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Abstract
Patients with respiratory diseases such as cystic fibrosis, chronic obstructive pulmonary disease, or asthma often experience 
an acute worsening of respiratory symptoms, termed exacerbations. Although the course of exacerbations is disease specific, 
they are mostly triggered by a respiratory infection. Exacerbations often require hospitalization and are an important cause 
of mortality. Treatments of exacerbations aim to minimize the negative impact and to prevent subsequent events. Despite 
many existing therapy options, many patients do not benefit from therapy and suffer from recurrent events. Vitamin D defi-
ciency is a worldwide problem and is extremely prevalent in these patients. Vitamin D, known for its calcemic effects, also 
has immunomodulatory and anti-infectious actions and can therefore be a possible agent to treat or prevent exacerbations. 
This review will focus on vitamin D as a potential candidate to treat or prevent exacerbations in CF, COPD, and asthma.
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Pulmonary Exacerbations

Chronic respiratory diseases such as cystic fibrosis (CF), 
chronic obstructive pulmonary disease (COPD), and asthma 
are generally characterized as inflammatory airway diseases. 
All three are heterogeneous in both progression and under-
lying pathology. However, they share a common feature 
namely acute exacerbations of the disease that have dramatic 
effects on the health and well-being of the patients. Exacer-
bations often lead to frequent and prolonged hospital stays, 
rapid disease worsening eventually leading to increased 
mortality [1]. Definitions of acute exacerbations of chronic 
respiratory diseases vary according to the respiratory disease 
and exist based upon clinical findings. For cystic fibrosis 
(CF), the EuroCFCare Working group has recommended 
to use modified Fuchs criteria to define exacerbations of 
CF which include the need for additional antibiotic therapy 
and a recent change of at least two of the following crite-
ria: change in sputum volume or color, increased cough, 
increased fatigue, malaise or anorexia, decrease in lung 
function by 10% or more, and increased dyspnea [2, 3]. The 

Global Alliance of obstructive lung disease defines COPD 
exacerbations as an acute event characterized by worsening 
of the patient’s respiratory symptoms that is beyond normal 
day-to-day variations and leads to a change in medication 
[4]. The Global Initiative for Asthma defines exacerbations 
as an episode of progressive increase in shortness of breath, 
cough, wheezing, or chest tightness (or a combination), 
accompanied by decreases in lung function [5]. However, in 
all cases, the definition of exacerbation includes a subjective 
change in symptoms. Air pollution, some specific medica-
tion, smoking, chronic stress, and other triggers have been 
identified to cause exacerbations, but the most important 
trigger for exacerbations are respiratory infections caused 
by viruses or bacteria [3, 6]. Pathogens enter the host by 
airborne transmissions (e.g., droplets or aerosols), repli-
cate in the respiratory tract, and cause clinical worsening of 
symptoms (exacerbations). Common viruses infecting the 
human respiratory tract include the rhinovirus, the influenza 
virus, the respiratory syncytial virus (RSV), the parainflu-
enza virus or the adenovirus [7] but there are many others 
as well. Not only viruses but also bacteria, including Strep-
tococcus Pneumoniae, Moraxella Catarrhalis, Haemophilus 
influenzae and with more sever disease also Staphylococcus 
aureus, and Pseudomonas aeruginosa, can be the cause of a 
respiratory infection [8]. The majority of exacerbations are 
treated with a combined regimen of antibiotics and systemic 
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corticosteroids. Although these acute treatments are proven 
effective, many patients suffer from recurrent events despite 
optimal maintenance therapy. Therefore there is an urgent 
need for alternative strategies to treat or prevent exacerba-
tions. The use of vitamin D as a strategy to reduce the fre-
quency and severity of respiratory infections in respiratory 
diseases is an option that deserves further consideration.

