Vitamin D microencapsulation and fortification: Trends and technologies

Vaibhav Kumar Maurya, Khalid Bashir, Manjeet Aggarwal



PII:S0960-0760(19)30058-5DOI:https://doi.org/10.1016/j.jsbmb.2019.105489Reference:SBMB 105489To appear in:Journal of Steroid Biochemistry and Molecular BiologyReceived Date:3 March 2019Revised Date:31 July 2019Accepted Date:30 September 2019

Please cite this article as: { doi: https://doi.org/

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier.

#### Vitamin D microencapsulation and fortification: Trends and technologies

Vaibhav Kumar Maurya<sup>1</sup>, Khalid Bashir<sup>2</sup> and Manjeet Aggarwal<sup>1\*</sup>

<sup>1</sup>Department of Basic and Applied Sciences, National Institute of Food Technology, Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India <sup>2</sup> Department of Food Technology, JamiaHamdard University, New Delhi 110062, India

#### **Highlights:**

- Vitamin D synthesis and absorption is reviewed.
- Effect of food processing on vitamin D is reviewed
- Principal encapsulation techniques adopted for vitamin D encapsulation are reviewed.
- Vitamin D enriched nanomaterials for food fortification is discussed.

#### Abstract:

Today, as per the latest medical reports available, majority of the population throughout globe is facing vitamin D (Vit D) deficiency. Even in sub-tropical countries like India and many others Vit D deficiency is highly prevalent despite the exuberant available sunshine (a major source of Vit D) throughtout the year. The reason could be attributed to an array of factors including socioeconomic, cultural and religious Further, other than the sunlight, there are very limited sources of Vit D to fulfil the recommended dietary allowance of Vit D (RDA: 400-800 IU per

day). A large proportion of Vit D is lost during food processing and storage due to environmental stress conditions such as temperature, pH, salt, oxygen and light. Vita D, an important micronutrient, is essentially required for the prevention of disorders such as neurodegenerative diseases, cardiovascular diseases, cancer etc. in addition to its traditional role in bone metabolism. Therefore, in order to meet the daily requirements of Vit D for human body, WHO has recognized fortification as the most efficient and safest method to address malnutrition. But there are innumerable chellenges involved during food fortification using Vit D as fortificants such as homogeneity into the food matrix, physico-chemical/photochemical degradation, loss during processing and storage, interactions with other components of food matrix resulting into change in taste, texture and appearance thus affecting acceptability, palatability and marketability. Fortification of Vit D into food products especially the ones which have an aqueous portion, is not simple for food technologist. Recent advances in nanotechnology offer various microencapsulation techniques such as liposome, solid-lipid particles, nanostructured lipid carriers, emulsion, spray drying etc. which have been used to design efficient nanomaterials with desired functionality and have great potential for fortification of fortificants like Vit D. The present review is an undate on Vit D, in light of its fortification level, RDA, factors affecting its bioavailability and various microencapsulation techniques adopted to develop Vit Dnanomaterials and their fate in food fortification.

#### Abbreviations

| Abbreviation | Full form                         |
|--------------|-----------------------------------|
| WHO          | World Health Organization         |
| FAO          | Food and Agriculture Organization |
| IOM          | Institute of Medicine             |
| EC           | European commission               |

| UK   | United Kingdom                              |
|------|---------------------------------------------|
| NNR  | Nordic Nutrition Recommendations            |
| CMCS | Carboxymethyl chitosan                      |
| SPI  | Soy protein isolate                         |
| WPI  | Whey protein isolate                        |
| WPC  | Whey protein concentrate                    |
| HACS | High amylose corn starch                    |
| MCT  | Medium chain triglycerides                  |
| DMPC | 1,2-dimyristoyl-sn-glycero-3-phosphocholine |
| PC   | phosphatidylcholine                         |
|      |                                             |

**Keywords:** Vitamin D, Fortification, Encapsulation, Bioavailability, Micro-/nano-encapsulation, Functional food

#### 1. Introduction

The role of vitamin D (Vit D) in bone health (calcium and phosphorus metabolism) is well reported in literature [2, 10, 45]. This is instantiated by the fact that between 1991 and 2019, there have been approximately 80,000 published articles, listed in PubMed, which contain the term "Vit D" in their title and there has been continuous scientific activity to overcome the elusiveness of Vit D. Accruing evidences clearly show the role of Vit D in different physiological functions of the human body apart from bone health and calcium-phosphorus metabolism [45]. Hence, its insufficient intake may result into complete or partial inhibition of

those functions which may lead to osteoporosis, rickets, calcium-phosphorus imbalance, parathyroid imbalance, diabetes etc. The recent research has further elaborated the role of Vit D in prevention of cancer, cardiovascular diseases, diabetes, cellular growth, cellular differentiation, embryonic development, fertility, immunological disorder, liver disorder, neurological, renal and respiratory disorders [1-5]. Millions of preschool-aged children are found to be Vit D deficient [10]. As per the mortality reports of WHO, Vit D deficiency is one of the major contributors to total deaths (0.8 million deaths) per annum [6-9]. In infants and young children, a concentration of 25-OH-D in serum below about 11 ng/L, 20-30ng/L,  $\geq$  30ng/L, and 300 ng/L is an indication of deficiency, insufficiency, sufficiency and toxicity of Vit D respectively [9-12]. Vit D exists majority in two forms: (i) Vit D<sub>2</sub> (ergocalciferol), synthesized only by plants and not by human body and (ii) Vit D<sub>3</sub> (cholecalciferol) synthesized by the human body, especially via skin, when it exposed to sunlight (Figure 1).

There are several factors which contribute to Vit D deficiency. These includes geographical location (altitude and latitude), angle of the sun and length of the sun exposure, pollution [13, 14] and the limitation of naturally occurring Vit D rich foods. Only a few wild varieties of mushroom, certain varieties of algae from plant kingdom and foods such as egg, Cod liver oil, salmon and other fatty fish from animal kingdom are the major sources of Vit D [15, 16]. In order to meet the RDA requirements for Vit D, several countries have now permitted fortification of food with Vit D such as milk, margarine, certain edible oils, cereals etc. In addition to this, currently certain pharmaceutical supplements are also majorly being used as source of Vit D [15]. Despite the availability of Vit D fortified food, Vit D deficiency is prevailing across the globe which could be attributed to the low bioavailability of Vit D (fortified

as well as naturally occurring foods) in the food as well as in human gastro intestinal tract (GIT) [17].

