IFN signature (r=0.66, p<0.001 and r=0.46, p<0.001 respectively). ROC-curve analysis revealed a better performance of galectin-9 (AUC 0.86) than CXCL10 (AUC 0.78) or traditional serological biomarkers for SLE (AUC <0.75) to detect an IFN signature. The expression of galectin-9 was increased in both pDC and mDC in SLE and APS, in particular in IFN-high patients. *In vitro*, IFN α upregulated galectin-9 expression in pDC and mDC.

Conclusion Galectin-9 is produced by dendritic cells in SLE and APS upon activation by IFN α and serves as an easily measurable biomarker that outclasses CXCL10 or traditional measures of disease activity to detect an IFN signature in patients with SLE and APS.

S5A:6 ANTI-CARBAMYLATED PROTEINS ANTIBODIES IN SLE PATIENTS WITH JOINT INVOLVEMENT: A POSSIBLE NEW BIOMARKER FOR EROSIVE DAMAGE

F Ceccarelli, C Perricone, L Massaro, T Colasanti, E Cipriano, M Pendolino, F Natalucci, G Capalbo, R Mancini, FR Spinelli, C Alessandri, G Valesini, F Conti. *Lupus Clinic, Reumatologia, Dipartimento Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Italy*

10.1136/lupus-2018-abstract.29

Purpose The concept of non-erosive arthritis in Systemic Lupus Erythematosus (SLE) changed during the last years, thanks to more sensitive imaging techniques, such as ultrasonography (US), allowing the identification of erosive damage in up to 47% of patients. The predictive role of Rheumatoid Arthritis (RA)-specific auto antibodies has been investigated. In particular, anti-citrullinated peptide antibodies (ACPA) have been identified in about 50% of SLE patients with x-Ray detected erosive arthritis. More recently, anti-carbamylated proteins antibodies (anti-CarP) have been demonstrated in seronegative RA, with a significant association with erosive damage. In the present cross-sectional study, we assessed the association between anti-CarP and erosive damage in a cohort of SLE patients with joint involvement.

Methods We evaluated 152 SLE patients (1997 ACR criteria; M/F 11/141, mean \pm SD age 46.4 \pm 11.3 years, mean \pm SD disease duration 144.9 \pm 110.5 months) with joint involvement. Clinical and laboratory data were collected in a

standardised computerised electronically filled form. All patients underwent blood draws to detect Rheumatoid Factor (RF) and ACPA, by using commercial ELISA kits, and anti-CarP by home-made ELISA (results were expressed in arbi-trary units (AU)/ml and values above 340 IU/ml were considered positive). US was performed to assess the bone surfaces of metacarpophalangeal and proximal interphalangeal. At each joint, according with OMERACT definition, the presence of erosions was registered with a dichotomous value (0/1), obtaining a total score, ranging from 0 to 20.

Results The anti-CarP prevalence was 28.3%, similar to RF (27.6%) and significantly higher to ACPA (11.2%, p=0.003). The mean \pm SD titer of anti-CarP was 890.5 \pm 794.9 IU/ml. Thirty-nine patients (25.6%) showed an US-detected erosive arthritis: all the patients referred at least one episode of clinical synovitis. Erosive arthritis was associated with anti-CarP (p=0.004) and ACPA (p=0.0008). A correlation between anti-CarP titer and US-erosive score was observed (r=0.2, p=0.01). Of note, anti-CarP were identified in 24.5% of double negative (ACPA-/RF-) patients, with erosive damage in 25% of them.

Conclusions We identified a significant association between anti-CarP and US-detected erosive damage in SLE-related arthritis, in terms of frequency and severity. Our results suggest that anti-CarP could be considered as a candidate biomarker of severity in SLE patients with joint involvement.

S5d – Supportive therapies

S5D:4 LOW VITAMIN D IS ASSOCIATED WITH THROMBOSIS IN SYSTEMIC LUPUS ERYTHEMATOSUS

M Petri, W Fu, D Goldman. Johns Hopkins University School of Medicine, Baltimore, MD, USA

10.1136/lupus-2018-abstract.30

Background/purpose Low vitamin D is common in systemic lupus erythematosus (SLE). It is also found in antiphospholipid syndrome. Vitamin D has effects on tissue factor, PAI-1, thrombomodulin and platelet aggregation that suggest it has an anti-thrombotic role. We asked whether low vitamin D was associated with thrombosis in SLE, adjusting for lupus anticoagulant.

Abstract S5D:4 Table 1	L	Associations	of firs	t vitamin	D	measurement with thrombosis
------------------------	---	--------------	---------	-----------	---	-----------------------------

r	Desitive for These	ale atta Essant	No. Theory has the French				
	Positive for Thrombotic Event		No Thrombotic Event				
	Mean (SD)	N (%)	Mean (SD)	N (%)	P-value		
Any Thrombotic Event							
Vitamin D (ng/ml) (Mean/SD)	27.6(15.1)		30.6(14.6)		0.0008		
Vitamin D < 40 ng/ml (N/ %)		299(80.4)		759(75.4)	0.064		
Stroke							
Vitamin D (ng/ml) (Mean/SD)	28.9(15.2)		29.9(14.7)		0.5408		
Vitamin D < 40 ng/ml (N/ %)		79(75.2)		988(76.9)	0.7914		
Myocardial Infarction (MI)							
	Mean (SD)	N (%)	Mean (SD)	N (%)			
Vitamin D (ng/ml) (Mean/SD)	30.2(16.9)		29.8(14.7)		0.883		
Vitamin D < 40 ng/ml (N/ %)		35(70)		1032(77)	0.3258		
DVT							
	Mean (SD)	N (%)	Mean (SD)	N (%)			
Vitamin D (ng/ml) (Mean/SD)	25.9(13.4)		30.4(14.9)		< 0.0001		
Vitamin D < 40 ng/ml (N/ %)		171(87.2)		895(75)	0.0002		