Vitamin D Metabolism and Mechanism 
of Action

Vitamin D is a fat-soluble vitamin essential for life and 
known for its calcemic effects. Vitamin D refers to two 
compounds, vitamin D2 (ergocalciferol) and vitamin D3 
(cholecalciferol). Vitamin D can be obtained from the 
diet or can be produced in the skin [9] (see Figure 1). It 
has been estimated that 80% of vitamin D supply comes 
from the production in the skin [10]. Endogenous vita-
min D3 is produced in the skin from 7-dehydrocholesterol 
through a two-step process in which pre-D3 is first gener-
ated by UV light radiation from the sun, followed by a 
thermo-sensitive but non-catalytic step to form vitamin 
D3 [9]. Once vitamin D is produced in the skin or taken 
up from the diet, it enters the circulation and is bound to 

the vitamin D binding protein (DBP) for transport to the 
liver or other tissues in which it is hydroxylated by one 
or more 25-hydroxylases (CYP2R1, CYP27A1, CYP3A4) 
into 25 hydroxyvitamin D (25(OH)D). The latter is the 
major circulating form of vitamin D and its plasma lev-
els, because of its long half-life (15 days), are routinely 
measured as a marker of vitamin D status. The conver-
sion to 25(OH)D is achieved primarily in the liver but 
can also occur in a variety of other tissues such as breast, 
colon, skin, ovary, lung, etc [11]. This form is, however, 
biologically inactive and must be converted in the kidney 
by 1α-hydroxylase (CYP27B1) to 1,25(OH)2D which is 
the active form of vitamin D. The active form has a much 
shorter half-life (4 hours) and can therefore not be used to 
measure vitamin D status [12]. The activity of CYP27B1 
is critical for the production and maintenance of physi-
ologic levels of circulating 1,25(OH)2D and is therefore 
tightly regulated. Broad studies suggest that the expres-
sion of CYP27B1 may not be restricted to the kidney but 
it is synthesized in other cell types as well (lung, mono-
cytes, macrophages) [13]. In the kidney, the degradation of 
1,25(OH)2D is accomplished via the action of CYP24A1. 
Besides conversion to 1,25(OH)2D by CYP27B1, 25(OH)
D can also be converted to 24,25(OH)2D by hydroxylation 
by CYP24A1in the kidney, leading to secretion into the 

Fig. 1   Metabolism of 1,25(OH)2D (Adapted from Obi et al [122] under the terms of the CC Attributions 3.0 International (CC BY 3.0) license)
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blood. CYP24A1 is reciprocally regulated by 1,25(OH)2D 
itself and by parathyroid hormone (PTH) to sustain sys-
temic levels of 1,25(OH)2D [14] (Figure 1).

The direct, well-controlled, and fast actions of vitamin D 
in the context of calcium homeostasis have been extensively 
described elsewhere [15]. 1,25(OH)2D also exerts genomic 
actions by regulating gene transcription true binding to a 
nuclear Vitamin D receptor (VDR) and forming a heterodi-
mer with the retinoid X receptor (RXR), regulating in this 
way 3% of the human genome [13, 16, 17]. As such, vita-
min D regulates genes that are linked to diverse biological 
processes such as cell proliferation and differentiation, cell 
control, apoptosis, and angiogenesis [18]. Vitamin D exerts 
diverse and extensive effects on the immune system, due to 
the expression of VDR, vitamin D metabolic enzymes, and 
the expression of the enzyme CYP27B1 by most immune 
cells, including macrophages, neutrophils, T cells, B cells, 
and dendritic cells [19, 20]. Also airway epithelial cells as 
well as immune cells in the lung express VDR. Interestingly, 
the expression of CYP27B1 has been detected also in pul-
monary immune cells resulting in local activation of 25(OH)
D in the lung [21]. In contrast to renal 1α-hydroxylation of 
25(OH)D, it has been suggested that CYP27B1 in the lung is 
not depending on a negative feedback control of 1,25(OH)2D 
itself [22] which might result in higher local levels of the 
active compound. It may indicate therefore that vitamin D 
can be used as an agent with immune regulatory actions in 
the lung and therefore be used to prevent or treat respiratory 
infections.

Vitamin D to Prevent or Treat Exacerbations

Vitamin D deficiency is highly prevalent in common respira-
tory diseases such as cystic fibrosis (CF), chronic obstructive 
pulmonary disease (COPD), and asthma [23, 24]. A serum 
level of 25(OH)D < 25 nmol/l has been a traditional cut-
off used for several decades to define vitamin D deficiency 
[25]. In most studies, vitamin D deficiency is defined as 
serum 25(OH)D levels < 20 ng/ml, insufficiency as 25(OH)
D < 30  ng/ml, and sufficiency as 25(OH)D > 30  ng/ml. 
Based on these criteria, vitamin D deficiency is widespread 
across Europe [26] and the world [27] at prevalence rates 
that reach the criteria of a pandemic. Vitamin D status is 
largely determined by the level of skin synthesis and dietary 
intake. Vitamin D synthesized in the skin is dependent on 
UVB exposure and therefore influenced by latitude, skin 
pigmentation, skin coverage, time spent outdoors, and use 
of sunscreen. Dietary vitamin D can be obtained through 
naturally occurring vitamin D2 or D3 in food, dietary supple-
mentation, or food fortification. A number of other factors 
such as adiposity, genetics, age, sex, and specific diseases 
also contribute to variation [28]. Traditional risk groups to 