#### **1.1.** Bioavailability of Vit D

The biological accessibility or bioavailability of Vit D to human body is defined as the proportion of the ingested Vit D that eventually ends in systemic blood circulations and consequently imparts related physiological functions [18]. The mechanism of absorption of Vit D (Vit D<sub>2</sub> and Vit D<sub>3</sub>) is belived to be concentration independent unsaturable passive diffusion process [17]. The total quantity of Vit D present in food system does not reflects its bioavailable amount since a significant proportion remaines bound to the food matrices [18]. Unavailability of literature on the aspects of absorption and actual bioavailability of Vit D in upper GIT in human, makes it a subject of major concern. Though an array of factors influences the bioavailability of Vit D in the food system; such as variation in the physiochemical forms of the Vit D (Vit D species and the physiological linkages), the complexity of food matrice (variety and quantity of fatty acids, dietary fibers etc., doses of Vit D, location of Vit D in animal as well as plant tissue, processing condition and size of food particles) and absence/presence of Vit D enhancer/inhibitor), interaction among fat-soluble nutrients available in food and hostassociated factors (surgery, age, disease, fed condition, obesity, genetic variation etc.) have been comprehensively discussed in the literature available [18].

Based upon anti-rachitic discoveries, initially it was belived that Vit  $D_2$  and Vit  $D_3$  were equipotent and could be used interchangeably. Nevertheless, recent scientific evidences clearly highlight the variation between their bioefficacy which is attributed to high metabolism and clearance of Vit  $D_2$  than that of Vit  $D_3$  in liver and kidney respectively [19]. Further, the

processing methods and conditions have also been found to have significant influence on the availability of Vit D [21-28].

Vit D is prone to degradation when exposed to heat, light, moisture, or oxygen during processing as well as storage. Thermal processing of foods such as boiling, pressure cooking, frying, steaming, baking and sterilization can significantly affect the final level of Vit D in food [21, 22]. These factors ultimately affect the actual availability of Vit D to the human body and must be considered while addressing the bioavailability of Vit D present in any food matrix. The impact of various food processing methods on Vit D content in some food products is presented in table 1.

Several methods have been adopted to determine the bioavailability such as animal model, in vitro test and bioassays [30-34]. The conclusion of bioassay generally relies on absorption/serum 25(OH)D while balance studies calculate the difference between feed (input) and excretion (output). The measurement of solubility, dispersibility, fractional permeability across the muscous membrane of GIT and Vit D uptake in the experimental animals can also be considered while selecting the in vitro studies [34, 35]. Furthermore, in vitro method is preferred over other methods due to its cost effective and rapid as compared to other methods and offers better control of experimental variables as compared to an animal or human model. However, scientific attempts are continuously in progress to develop and refine techniques to determine dietary Vit D absorption in the body. The analytical methods such as high performance liquid chromatography mass spectroscopy have been extensively used for accurate evaluation and detection of low levels of Vit D during the bioavailability studies [36, 37]

#### 2. Supplementation and fortification of Vit D: Which is the better option?

Vit D<sub>2</sub> or ergocalciferol comes from Vit supplements, fortified food and some plant foods like mushrroms. Vit  $D_3$  or cholecalciferol is synthesized and is found in animal foods like salmon, cod liver and egg yolk. It has been found that Vit  $D_3$  more effective as compared to Vit  $D_2$  for raising Vit D level in blood since the binding protein has a higher affinity towards Vit D<sub>3</sub>[11]. Supplementation and fortification are considered as the most viable options to combat Vit D deficiency [49]. Supplementation involves the use of high dose of Vit D formulations. Generally, Vit D<sub>3</sub> is administered in the form of cholecalciferol, alfacalcidiol, and calcitriol as solo ingredient or in combination with calcium and other minerals or vitamins. Vit D supplements containing alfacalcidiol and calcitriol are generally available in the form of tablets and capsules while the formulations containing cholecalciferol in granules in sachets [38, 39]. Cholecalciferol is the most favored form for prophylaxis and treatment of Vit D deficient states in not only India [38] but also worldwide [39]. Currently, Vit D supplement intake is voluntary and its intake is the highest among infants, elderly adults and lowest among adolescents, children and young adults who are at high risk of its deficiency. Further, the distribution of Vit D intake among population is greatly skewed to a small number of high dose supplements which poses a high risk of excessive intake [38, 39]. The procurement and purchase of Vit D normally requires quite an expensive pre-packaging, an efficient distribution system and a high level of consumer compliance (particularly if supplements are to be consumed on a long-term basis) [40]. The shortage of supplies and poor compliance are constantly reported in usually adopted supplementation program, which result into main hurdles for success. Hence, in view of public health, food processors need to work on changing the shape of Vit D intake consumption pattern with the sustainable food based strategies; concequently filling the gap between current and recommended intakes without putting the general population at risk of habitual either excessive

or difficient intake. As on today, several innovative methods have been reported for improving Vit D level in foods by fortification and biofortification.

Biofortification relies on enhancing the levels of specific, limiting micronutrients in edible tissues of plant/animal by combining crop management, breeding, and genetic approaches [16]. Studies have shown that Vit D<sub>2</sub> level in fungi can be significantly enhanced by exposing them to UVB light [41, 42]. Further, the stability of Vit D in these irraditated mushroom can be further improved via cold storage [43] the dried mushrooms are able to retain much of their Vit D content even after 2-6 years of cold storage [20]. A significant increase in Vit D content in animal products (pigs, fish and hens) has also been reported [44, 47]. Vit D<sub>3</sub> rich meat and liver can be produced by feeding pigs with Vit D<sub>3</sub> rich feed [16, 44]. Likewise, Vit D content in fish can also be enhanced by feeding them Vit D<sub>3</sub>-rich feed [45] and hens which were fed on Vit D<sub>3</sub> rich diet have shown to produce eggs with high content of Vit D [46, 47].

Fortification of food products has been acknowledged by the World Bank (1993) as the most cost effective way for combating the nutrient deficiency problems among the available health interventions. Fortification refers as the addition of micronutrients to target foods for the purpose of its enrichemtn with respect to a given micronutrient. This strategy has resulted in relatively rapid improvements in the micronutrient status of a population at a very reasonable cost, particularly if the existing technology and local distribution networks are exploited [48, 49]. However, unfortunately, implementation of fortification programs, especially in the developing world, has been lackadaisical [50]. For this there may be several reasons including (1) lack of knowledge relevant to micronutrient deficiency status; (2) lack of understanding of the significance of micronutrient deficiencies and its concern to the healthcare system; (3)

inadequate knowledge about food consumption patterns; and (4) the consumer acceptance, competitive and costs concern of the food industry.