We next adjusted for race, age, sex and lupus anticoagulant. Low vitamin D remained associated with DVT

	Lupus Sci Med: first pub
US)RS, ICS	olished as 10.1
D-Pérez, Calvo- niversity , Spain; , Sofia, Hospital Dital Dr Hospital	136/lupus-2018-abstract.30 c
ology s the lation SLE	on 21 March 201
isode ariate	18. Downloaded from http://lupus.bmj.com/ on October 24, 2019 by guest. Protected by copyrigh

Abstract S5D:4 Table 2	Summary	of adjusted	odds ratio	for low vit	amin D (<40 ng/ml
	Sammary	or adjusted	ouus ruuo	101 1011 11	

Dependent Variables	Unadjusted OR (95% CI)	Adjusted OR (95% CI)
Any Thrombosis	1.33 (0.99,1.79)	1.36 (0.99,1.86)
Stroke	0.91 (0.58,1.45)	0.92 (0.57,1.48)
MI	0.7 (0.38,1.29)	0.8 (0.42,1.53)
DVT	2.28 (1.47,3.54)	2.31 (1.47,3.65)

Methods A total of 1,392 SLE patients were included in the analysis. At the first visit when vitamin D was measured, 76.7% had levels of 25-hydroxyvitamin D<40 ng/mL. The SLE patients were: 92% female, mean age 42.9 years, and ethnicity 50% Caucasian, 41% African American. 27% patients had a history of thrombosis; 7% stroke, 4% MI and 14% DVT.

Results Vitamin D, measured either as a continuous variable or as 'low' (<40 ng/mL) vs normal, was associated with any thrombosis and with DVT.

We next looked prospectively: this analysis excluded thrombotic events before the first vitamin D measurement. It allowed for vitamin D to be a time-varying variable, as replacement therapy was given if it was low. After adjustment for race, age and sex, the adjusted hazard ratio remained significant for any thrombosis: 1.75 (1.04,2.92).

Conclusion Low vitamin D was significantly associated with any thrombosis and with DVT (even after adjustment for lupus anticoagulant). In prospective models it remained significantly associated with any thrombosis. As supplementation with vitamin D was proven to reduce thrombosis in an oncology randomised clinical trial, vitamin D replacement should become routine in SLE patients at risk for thrombosis.

S5D:5 BACTEREMIA IN SYSTEMIC LUPUS ERYTHEMATOS PATIENTS FROM RELESSER REGISTRY: RISK FACTO CLINICAL AND MICROBIOLOGICAL CHARACTERIST AND OUTCOMES

¹A Lois Iglesias, ²JM Pego-Reigosa, ³FJ López-Longo, ⁴M Galindo, ²V del Campo ⁵J Torres-Cisneros, ⁶E Uriarte, ⁷P Vela, ⁸E Tomero, ⁹C Erausguin, ⁹A Naranjo, ¹⁰J Alén, ¹¹A Fdez-Nebro, ⁹I Rúa-Figueroa. ¹University Hospital A Coruña, Spain; ²University Hospital A Coruña, ²University Hospital A Coruña, ²University Hospital A Coruña, ²University Hospital A Coruña, ²University Hospital A Coruña Hospital Meixoeiro-EOXI Vigo, Spain; ³University Hospital Gregorio Marañon, Madrid, ⁴University Hospital 12 de Octubre, Madrid, Spain; ⁵University Hospital Reina Córdoba, Spain; ⁶University Hospital Donosti, San Sebastian, Spain; ⁷University H Alicante, Spain; ⁸University Hospital La Princesa, Madrid, Spain; ⁹University Hosp Negrin, Gran Canaria, Spain; ¹⁰University Hospital Alava, Spain; ¹¹University H Malaga, Spain

10.1136/lupus-2018-abstract.31

Background In RELESSER (Spanish Society of Rheumate Systemic Lupus Erythematosus-SLE-Registry) bacteremia is main cause of death by infection. The available inform about this severe infection in SLE patients is scarce.

Methods Retrospective nested case-control study of patients (ACR97 criteria) with at least a bacteremic epi and random controls from RELESSER. Descriptive, biv and multivariate analysis (logistic regression).

Abstract S5D:5 Table	1		
		OR	p
	SELENA-SLEDAI	1.10 (1.06-1.14)	<0.001
	SLICC/ACR DI	1.27 (1.16-1.38)	<0.001
	Elevated creatinine	2.08 (1.66-2.61)	<0.001
	Active nephritis	3.52 (1.94-6.37)	=0.001
	Hepatitis C	4.82 (1.89-12.27)	=0.002
	Diabetes	3.87 (2.06-7.26)	=0.0001
	Cancer	3.60 (2.01-6.42)	=0.000
	Corticosteroids (Prednisone >10mg/day)	1.81 (1.07-3.09)	=0.023
	Immunosuppressors	11.44 (7.31-17.92)	=0.000
	Antimalarials	0.39 (0.25-0.61)	=0.000
	Renal transplant	5.64 (2.63-12.1)	=0.000
	Dialysis	0.39 (0.25-0.61)	=0.000