develop vitamin D deficiency include newborns, pregnant 
women, older persons, and people in diseased states [27, 29]. 
Vitamin D deficiency was shown to be very prevalent in pop-
ulations with chronic lung diseases. Fifty-nine per cent of 
patients with diffuse parenchymal lung diseases undergoing 
evaluation for lung transplant were found to have decreased 
vitamin D levels [30].

The respiratory tract is constantly exposed to the external 
environment and must therefore be well equipped to respond 
to and eliminate pathogens. The activation of pathogen rec-
ognition receptors (PRRs) on the respiratory epithelial cells 
is critical to limit viral or bacterial spread and to activate the 
immune system. Generally, PRR signaling upregulates cell-
autonomous and non-cell-autonomous immune responses to 
infection. Cell-autonomous functions include the secretion 
of anti-microbial peptides by epithelial cells, programmed 
cell death, and other intracellular response pathways. Non-
cell-autonomous processes are more linked to the initia-
tion of the immune system by releasing pro-inflammatory 
mediators, cytokines, and chemokines [31, 32]. Vitamin 
D can interfere with several of these steps involved in the 
elimination of viruses and bacteria and in the activation of 
the immune system (Figure 2). First, vitamin D is involved 
in the regulation of the PRRs which are believed to play a 
crucial role in the proper function of the innate immune 
system. PRRs are expressed by dendritic cells, macrophages, 
monocytes, neutrophils, and epithelial cells. After stimula-
tion of PRRs, a cascade of reactions is initiated that directs 
host defense responses such as production of cytokines and 
anti-microbial peptides (AMPs) [33]. Vitamin D enhances 
the production of AMPs such as cathelicidin and β-defensin 
[34, 35], which serve as a first line of defense against invad-
ing pathogens. Secondly, stimulation of PRRs also leads to 
induction of antigen-presenting cells to initiate the adap-
tive immune system. Vitamin D also modulates the adaptive 
immune system first by attenuating the antigen-presenting 
capacity of Antigen-presenting cells, such as dendritic 
cells and macrophages [7]. Furthermore, vitamin D was 
shown to enhance the phagocytic and chemotactic capac-
ity of macrophages [19, 36] and it acts to suppress T cell-
driven inflammation and enhance the effects of Tregs by 
increased production of anti-inflammatory cytokines (Il-10, 
Il-4, TGFβ) [37]. Also B cells are affected by vitamin D, as 
shown by decreased immunoglobulin production, prolifera-
tion, and differentiation but increased apoptosis [7].

The importance of vitamin D deficiency in respiratory 
infections was emphasized in observational studies that 
consistently reported independent associations between low 
serum concentrations of 25(OH)D and susceptibility to acute 
respiratory infection [38]. Upper respiratory tract infections 
(URI), mostly caused by a rhinoviral infection, are believed 
to be one of the major causes of exacerbations. Serum lev-
els of 25(OH)D were shown to be inversely correlated with 
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upper respiratory tract infections [39]. Also genetic studies 
confirm that polymorphism in the VDR independently asso-
ciates with susceptibility to URI. Finally, in vitro studies in 
epithelial cell lines [40] and in human primary bronchial 
epithelial cells [41, 42] infected with rhinoviruses show that 
vitamin D is able to increase the antiviral defenses most 
likely via an upregulation of cathelicidin. From a mecha-
nistic point of view, it is clear that vitamin D can be an 
important modulator of the host defense against respiratory 
infections by potentiating the clearance of pathogens while 
attenuating the associated inflammatory burst. As such it is 
important to explore vitamin D’s role in the prevention or 
treatment of exacerbations in respiratory diseases. Detailed 
data on CF, COPD, and asthma will be discussed in the next 
paragraphs.