#### 2.1. Present status of Vit D fortification

Several Vit D fortification programs have been implemented across the globe. The various foods fortified with Vit D so far include mostly milk, milk products, and edible oil. The food items normally selected for fortification solely depend on the consumption pattern of foods of the country's population. Many of the foods are being fortified with Vit D in conjunction with Vit A. Various reports on successful fortification of Vit D and regulatory compliance adopted for North Americans have been published [51-53]. Presently Vit D fortification has become mandatory in milk (expect goat milk and condensed milk) and margarine in Canada where it is regulated by the Canadian Food and Drug Regulations [54-60] while in USA, Vit D fortification is voluntary in fluid milk and if fortified, needs to be displayed on the label [61, 62]. It is also evident that the majority of the milk-derived products such as butter, cream, cottage cheese, sour crease, ice cream, hard and soft cheese, and yogurt are not routinely fortified with Vit D [52, 61, 63]. In addition to these products, infant formulations are being fortified globally (40-100 IU/100g) [64]. The food products that are being fortified with different level of Vit D across the globe are listed in Table 3.

Today the fortification practices adopted by different countries in the world depend upon the country's regulation. Initially, all margarine manufactured for domestic use in the UK and Ireland was subject to mandatory fortification but now it become voluntary [91]. Similarly, other foods like dried and evaporated milk, breakfast cereals, macaroni, noodles, beverages, edible oils, and wheat flour may also be voluntarily fortified with Vit D along with other micronutrients (Table 3). However, information pertaining the continuation and compliance of these

fortification regulations is very scanty [92, 93]. The stability, dispensability, and solubility of Vit D during production and storage of foods are the key concerns for food processors.

#### 2.2. Stability of Vit D in fortified food

In general, the success of Vit D fortification mainly depends on the stability of the fat matrix in the food as Vit D is fat soluble. Fortification of Vit D has been a challenge to the food industry due to its instability and heterogeneous distribution in food. Loss of Vit D was observed in various food systems fortified with Vit D such as milk [93], cheese [97, 100,101], yogurt [102-104], and other milk based products [105, 161, 224]. The loss is mainly due to oxidation and isomerization during processing and storage [105, 106]. Similarly, Vit D found to be susceptible to oxidation with poor retention property in extruded food products also during storage [107]. Food processing methods such as baking, cooking, frying and water boiling (fish, mushroom, and egg) cause significant degradation of Vit D [21, 22, 25, 29]. In addition to the stability, uniform distribution or the homogeneity of Vit D in the fortieidfood matrix is again one of the major concern for the food industry. The stability studies in fortified foods other than milk are very limited and reports on uniform distribution are even rarer. Thus, studies addressing stability, homogenization, and bioavailability of Vit D in the fortified foods need to be conducted to gain a better understanding in designing the fortified foods.

#### 2.3. Methods for Vit D fortification

For sustainable fortification, various techniques have been adopted such as direct addition, emulsification, and microencapsulation. In case of Vit D, direct addition is the most widely adopted method for fortification of milk and milk products [51, 52, 54]. In general, these products are being spiked with Vit D where Vit D is dissolved in food grade organic solvent (ethanol) and butter oil, and then homogenized into the food matrix to ensure the uniform

distribution [94-96]. The deposition of Vit D inside the packaging materials especially the polypacks or tetrapacks and its degradation in aqueous food matrix leading to the Vit D instability in food matrix. In emulsification method an oil phase, having Vit D, is dispersed as fine droplets in water and these fine droplets are then mixed with target food material such as cheese, milk and bread [97-99]. Homogenization of Vit D in the food matrix and limited availability of food grade emulsifiers are major challenges while developing stable emulsion.

The major challenges being faced by food technologists during fortification of Vit D are suitability of its dispersibility, homogeneity, stability and ultimately its bioavailability to the body in required doses for combating the deficiency. All theses chalanges are the driving forces leading to the development of various innovative techniques for fortifying Vit D in different food matrixs. Recent literature suggests that nanotechnology offers great stability and ensures homogeneity by encapsulation of bioactive core ingredient into a matrix with a size lower than 1000 nm. Microencapsulation is basically insulation of bioactive core material by secondary wall materials which protect the core from its external environment [108-112]. In addition to giving protection to the bioactive compound, it also helps in controlled release of encapsulant with high physiochemical stability. Microencapsulation also promises that the nanomaterials so formed would ensure high bioavailability, water dispersibility and better homogeneity of the fortificant in the target food irrespective of complexity of food matrix [111]. The rising demand for functional foods has been the major driving force for designing and production of novel nanomaterials that are suitable for fortifying the food. Literature reports several nanomaterials, which could be efficient carrier systems for Vit D for the purpose of food fortification [113]. The fortification using nanomaterials offers various advantages over direct addition and

emulsification method such as high stability, better homogeneity and improved physiochemical and organoleptic characteristics [111].

#### 3. Use of microencapsulation techniques

The success of microencapsulation of Vit D in pharmaceuticals encouraged its application in food with the following objectives (i) beats solubility barrier between Vit D and the food matrix (ii) shields Vit D against physiochemical stress such as moisture, oxidation, pH, temperature, mechanical etc. (iii) guarantees better bioavailability with the controlled and targeted release of encapsulated Vit D (iv) does not manipulate appearance, taste, quality of food matrix, thus sustaining customer acceptability.

#### 3.1. Status of Vit D microencapsulation

The high dispensability of lipophilic drug in aqueous media of pharmaceutical formulation made research community to assume that solubility of these lipophilic drugs can also be improved in the food matrix by microencapsulation. This assumption was evaluated by several dedicated studies such as 100-time high solubility was achieved when tretinoin was encapsulated with β-cyclodextrin [115] while it was 10000-times for anandamide [116]. However, these cyclic molecules have the ability to host Vit D molecule, but its drug loading capacity was very poor [116]. To address this problem, nanomaterials have been introduced that can offer high drug stability and encapsulation efficiency (EE). The potential of nanomaterials to become an efficient carrier is continuously ested in pharmaceutical and the food industries. Literature reports about a range of nanomaterials such as emulsion [118, 119], liposome [100, 120-132], niosome [133-137], solid lipid nanoparticles [138] and nanostructured lipid carriers [139]. Though several excellent reviews are available focusing the wall material, microencapsulation techniques, and

nanomaterials for bioactive compounds [111, 114, 140, 141] but there is a lack of dedicated reports addressing microencapsulation techniques which are exclusively used to develop Vit D nanomaterials for food application (Table 3).

