamin D levels were associated with 400

reduced risk of AD, but did not highlight the possible 401

age threshold. Here, we confirmed the age thresh- 402

old that genetically vitamin D levels could reduce 403

the risk of AD in individuals aged 60 years and 404

over [9]. 405
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Strengths and limitations406

This MR study may have several strengths. First,407

we selected a large-scale vitamin D GWAS dataset408

(N = 79,366), and two large-scale AD GWAS datasets409

from the IGAP (N = 63,926) and UK Biobank410

(N = 314,278). Second, both the vitamin D and AD411

GWAS datasets include subjects of European descent,412

which may reduce the influence on the potential asso-413

ciation caused by the population stratification. Third,414

we selected six independent genetic variants as the415

instruments, which may reduce the influence of link-416

age disequilibrium. Fourth, we selected multiple MR417

methods, which may examine the robustness of the418

estimate with each other. Fifth, we performed both419

manual and statistical pleiotropy analyses, which may420

reduce the risk of pleiotropy.421

Meanwhile, this MR study may also have some422

limitations. First, we could not completely rule out423

additional confounders. Until now, it is almost impos-424

sible to fully rule out pleiotropy present in any MR425

study [16, 23, 37]. Second, the causal association426

between vitamin D level and AD risk may differ427

across different ancestries. Hence, it should be further428

evaluated in other ancestries. Third, leave-one-out429

permutation analysis showed that none of these six430

genetic variants could largely change the direction431

and precision of the estimates between 25OHD levels432

and AD (Table 2). However, GC rs3755967 variant433

could affect the significance, which indicates that434

vitamin D-binding protein (DBP) (encoded by GC)435

may have distinct effects on AD risk [15]. Hence,436

future studies are required to evaluate the effect of437

DBP on AD risk. Fourth, we observed significant438

association in the IGAP, but not in the UK Biobank,439

which indicates the difference between clinically440

diagnosed AD and self-report AD-by-proxy [19].441

Conclusions442

Until now, many clinical trials of therapies for443

AD have failed, especially the double-blind, placebo-444

controlled, phase III trial involving patients with mild445

dementia due to AD [38, 39]. Meanwhile, grow-446

ing evidence shows that vitamin D is involved the447

development of AD and cognitive decline. Here, we448

demonstrate that there is a direct causal association449

between genetically increased vitamin D levels and450

AD risk in people of European descent aged 60 years451

and over. Hence, our findings in combination with452

previous literatures indicate that maintaining ade-453

quate vitamin D status in older people especially454

aged 60 years and over, may contribute to slow down 455

cognitive decline and to forestall AD. Long-term ran- 456

domized controlled trials are required to test whether 457

vitamin D supplementation may prevent AD in older 458

people especially those aged 60 years and may be 459

recommended as preventive agents. 460
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