Vitamin D in Cystic Fibrosis

Cystic fibrosis (CF) is a common autosomal recessive dis-
order where a mutation in the CFTR gene results in a dys-
regulation of ion transport across epithelial surfaces leading 
to abnormally thickened mucus on the surface of the lungs. 
Because of the defective mucociliary clearance, bacteria 
cannot be eradicated and survive and proliferate leading to 
chronic bronchial infections. Acute pulmonary exacerbations 
are a very common event in CF patients and are usually 
triggered by respiratory viruses or bacteria. These repeated 
infections might lead to chronic infections and inflamma-
tion of the airways leading to progressive destruction of the 

lungs and respiratory failure [43]. Pulmonary exacerbations 
in CF have a profound impact on the morbidity and quality 
of life of individuals with CF [44]. Therefore efforts should 
be made to improve the management of these events.

Patients with CF often experience nutritional deficits, 
including vitamin D due to poor nutritional uptake, sec-
ondary fat malabsorption, decreased sunlight exposure, 
and impairment in hepatic hydroxylation of vitamin D 
[45, 46]. Vitamin D deficiency is common in patients 
with CF and prevalence ranges from 40 to 90%, depending 
on age and definition of deficiency [45, 47]. Treatment 
guidelines for vitamin D in the CF population only focus 
on optimizing bone health [48] and despite nutritional 
management recommendations, vitamin D deficiency 
can still be present even after supplementation [48, 49]. 
Associations between vitamin D status, lung function, 
and exacerbations are unclear. Indeed, some studies found 
positive associations with levels of vitamin D and lung 
function, as measured by FEV1 [47, 49–54] while others 
found no relationship [55–58]. When we focus on the 
relationship between serum 25(OH)D levels and exacer-
bations in CF, most studies reported that deficient vitamin 
D levels (25(OH)D < 20 ng/ml) are associated with more 
exacerbations [47, 49, 50] and more bacterial coloniza-
tions [59]. Only one large multicenter intervention study 
in CF has been performed trying to prevent exacerba-
tions in CF [60]. In this study, 25,000 IU of vitamin D3 
were given to adults with CF at the time of a pulmonary 
exacerbations, resulting in significant increases in serum 
25(OH)D concentrations remaining for the complete 

Fig. 2   Immunomodulatory actions of 1,25(OH)2D. Arrow down in 
red: inhibiting effects of vitamin D, arrow up in green: activating 
effects of vitamin D. PAMPs: pathogen-associated molecular pat-

terns, PRR: pathogen recognition receptor (adapted from Greiller 
et al [7] under the terms of the CC Attributions 4.0 International (CC 
BY 4.0) license)
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duration of the study. No improvement of the time to 
next exacerbation or the 1-year survival was observed 
and there were no differences in lung function recovery or 
concentration of plasma cathelicidin [60]. These results 
are in contrast with the pilot study performed by the same 
group showing that bolus vitamin D supplementation 
(25,000 IU), improved and maintained vitamin D status 
and improved clinical outcomes [61].

In vitro mechanistic studies in cell lines have shown 
that vitamin D can be converted to its active form when 
topically administered to airway cells [62] while in a 
bronchial epithelial cell line with a CFTR mutation this 
ability was lost [63]. Although this loss was only observed 
in one particular cell line, it may suggest that the ability 
to convert vitamin D to its active form might be less avail-
able in CF airways. Other studies in CF respiratory cell 
lines showed anti-inflammatory and anti-bacterial effects 
after treatment with 1,25(OH)2D in response to bacterial 
stimuli [64, 65]. Furthermore, it was demonstrated that 
vitamin D increased the mRNA expression of cathelicidin 
from primary bronchial epithelial cells collected from CF 
patients with no evidence for an antiviral response follow-
ing a rhinoviral infection [42]. Even though mechanistic 
studies mostly were done in vitro, few studies in human 
suggest that the positive effects of vitamin D on exacerba-
tions in CF are mostly attributed to its immunomodula-
tory properties as reflected by reduced serum IL-6, TNF 
levels [61], and IL-8 levels [66] or reduced serum Ig(G) 
levels [45]. A study on metabolomics on plasma of a 
supplemented CF population revealed that the beneficial 
effects of high-dose vitamin D in hospitalized CF adults 
with an acute pulmonary exacerbation may have occurred 
through a metabolic stabilization of amino acids, lipids, 
and other metabolites [67].