#### 3.1.1. Vit D microencapsulation using spray drying technique

Spray drying is renowned as one of the oldest technique used for bioactive compounds encapsulation. Vit D is needed to be homogenized in a dispersion containing wall materials (polymers). Then, the homogenized dispersion needs to be fed to the spray dryer and atomized by hot air that leads to the development of nanomaterials in consequence of water evaporation. The encapsulation process is subjected to a range of factors like homogeneity of dispersion system, quantity, quality and type of emulsifier used, feed rate, viscosity of dispersion system, pressure of hot air, the flow rate of hot air and inlet and outlet temperature. In spite of better control on the shape and size of nanomaterials continuous and reproducible nature, low cost, easy scale-up, spray drying is not quite popular for bioactive compounds exclusively for heat sensitive compounds [141, 173-175]. Further, several researchers have comprehensively described the key factors need to be taken under consideration during spray drying while designing nanomaterials for food application [140, 141, 176-181]. Further, spray drying offers great flexibility for choice of wall materials, one or more than one but the use of spray drying in Vit D microencapsulation is even rarer as it mandates Vit D to be in water dispersed form. Despite several advantages, the full potential of spray drying is still fully unexplored for Vit D encapsulation which could be accredited to resultant porous nanomaterials that are prone to degradation of encapsulated Vit D hence lacking the aim of encapsulation [170-172]. Vit D was encapsulated using different combinations of maltodextrin, gum arabic, modified starch and whey protein concentrate to study the effect of temperature on the physicochemical

characteristics of spray-dried whey nanoparticles encapsulating Vit D [172]. Higher stability and greater bioavailability of Vit D<sub>2</sub> were achieved when it was encapsulated in casein micelles using spray drying [171]. Similarly sustained release of Vit D<sub>2</sub> in simulated GIT conditions was demonstrated by ethylcellulose coated spray dried nanomaterials containing chitosan [170]. The stability issue can be resolved by proper selection of wall materials and association with other microencapsulation techniques.

#### 3.1.2. Vit D microencapsulation using emulsification technique

This system involves at least two immiscible phases (lipid and water) where one phase needs to be dispersed as small spherical droplets within another phase. On the basis of the spatial arrangement of two phases, the emulsion system is generally classified into two classes i.e. oil in water (O/W) or water in oil (W/O). Then, these two immiscible phases need to be stabilized by surfactants and emulsifiers [182]. Several complex emulsion system like oil-in-water-in-oil (O/W/O), water-in-oil-in-water (W/O/W), water-in-oil-in-oil (W/O/O) or water-in-oil-in-oil-inwater (W/O/O/W), are reported in literature [183-183]. Several researchers have explored emulsion techniques to develop Vit D-nanomaterials using food grade materials such as whey protein isolate (WPI) [108], casein [149], Medium chaing triglycerides (MCT) and Tween 20, 40, 80, 85 [152], MCT and Tween 20, 60, 80 [110], carboxymethyl chitosan and SPI [151], Zein and carboxymethyl chitosan [150], Tween 20 and casein [151], WPI, calcium caseinate and sodium caseinate [98], casein [148], HACS and α-amylase [147], Tween 20 and fish oil [146], sodium caseinate and lecithin [145], quilajapaponin [118] and oleoyl alginate ester [144] and PPI [153]. Vit D emulsion fabricated sodium caseinate, calcium caseinate, nonfat dry milk, and whey protein have found to be stable during cheddar cheese preparation [98]. The selection of emulsion method for Vit D encapsulation depends on various factors such as absence/presence of

antioxidants, quantity and type of carrier oils and surfactant. It was observed that the stability of encapsulated Vit D is highly correlated to the stability of emulsion system. Further, it is also evident that the presence of an antioxidant in the emulsion system also enhances the stability of Vit D.

#### 3.1.3. Vit D microencapsulation using liposome

Literature reveled about various preparation methods for liposome which are comprehensively discussed by researchers in their excellent reviews [131, 136, 186-192]. In general, liposomes are referred to the spherical liquid structures in which an aqueous core bounded by a single (unilamellar liposomes) or multiple lipid bilayers (multilamellar liposomes). The ability to host both hydrophilic and hydrophobic bioactive ingredients individually or simultaneously makes liposome the most adopted encapsulation technique for Vit D. In addition to flexibility in composition and size, liposome also promises high biocompatibility with animal tissue as it mimics with the natural plasma membrane [188]. Several researchers have fabricated liposome for encapsulation of Vit D using 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) [130], methylparaben and propylparaben and the di-sodium edentate [129], L- $\alpha$ -phosphatidylcholine and L-a phosphatidyl-DL glycerol [120], 1-O-Octadecyl-2-O-benzyl-3-methylthio-1,2propanediol [121], phosphatidylcholine [100], hydrogenated phosphatidylcholine [123] and soybean phosphatidylcholine [127]. Though, Vit D shows high chemical stability when it is integrated within liposome but its application in food fortification is still not fully explored. The limited use of liposome in Vit D fortification could be attributed to its dependency on soya derived lecithin which carries intense smell. This issue can be easily resolved by replacing soya derived lecithin with milk-based lecithin or hydrogenated lecithin.

#### 3.1.4. Vit D microencapsulation using solid lipid nanoparticles

It is referred as the most suitable encapsulation technique for vitamins encapsulation as it has the hybrid structure of liposome and emulsion system hence tenders a range of advantages like high drug loading capacity, higher encapsulation efficiency, and better chemical stability against physiochemical stress. The literature describes the preparation methods for solid lipid nanoparticles (SLN) [136, 137, 193-201]. The ability of SLN to encapsulate and protect Vit D is still untapped and the only single report has been generated till date in which Vit D-SLN was prepared using molten tripalmitin [201].

#### 3.1.5. Vit D microencapsulation using nanostructured lipid carriers (NLC)

NLC generally encompasses of unstructured solid lipid matrix comprised of a mixture of liquid and solid lipid blend and an aqueous phase consisting of a surfactant or a mixture of surfactants. Typically, liquid and solid lipids are blended in a ratio that could vary from 70:30 to 99.90:0.10 while the surfactant content is kept between 1.5-5% (W/V) [202]. The unstructured/partially solid matrix creates interesting nanostructures, which enhance the stability of the entrapped bioactive compound, facilitate high loading capacity and offers controlled/target release. Literature dictates various methods for NLC preparations [202-205]. Despite being the most promising technique for drug delivery, NLC is among the least explored method for Vit D encapsulation. Till date, only three dedicated studies were reported addressing Vit D encapsulation in NLC [139, 143, 224]. In the first report, Vit D loaded NLC was formulated by phase-inversion temperature method displayed high physical and chemical stability for NLC as well as Vit D and was found to be a suitable vehicle for milk fortification [139]. While the second report was conducted to evaluate the drug release kinetic of Vit D loaded NLC and were fabricated with oleic acid, glycerol monosterate and Tween 80 using hot high-pressure

homogenization [143]. NLC particles displayed biphasic kinetic release (burst effect) resulting in almost 50% of the Vit D released during the first 2 h and 80% released after 4 h of digestion, followed by a sustained release until 90.9% of the Vit D during 8 h [143].

#### **3.1.6.** Vit D microencapsulation using molecular complex

In general, the molecular complex is formed with the use of cyclodextrin which can host bioactive agents within its void. Cyclodextrin is usually applied for encapsulation of Vit D in pharmaceutical formulations to assess its chemical stability against various physiochemical stresses [117, 119, 144, 153, 167].

#### 3.1.7. Vit D microencapsulation using electrospinning

It is a fiber producing technique which exertes electric force to draw charged fiber of polymer solutions or polymer melts up to diameters of nanoscale. This continuous process is performed by extruding dispersion of polymer through the needle on rotating drums to impact charge on fibers. The literature describes electrospinning as the most suitable techniques for thermosensitive bioactive agents, but its use for Vit D encapsulation is very scant. Till date single report is documented in which Vit D-nanofiber fabricated using poly (vinyl pyrrolidone) [169].

#### **3.2.** The fate of Vit D-nanoscale materials in GIT

The small intestine is recognized as the site of absorption of Vit D after its oral ingestion [206, 207]. Figure 2 illustrates the main routes of Vit D absorption in small intestine. Nanomaterials encapsulating Vit D have demonstrated its improved absorption [114, 122, 139, 161] and the mechanism how nanomaterials improve its oral bioavailability has already been reviewed in the previous article [114]. Generally, mixed micelles are generated as a result of digestion of lipid as well as nanomaterials and facilitate Vit D passage passing through the aqueous mucous layer to make it bioavailable to brush bordered enterocytes. The absorbed Vit D is then encased into

chylomicrons within the enterocytes depending on their hydrophobicity [208, 209]. The chylomicrons and lipid particles are endogenously produced within the enterocytes using lipid components (monoacyglycerols, free fatty acids, and sterol) of mixed micelles [210]. Then the chylomicrons incorporating Vit D are transported to the lymphatic circulation system via chylomicron-mediated pathway.

In parallel, it is also assumed that a fraction of Vit D still retained within nanomaterials rather being released during digestion [211, 212]. Vit D-nanomaterials are speculated to pass paracellularly to the portal blood via tight junctions or taken up by M cells via Peyer's patches followed by excretion into the lymph. In addition, it is also supposed that the structure and integrity of intestinal border can be modulated with nanomaterials containing specific compounds hence changing Vit D absorption efficiency. The literature reports about these compounds which can modulate the intestinal epithelial integrity such as surfactants (modulate the integrity of the plasma membrane), EDTA (widens intracellular tight junction seals), chitosan (separate the tight junction components) and free fatty acids (increases plasma membrane permeability) [114]. The use of these materials during nanomaterials preparation may help in achieving the desired functionality.

#### **3.3.** Vit D fortification with nanomaterials

To our knowledge, a significant numbers of food products are fortified with Vit D either mandatorily or voluntarily [222]. The current fortification method uses direct addition/mixing of Vit D in food matrices which may carry various limitations like loss of activity, degradation, irregular distribution, inevitable undesirable interaction, change in appearance and taste, hence affecting the customer acceptability. Microencapsulation is a tested technique to address these

issues, but it remained untapped for Vit D encapsulation for fortification purpose. The first use of microencapsulation technique in the food was initiated with Indyk's study where high stability of Vit D was achieved by encapsulating Vit D in milk powder using spray drying [106]. Further, liposome incorporated with Vit D was applied for fortification for cheddar cheese [97, 100]. Conversely, the high stability of Vit D was reported in soybean phosphatidylcholine based liposome which was found to suitable nanomaterial for food fortification [127]. Likewise, Tippetts' team has developed Vit D premix and applied it for the production of Vit D enriched artificial rice [98]. Further, the re-assembled casein based micelles encapsulating Vit A and D displayed great stability during the storage period and were compatible with milk fortification [203]. In addition, Kiani's team fortified milk with NLC that didn't change the color and texture of milk [139]. Moreover, Vit D rich nanoemulsion was developed using phase inversion based method to evaluate its feasibility in buttermilk fortification [161].

Above observations clearly indicates that desired stability, bioavailability and dispersibility can be achieved by encapsulating Vit D by one or more than one encapsulation techniques mentioned above. Further, high bioavailability of Vit D is reported when Vit D is administered through mushroom [214, 215]. Hence, it will be rationale for further research to exploiting these observations to design Vit D rich food with desired functionalities. Figure 3 describes the systematic approach for the development of Vit D rich functional foods with its improved bioavailability.

#### 3.4. Safety concerns and risks of Vit D nanoparticles

In general, the nanomaterials are adopted to improve the oral bioavailability of poorly soluble drugs. The available reports clearly indicate that the uptake of nanomaterials from the GIT tract is subjected to its particle size [216] and surface properties [217]. Similarly modified

characteristics of nanomaterials such as particles size and penetration ability to cross the physical barrier and ability to modulate cell integrity may transmit undetected risk to the biological system. Utilization of biodegradable or natural materials may limit health hazards which could generally posed by synthetic polymeric nanomaterials. Due to uncertainty in the long or short term and the direct or indirect effect of nanomaterials based foods, it is significant to assess the effect of nanomaterials on human health [218]. In view of food safety, Food and Drug Administration (FDA) has planned special strategies for mass production of food and food components incorporated with nanomaterials [219, 220]. Anyway, there are no definite legislative guidelines framed addressing the use of nanomaterials in food supply, however, several agencies and government bodies claim to follow the safety concerns of nanomaterials based food products [221]. The tentative guidelines can be drafted with list of suggestions (i) the physiochemical characterization nanomaterials applied in the food (ii) characterization process to assess their hazards characteristic embraced by nanomaterials such long and short term toxicity assay (iii) submission of a toxicity assessment report to legislative bodies such as FDA, Food Safety and Standard Authority of India (FSSAI), European Union (EU) etc. (iv) recognize and state a regulatory compliance for the consumption of the nanomaterials derived foods. However, lack of precise guidelines regarding the use of nanomaterials in food, demands various legislative bodies to come up together to frame universal guidelines which could be applicable across the globe.