Based on one RCT with vitamin D supplementation in 
CF and the conflicting results in observational trials, it is 
difficult to conclude whether vitamin D can be used as an 
adjunctive therapy for CF exacerbations. Future investiga-
tions are needed to conclude if low-cost supplementation 
with vitamin D can be beneficial in preventing or treating 
exacerbations in the CF population. A difficult issue to 
address in any study in a CF population is the presence 
of many cofounders in this complex disease. Patients are 
diagnosed with the disease already at very young ages 
and it is known that the prevalence of vitamin D defi-
ciency increases with age [47]. Some CF patients have 
poorer compliance to their medications, including vitamin 
D supplements and sicker patients may spend less time 
outdoors and may have less sun exposure or less appetite 
and therefore eat fewer vitamin D containing foods. These 
factors all contribute to the fact that studies that have 
addressed the relationship between vitamin D status and 

pulmonary function or exacerbations in CF show conflict-
ing results.

Vitamin D in COPD and Exacerbations

COPD is characterized by airflow limitation that is not 
fully reversible and is associated with an abnormal inflam-
matory response in the lungs to noxious particles or gases 
[68]. Smoking is the most important risk factor to develop 
COPD and accounts for 95% of COPD cases. COPD is 
complicated by exacerbations that are mostly triggered by 
respiratory viruses or bacteria. Studies have indicated that 
the quality of life and health status of patients are mainly 
determined by the presence and frequency of exacerba-
tions [4]. Indeed, COPD exacerbations have important 
clinical and economic consequences, including lost work 
productivity, increased utilization of healthcare resources, 
temporary or permanent reductions in lung function and 
exercise capacity, hospitalization, and sometimes death 
[69]. Although the precise mechanisms of the onset of 
COPD exacerbations have not been fully clarified, the 
viral/bacterial infection-mediated immune response is 
thought to play a critical role.

Vitamin D deficiency (defined as serum 25 hydroxyvi-
tamin D < 20 ng/ml) has been shown to be highly preva-
lent in COPD patients compared to age-matched healthy 
controls and increased with disease severity [24]. COPD 
patients are at risk for vitamin D deficiency for a variety 
of reasons, including unbalanced diet, absence of outdoor 
activity, and therefore, sun exposure and reduced capacity 
for vitamin D synthesis due to premature aging of the skin 
and smoking, increased vitamin D catabolism by glucocor-
ticoids and lower vitamin D storage capacity [70]. Addi-
tionally, the majority of COPD patients are elderly, known 
to be more vitamin D deficient than the younger popu-
lation. Clear associations have been found between vita-
min D status and COPD. Indeed, meta-analysis reported 
inverse associations between vitamin D levels and COPD 
risk and COPD severity (Zhu 2016). Also epidemiologic 
studies reported a strong relationship between vitamin D 
levels and pulmonary function (FEV1 and FVC) [70–72]. 
In animal studies, vitamin D deficiency was shown to pro-
mote an early lung function decline after cigarette smoke 
[66], suggesting a role for vitamin D in the development 
of COPD. The association between vitamin D serum lev-
els and the frequency of exacerbations is, however, still 
unclear [73]. In the meta-analysis of Zhu et al [74], no 
clear relationship was reported. In fact, two studies showed 
that vitamin D deficiency was related to more frequent 
exacerbations [75, 76], while other studies did not show 
such association [77–81]. Interestingly, polymorphisms in 
the vitamin D binding protein gene might also be related 
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to higher exacerbation frequencies (Ishii 2014), suggest-
ing a relationship between vitamin D and the occurrence 
of exacerbations. Current strategy to treat exacerbations 
in COPD includes long-acting bronchodilators and long-
term use of inhaled corticosteroids or macrolide antibiot-
ics but they are all modestly effective and evidence on the 
preferred drug and optimal treatment duration are lacking 
[82]. An attractive alternative target for intervention stud-
ies in COPD is the vitamin D pathway.