#### 4. Conclusion

Despite the fact that the endogenous synthesis of Vit D can able suffice its daily requirement, its deficiency is prevailing across the globe which could be attributed to various factors such awareness, socioeconomic, cultural and religious constraints and lack of diversity in Vit D rich

foods. These factors equally contribute to the determination of its RDA and fortification level, which are subject to the country's regulations. Fortification is considered as the most effective among the available health interventions, but it brings inevitable interactions with food components resulting in the loss during food processing and storage. Vit D bioavailability in food can be improved either through its direct fortification or by the use of Vit D-nanomaterials in processed foods. Microencapsulation seems to be an indispensable tool to design Vit D-nanomaterials with desired functionality such as high stability against photochemical and mechanical stress, better homogeneity with the food system, improved oral bioavailability, avoidance the overdosing and improved organoleptic properties. Rationale knowledge about Vit D in the view of its chemistry, source, factors influencing its deficiency as well as bioavailability, RDA and fortification level, and microencapsulation techniques may aid better understanding in the designing of novel nanomaterials with desired properties for food fortification.

#### References

- [1] M. Abu el Maaty, F. Almouhanna, S. Wölfl, Expression of TXNIP in Cancer Cells and Regulation by 1, 25 (OH) 2D3: Is It Really the Vitamin D3 Upregulated Protein?, International journal of molecular sciences, 19 (2018) 796. M. Abu el Maaty, F. Almouhanna, S. Wölfl, Expression of TXNIP in Cancer Cells and Regulation by 1, 25 (OH) 2D3: Is It Really the Vitamin D3 Upregulated Protein?, International journal of molecular sciences, 19 (2018) 796.
- [2] M. Atteritano, L. Mirarchi, E. Venanzi-Rullo, D. Santoro, C. Iaria, A. Catalano, A. Lasco, V. Arcoraci, A. Lo Gullo, A. Bitto, Vitamin D status and the relationship with bone fragility fractures in HIV-infected patients: a case control study, International journal of molecular sciences, 19 (2018) 119. https://doi.org/10.3390/ijms19010119
- [3] C. Legarth, D. Grimm, M. Wehland, J. Bauer, M. Krüger, The impact of vitamin D in the treatment of essential hypertension, International journal of molecular sciences, 19 (2018) 455. https://doi.org/10.3390/ijms19020455
- [4] A.T. Slominski, A.A. Brożyna, C. Skobowiat, M.A. Zmijewski, T.-K. Kim, Z. Janjetovic, A.S. Oak, W. Jozwicki, A.M. Jetten, R.S. Mason, On the role of classical and novel forms of vitamin D in melanoma progression and management, The Journal of steroid biochemistry and molecular biology, 177 (2018) 159-170. https://doi.org/10.1016/j.jsbmb.2017.06.013
- [5] J. Wierzbicka, A. Binek, T. Ahrends, J.D. Nowacka, A. Szydłowska, Ł. Turczyk, T. Wąsiewicz, P. Wierzbicki, R. Sądej, R. Tuckey, Differential antitumor effects of vitamin D analogues on colorectal carcinoma in culture, International journal of oncology, 47 (2015) 1084-1096. https://doi.org/10.3892/ijo.2015.3088
- [6] W.H. Organization, Global prevalence of vitamin A deficiency in populations at risk 1995-2005: WHO global database on vitamin A deficiency, (2009). https://doi.org/10.1016/j.gheart.2014.03.2321
- [7] W. Grant, An estimate of the global reduction in mortality rates through doubling vitamin D levels, European journal of clinical nutrition, 65 (2011) 1016. https://doi.org/10.1038/ejcn.2011.68
- [8] W.B. Grant, G.K. Schwalfenberg, S.J. Genuis, S.J. Whiting, An estimate of the economic burden and premature deaths due to vitamin D deficiency in Canada, Molecular nutrition & food research, 54 (2010) 1172-1181. https://doi.org/10.1002/mnfr.200900420
- [9] R. Zhang, D.P. Naughton, Vitamin D in health and disease: current perspectives, Nutrition journal, 9 (2010) 65. https://doi.org/10.1186/1475-2891-9-65
- [10] M.F. Holick, T.C. Chen, Vitamin D deficiency: a worldwide problem with health consequences, The American journal of clinical nutrition, 87 (2008) 1080S-1086S. https://doi.org/10.1093/ajcn/87.4.1080s
- [11] R.P. Heaney, R.R. Recker, J. Grote, R.L. Horst, L.A. Armas, Vitamin D3 is more potent than vitamin D2 in humans, The Journal of Clinical Endocrinology & Metabolism, 96 (2011) E447-E452. https://doi.org/10.1210/jc.2010-2230
- [12] A. Mithal, D.A. Wahl, J.-P. Bonjour, P. Burckhardt, B. Dawson-Hughes, J.A. Eisman, G.E.-H. Fuleihan, R.G. Josse, P. Lips, J. Morales-Torres, Global vitamin D status and determinants of hypovitaminosis D, Osteoporosis international, 20 (2009) 1807-1820. https://doi.org/10.1007/s00198-009-0954-6

- [13] C. Harinarayan, S.R. Joshi, Vitamin D status in India–its implications and remedial measures, JAPI, 57 (2009) 40-48. https://doi.org/10.1007/978-1-60327-303-9\_28
- [14] M.G. Kimlin, Geographic location and vitamin D synthesis, Molecular aspects of medicine, 29 (2008) 453-461. https://doi.org/10.1016/j.mam.2008.08.005
- [15] L. O'Mahony, M. Stepien, M.J. Gibney, A.P. Nugent, L. Brennan, The potential role of vitamin D enhanced foods in improving vitamin D status, Nutrients, 3 (2011) 1023-1041. https://doi.org/10.3390/nu3121023
- [16] S.K. Duffy, A.K. Kelly, R. Gaurav, J. O'Doherty, Biofortification of meat with vitamin D, CAB Reviews, 13 (2018) 1-11. https://doi.org/10.1079/pavsnnr201813045
- [17] P. Borel, D. Caillaud, N. Cano, Vitamin D bioavailability: state of the art, Critical reviews in food science and nutrition, 55 (2015) 1193-1205. https://doi.org/10.1080/10408398.2012.688897
- [18] V.K. Maurya, M. Aggarwal, Factors influencing the absorption of vitamin D in GIT: an overview, Journal of food science and technology, 54 (2017) 3753-3765. https://doi.org/10.1007/s13197-017-2840-0
- [19] L.A. Armas, B.W. Hollis, R.P. Heaney, Vitamin D2 is much less effective than vitamin D3 in humans, The Journal of Clinical Endocrinology & Metabolism, 89 (2004) 5387-5391. https://doi.org/10.1210/jc.2004-0360
- [20] J.I. Rangel-Castro, A. Staffas, E. Danell, The ergocalciferol content of dried pigmented and albino Cantharellus cibarius fruit bodies, Mycological research, 106 (2002) 70-73. https://doi.org/10.1017/s0953756201005299
- [21] M. Bennink, K. Ono, Vitamin B12, E and D content of raw and cooked beef, Journal of Food Science, 47 (1982) 1786-1792. https://doi.org/10.1111/j.1365-2621.1982.tb12883.x
- [22] J. Jakobsen, P. Knuthsen, Stability of vitamin D in foodstuffs during cooking, Food chemistry, 148 (2014) 170-175. https://doi.org/10.1016/j.foodchem.2013.10.043
- [23] P. Mattila, R. Ronkainen, K. Lehikoinen, V. Piironen, Effect of household cooking on the vitamin D content in fish, eggs, and wild mushrooms, Journal of food composition and analysis, 12 (1999) 153-160. https://doi.org/10.1006/jfca.1999.0828
- [24] E. Mawer, U. Gomes, Estimation of vitamin D and its metabolites in meat, Vitamin D, a Pluripotent Steroid Hormone: Structural Studies, Molecular Endocrinology and Clinical Applications, (1994) 775-776.
- [25] O. Fennema, Chemical changes in food during processing—an overview, Chemical changes in food during processing, Springer1985, pp. 1-16. ttps://doi.org/10.1007/978-1-4613-2265-8\_1
- [26] H. Suzuki, S. Hayakawa, S. Wada, E. Okazaki, M. Yamazawa, Effect of solar drying on vitamin D3 and provitamin D3 contents in fish meat, Journal of agricultural and food chemistry, 36 (1988) 803-806. https://doi.org/10.1021/jf00082a033
- [27] K. Scott, J. Latshaw, Effects of commercial processing on the fat-soluble vitamin content of Menhaden fish oil, Journal of the American Oil Chemists Society, 68 (1991) 234-236. https://doi.org/10.1007/bf02657615
- [28] K.C. Scott, J.D. Latshaw, The vitamin D3 and precholecalciferol content of menhaden fish meal as affected by drying conditions, Animal feed science and technology, 47 (1994) 99-105. https://doi.org/10.1016/0377-8401(94)90163-5
- [29] A.A. Bhuiyan, W. Ratnayake, R. Ackman, Nutritional composition of raw and smoked Atlantic mackerel (Scomber scombrus): Oil-and water-soluble vitamins, Journal of food composition and analysis, 6 (1993) 172-184. https://doi.org/10.1006/jfca.1993.1019

- [30] F. Farraye, H. Nimitphong, A. Stucchi, K. Dendrinos, A. Boulanger, A. Vijjeswarapu, A. Tanennbaum, R. Biancuzzo, T. Chen, M. Holick, Use of a novel vitamin D bioavailability test demonstrates that vitamin D absorption is decreased in patients with quiescent Crohn's disease, Inflammatory bowel diseases, 17 (2011) 2116-2121. https://doi.org/10.1002/ibd.21595
- [31] K. Hutchinson, M. Healy, V. Crowley, M. Louw, Y. Rochev, Verification of Abbott 25-OHvitamin D assay on the architect system, Practical laboratory medicine, 7 (2017) 27-35. https://doi.org/10.1016/j.plabm.2017.01.001
- [32] Y. Cohen, M. Levi, U. Lesmes, M. Margier, E. Reboul, Y.D. Livney, Re-assembled casein micelles improve in vitro bioavailability of vitamin D in a Caco-2 cell model, Food & function, 8 (2017) 2133-2141. https://doi.org/10.1039/c7fo00323d
- [33] A.S. Kadappan, C. Guo, C.E. Gumus, A. Bessey, R.J. Wood, D.J. McClements, Z. Liu, The Efficacy of Nanoemulsion-Based Delivery to Improve Vitamin D Absorption: Comparison of In Vitro and In Vivo Studies, Molecular nutrition & food research, 62 (2018) 1700836. https://doi.org/10.1002/mnfr.201700836
- [34] H. Leyva-Jimenez, Y. Jameel, M. Al-Ajeeli, A. Alsadwi, R. Abdaljaleel, C. Bailey, Relative bioavailability determination of highly concentrated cholecalciferol (vitamin D3) sources employing a broiler chick bioassay, Journal of Applied Poultry Research, 27 (2018) 363-370. https://doi.org/10.3382/japr/pfy007
- [35] H. Leyva-Jimenez, M. Khan, K. Gardner, R.A. Abdaljaleel, Y. AL-Jumaa, A.M. Alsadwi, C.A. Bailey, Developing a novel oral vitamin D3 intake bioassay to re-evaluate the vitamin D3 requirement for modern broiler chickens, Poultry science, (2019). https://doi.org/10.3382/ps/pez074
- [36] J. Adamec, A. Jannasch, J. Huang, E. Hohman, J.C. Fleet, M. Peacock, M.G. Ferruzzi, B. Martin, C.M. Weaver, Development and optimization of an LC-MS/MS-based method for simultaneous quantification of vitamin D2, vitamin D3, 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3, Journal of separation science, 34 (2011) 11-20. https://doi.org/10.1002/jssc.201000410
- [37] F.G. Strathmann, T.J. Laha, A.N. Hoofnagle, Quantification of 1α, 25-dihydroxy vitamin D by immunoextraction and liquid chromatography–tandem mass spectrometry, Clinical chemistry, 57 (2011) 1279-1285. https://doi.org/10.1373/clinchem.2010.161174
- [38] Y. Lhamo, P.K. Chugh, C. Tripathi, Vitamin D supplements in the Indian Market, Indian journal of pharmaceutical sciences, 78 (2016) 41. https://doi.org/10.4103/0250-474x.180248
- [39] S. Garg, D. Sabri, J. Kanji, P. Rakkar, Y. Lee, N. Naidoo, D. Svirskis, Evaluation of vitamin D medicines and dietary supplements and the physicochemical analysis of selected formulations, The journal of nutrition, health & aging, 17 (2013) 158-161. https://doi.org/10.1007/s12603-012-0090-4
- [40] J. Dwyer, P. Coates, M. Smith, Dietary supplements: regulatory challenges and research resources, Nutrients, 10 (2018) 41. https://doi.org/10.3390/nu10010041
- [41] J. Ko, B. Lee, J. Lee, H.J. Park, Effect of UV-B exposure on the concentration of vitamin D2 in sliced shiitake mushroom (Lentinus edodes) and white button mushroom (Agaricus bisporus), Journal of agricultural and food chemistry, 56 (2008) 3671-3674. https://doi.org/10.1021/jf073398s
- [42] S.R. Koyyalamudi, S.-C. Jeong, C.-H. Song, K.Y. Cho, G. Pang, Vitamin D2 formation and bioavailability from Agaricus bisporus button mushrooms treated with ultraviolet