Few RCTs with vitamin D supplementation aimed to 
prevent COPD exacerbations have been performed. A sup-
plementation of 100,000 IU monthly for 1 year, resulting 
in sufficient serum vitamin D levels, showed no effect of 
vitamin D supplementation on the number of exacerba-
tions. However, in a subgroup analysis of patients with 
severe vitamin D deficiency at baseline (25 (OH)D lev-
els < 10 ng/ml), a significant reduction in exacerbations 
was observed [83]. Similar results were observed by 
two other studies [84, 85] and by a recent meta-analysis, 
including all individual patient data, confirming that the 
protective effect of vitamin D supplementation against 
COPD exacerbations is restricted to those with the lowest 
baseline 25(OH)D levels [86]. Two large RCTs are still 
ongoing and might give us more insight into the role of 
vitamin D in exacerbations: Lung VITAL [87] and PRE-
COVID [88]. The ongoing Lung VITAL study is taking 
advantage of a large clinical trial: VITAL, to conduct the 
first major evaluation of the influences of vitamin D sup-
plementation on respiratory exacerbation in a sub-cohort 
enriched for active, symptomatic respiratory disease, over 
a period of 5 years. The PRECOVID study will be the 
first RCT examining the effects of vitamin D supplemen-
tation on exacerbation rate in vitamin D-deficient COPD 
patients. As shown in the meta-analysis of prior studies 
[86], the anticipated effect in this targeted subgroup may 
be huge.

Insights in the mechanisms of vitamin D to treat or pre-
vent COPD exacerbations come from several mechanistic 
studies in vitro. In alveolar macrophages of smokers and 
non-smokers, it was shown that 1,25(OH)2D inhibited 
the release of pro-inflammatory cytokines such as TNFα, 
MCP-1, and IL-6 in response to LPS/IFN-γ stimula-
tion [36]. This was confirmed in a macrophage cell line 
exposed to cigarette smoke extract [36] or to LPS [89, 90]. 
1,25 (OH)2D did not show any effect on the phagocytic 
capacity of these macrophages but it increased the levels 
of cathelicidin [36]. Furthermore, in venous blood sam-
ples, the rate of peripheral blood neutrophilic apoptosis 
in patients with acute exacerbations of COPD was slower 
than in healthy controls and this neutrophilic apoptosis is 
increased after administration of vitamin D through the 
p38MAPK pathway [91]. Taken together, even though in 
a controlled setting of cell culture, these data clearly show 

that vitamin D has potential to interfere with the immune 
reaction in response to a respiratory infection in COPD.

Vitamin D in Asthma Exacerbation

Asthma is a chronic inflammatory disease of the airway, 
which is characterized by airway inflammation, airway 
hyper responsiveness (AHR), mucus hypersecretion, and 
airway remodeling. The latter is irreversible and includes 
airway wall thickening, increased airway muscle mass, and 
subepithelial fibrosis, which restricts the constant airflow. 
Respiratory tract infections are common precipitants of 
acute asthma exacerbations in adults, playing a role in 
about 45–80% of exacerbations. Asthma mortality arises 
primarily during episodes of exacerbations, mostly due to 
viral respiratory infections, but also to exposure to par-
ticulate matter [92].

Many studies have reported high prevalence of vitamin 
D deficiency in asthmatic children, ranging from 50–80% 
worldwide [93, 94]. This was confirmed in a systematic 
review showing that children with asthma have lower 
vitamin D levels than healthy age-matched children [95]. 
Inadequate dietary intake, low use of vitamin D supple-
ments, skin pigmentation, obesity, and low sun exposure 
all increase the risk of vitamin D insufficiency. Whether 
vitamin D intake during pregnancy has an impact on the 
development of childhood asthma is unclear as one meta-
analysis found no significant association between prenatal 
vitamin D status and risk of asthma. However, recently, it 
was suggested that lower maternal vitamin D intake dur-
ing pregnancy is associated with increased risk of children 
wheezing and being diagnosed with asthma in the first 10 
years [96], indicating a role for vitamin D in the develop-
ment of childhood asthma.

Vitamin D deficiency has been linked to an overall 
poor outcome of lung function and symptoms in patients 
with asthma [97–100]. Additionally, it was shown that the 
response to standard corticosteroid therapy was reduced 
in vitamin D-deficient asthmatic patients [101]. Studies 
in asthma also suggest an association between vitamin D 
deficiency and exacerbations [102, 103]. More specifi-
cally, vitamin D deficiency is associated with an increased 
risk for exacerbations [104]. In a 4-year follow-up study, 
Brehm found that vitamin D insufficiency (25(OH)
D < 30 ng/ml) at baseline was associated with increased 
risk of severe asthma exacerbations [105]. The magnitude 
of this association was the greatest in children who were 
vitamin D insufficient and did not receive corticosteroids 
[94]. By contrast, Boonpiyatad et al observed that vitamin 
D deficiency indeed was present in patients with asthma 
exacerbations but could not find a causal relationship 
[106]. Additionally, it was shown that children who were 



Targeting Vitamin D Deficiency to Limit Exacerbations in Respiratory Diseases: Utopia or…

1 3

both vitamin D deficient and living near a major roadway 
were 5 times more likely to experience asthma exacerba-
tions in comparison with children who were vitamin D 
sufficient and living in the same regions of high particulate 
matter [107]. This indicates that vitamin D deficiency rep-
resents an important factor in the development of exacer-
bations during asthma.

Current treatment of asthma exacerbations consists in a 
stepwise approach with increasing doses of medications, 
primarily inhaled corticosteroids (ICS), often in conjunc-
tion with a second controller medication to achieve disease 
control [108]. For most asthma patients, particularly those 
with mild-to-moderate disease, guideline-directed step care 
is effective resulting in symptom control and prevention 
of exacerbations. In severe asthma, however, this stepwise 
approach is not effective resulting in diminished responsive-
ness to treatment and need for alternative treatment strat-
egies. As such, supplementation with vitamin D to treat 
vitamin D insufficiency might be an alternative strategy to 
prevent frequent exacerbations in asthmatic patients.

Indeed, many RCTs of vitamin D supplementation to 
improve asthma control and exacerbations have been com-
pleted and these studies have reported a mixture of posi-
tive and negative results. However, several meta-analyses 
show that vitamin D supplementation significantly reduced 
the rate of severe exacerbations in patients with asthma 
[109–113]. Whether these effects are only observed in 
patients with vitamin D deficiency, as was shown in COPD, 
is less clear since only two studies performed subgroups 
analysis, showing conflicting results [112, 113]. While the 
most recent meta-analysis clearly concluded that vitamin 
D supplementation played a role in reducing the rate of 
exacerbations particularly in patients with vitamin D insuf-
ficiency [113], subgroup analysis using individual patient 
data did not result in such a firm conclusion [112]. Indeed, 
reductions in exacerbation rate were found with vitamin 
D supplementations but only in participants with baseline 
circulating 25(OH)D levels less than 25 nmol/l and not in 
those with higher levels of circulating 25(OH)D (adjusted 
incidence rate ratio was 0.33 (95% CI 0.11–0.98) and 0.77 
(95% CI 0.58–1.03), respectively). However, the p value for 
interaction for this subgroup analysis was not significant 
indicating no definitive evidence that effects of the inter-
vention with vitamin D differed across subgroups of patients 
[112]. Interestingly, most intervention studies are performed 
in adults, while many children are suffering from asthma as 
well. Recent studies report that vitamin D supplementation 
helps in preventing the development of asthma and recurrent 
wheeze in early life, and may also help in the management 
of asthma during childhood [114, 115].

Mechanistic studies in peripheral blood mononu-
clear cells (PBMCs) isolated from patients with severe 
asthma reported an inhibition of the production of Th17 

cytokines (IL-17 and IL-22), important in the pathogenesis 
of asthma, after treatment with 1,25(OH)2D [116]. These 
Th17 cytokines were not inhibited by corticosteroids sug-
gesting a steroid-enhancing property of vitamin D in asth-
matic patients. In PBMCs from patients with severe asthma 
exacerbation and vitamin D deficiency, increased oxidative 
stress and DNA damage were observed compared to vita-
min D-sufficient asthmatic patients with an exacerbation. 
In the same study, vitamin D was shown to down-regulate 
the expression of TNF-α, NFκB, and its phosphorylation in 
an LPS-stimulated airway epithelial cell line suggesting a 
possible mechanism for vitamin D therapy in severe asthma 
exacerbation [117]. Additionally, when asthma patients were 
treated with vitamin D, a reduction of respiratory infections 
was observed, and this effect was related to the increase in 
cathelicidin [118].

As in COPD and in CF, we should be careful in draw-
ing conclusions concerning the role of vitamin D in asthma 
exacerbations. Most intervention studies are performed in 
adults and these results cannot be generalized to children. 
Still little is known about the optimal serum 25(OH)D levels 
to exert beneficial effects on the respiratory system. Addi-
tionally, it was observed that a rapid vitamin D supplemen-
tation (intramuscularly) compared to maintenance dose of 
vitamin D supplementation (orally) for children with low 
levels of vitamin D resulted in short- but not long-term 
reduction in asthma exacerbations [119].

Considerations and Future Perspectives

The relationship between Vitamin D and the respiratory sys-
tem remains inconclusive. Even though most exacerbations 
are triggered by a respiratory infection, different pathways 
or mechanisms are activated with respect to the respiratory 
disease. Larger clinical trials and more comparable data are 
needed to draw conclusions on vitamin D’s association with 
the risk of exacerbations. It is possible that failure to dem-
onstrate an association between vitamin D deficiency and 
increased exacerbation risk in some studies or populations 
may be related to the low prevalence of participants with low 
baseline vitamin D levels. Indeed, mainly in COPD exacer-
bations, it was shown that actually only the severely deficient 
patients benefit from vitamin D supplementation. Moreover, 
even though the relationship between low serum levels of 
vitamin D and exacerbations remains disputable, vitamin D 
supplementation may still exert anti-infectious effects. Irre-
spective of the reasons for the discrepancy between different 
studies, some important issues should be taken into account 
when developing new clinical studies.

Currently, it is not known if aiming at sufficient serum 
levels of vitamin D is a good approach to benefit from the 
anti-inflammatory and anti-bacterial actions of vitamin D. 
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And if so, which serum levels can be considered as “benefi-
cial”? Can we assume that these levels should be similar in 
all populations and in all respiratory diseases? Additionally, 
can we assume that all populations, healthy and patients, 
need similar oral doses to reach certain serum levels? For 
example, CF patients seem to require much higher doses to 
achieve similar vitamin D serum levels than patients with 
other respiratory diseases. Are circulating levels of 25(OH)
D the best way to measure vitamin D status? 25(OH)D lev-
els represent the reservoir available for the production of 
active 1,25(OH)2D produced in the kidney by an enzymatic 
conversion. It is unclear how these serum levels relate to 
local tissue concentrations. Therefore, there are several path-
ways that can influence an individual’s ability to produce an 
adequate amount of locally active vitamin D irrespective of 
its serum levels.

Little is known about the total dose and dose interval 
needed for the extra-skeletal effects of vitamin D. We specu-
late that the current dosing regimens and levels in interven-
tional trials might be insufficient to fully benefit the poten-
tial actions of vitamin D. Interestingly, individual patient 
data analysis even revealed that daily or weekly dosing of 
vitamin D without additional bolus doses protected against 
acute respiratory infection, whereas regimens containing 
large boluses did not suggest that daily or weekly vitamin D 
administration would be a better strategy to protect against 
URI. This might be due to the potential adverse effects of 
fluctuations in circulating 25(OH)D concentrations, which 
are observed after bolus dosing [120]. In recent years, inter-
est in the tolerance-inducing potential of vitamin D to modu-
late immune cells has grown, but one of the major obstacles 
for the use of active vitamin D is the need for supra-physi-
ological doses to modulate immune responses, risking side 
effects such as hypercalcemia, hypercalciuria, and kidney 
stones. In order to avoid adverse side effects of high serum 
levels of vitamin D, much effort has been made to develop 
vitamin D analogs that still exert the beneficial effects of 
vitamin D without the hypercalcemic side effects. Despite 
the efforts made to develop different analogs, not many, 
however, progressed beyond the preclinical stage [121]. 
Alternatively, to avoid side effects of vitamin D supplemen-
tation and to maximize the desired effectiveness, treatment 
locally into the lung as alternative routes of administration of 
vitamin D rather than peroral must be considered. Develop-
ment of a drug for inhaled administration is often a common 
strategy to achieve high efficiency locally in the lungs and 
reduce side effects. However ,in the case of vitamin D, the 
challenge is to find a vehicle that allows effective delivery of 
the lipophilic agent via inhalation with improved bioavail-
ability and sustained release of vitamin D.

In conclusion, it is important to diagnose, prevent, and 
treat vitamin D deficiency, since it is an epidemic all over 
the world, not only in patients with respiratory diseases. 

Vitamin D supplementation is a simple low-cost treatment 
that may help minimizing exacerbations in view of its immu-
nomodulatory and anti-bacterial properties. However, efforts 
should be made to develop adequate strategies with vitamin 
D adapted for lung exacerbations rather than using existing 
treatment modalities with vitamin D supplementation.
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