irradiation, Journal of agricultural and food chemistry, 57 (2009) 3351-3355. https://doi.org/10.1021/jf803908q

- [43] J.S. Roberts, A. Teichert, T.H. McHugh, Vitamin D2 formation from post-harvest UV-B treatment of mushrooms (Agaricus bisporus) and retention during storage, Journal of agricultural and food chemistry, 56 (2008) 4541-4544. https://doi.org/10.1021/jf0732511
- [44] S.K. Duffy, A.K. Kelly, G. Rajauria, J. Jakobsen, L.C. Clarke, F.J. Monahan, K.G. Dowling, G. Hull, K. Galvin, K.D. Cashman, The use of synthetic and natural vitamin D sources in pig diets to improve meat quality and vitamin D content, Meat science, 143 (2018) 60-68. https://doi.org/10.1016/j.meatsci.2018.04.014
- [45] I. Graff, S. Høie, G. Totland, Ø. Lie, Three different levels of dietary vitamin D3 fed to first-feeding fry of Atlantic salmon (Salmo salar L.): effect on growth, mortality, calcium content and bone formation, Aquaculture Nutrition, 8 (2002) 103-111. https://doi.org/10.1046/j.1365-2095.2002.00197.x
- [46] P. Mattila, J. Valaja, L. Rossow, E. Venäläinen, T. Tupasela, Effect of vitamin D2-and D3enriched diets on egg vitamin D content, production, and bird condition during an entire production period, Poultry science, 83 (2004) 433-440. https://doi.org/10.1093/ps/83.3.433
- [47] P. Mattila, Enrichment of hen eggs with vitamin D for human health, Handbook of eggs in human function, Wageningen Academic Publishers2015, pp. C178-C183. https://doi.org/10.3920/978-90-8686-804-9\_10
- [48] FSSAI, Large scale food fortification in India, (2016).

https://archive.fssai.gov.in/dam/jcr:c746d723.../Large\_scale\_Food\_Fortification.pdf

[49] O. Dary, R. Hurrell, Guidelines on food fortification with micronutrients, Geneva, Switzerland World Health Organization, Food and Agricultural Organization of the United Nations, (2006).

https://www.who.int/nutrition/publications/guide\_food\_fortification\_micronutrients.pdf

- [50] A. Gupta, Fortification of foods with vitamin D in India, Nutrients, 6 (2014) 3601-3623. https://doi.org/10.3390/nu6093601
- [51] M.S. Calvo, S.J. Whiting, Survey of current vitamin D food fortification practices in the United States and Canada, The Journal of steroid biochemistry and molecular biology, 136 (2013) 211-213. https://doi.org/10.1016/j.jsbmb.2012.09.034
- [52] M.S. Calvo, S.J. Whiting, C.N. Barton, Vitamin D fortification in the United States and Canada: current status and data needs, The American journal of clinical nutrition, 80 (2004) 1710S-1716S. https://doi.org/10.1093/ajcn/80.6.1710s
- [53] H. Vatanparast, M.S. Calvo, T.J. Green, S.J. Whiting, Despite mandatory fortification of staple foods, vitamin D intakes of Canadian children and adults are inadequate, The Journal of steroid biochemistry and molecular biology, 121 (2010) 301-303. https://doi.org/10.1016/j.jsbmb.2010.03.079
- [54] K.D. Cashman, M. Kiely, Tackling inadequate vitamin D intakes within the population: fortification of dairy products with vitamin D may not be enough, Endocrine, 51 (2016) 38-46. https://doi.org/10.1007/s12020-015-0711-x
- [55] Health Canada, Food & Drug Act B.09.016., 2018. https://www.canada.ca/en/healthcanada/services/food-nutrition/legislation-guidelines/acts-regulations.html
- [56] Health Canada, Food & Drug ActB.08.003, 2018. https://lawslois.justice.gc.ca/eng/regulations/c.r.c.\_c.\_870/

- [57] Health Canada, Consolidation of the food and drugs act and the food and drug regulations, 2001. https://laws-lois.justice.gc.ca/eng/acts/F-27/index.html
- [58] Health Canada, Interim marketing authorization, 2018. http://www.inspection.gc.ca/food/requirements-andguidance/labelling/industry/fortification/eng/1468504433692/1468504697186
- [59] Health Canada, Food & Drug Act B.01.404, 2018. https://lawslois.justice.gc.ca/eng/regulations/c.r.c.,\_c.\_870/
- [60] C.F.I. Agency, Foods to Which Vitamins, Mineral Nutrients and Amino Acids May or Must be Added, 2017. http://www.inspection.gc.ca/food/requirements-andguidance/labelling/industry/nutrient-content/referencenformation/eng/1389908857542/1389908896254?chap=1
- [61] U.S.F.D.A. FDA, Food Additive Status List, 2018. https://www.fda.gov/food/food-additives-petitions/food-additive-status-list
- [62] S. Pilz, W. März, K.D. Cashman, M.E. Kiely, S.J. Whiting, M.F. Holick, W.B. Grant, P. Pludowski, M. Hiligsmann, C. Trummer, Rationale and plan for vitamin D food fortification: A review and guidance paper, Frontiers in endocrinology, 9 (2018) 373. https://doi.org/10.3389/fendo.2018.00373
- [63] E.A. Yetley, Assessing the vitamin D status of the US population, The American journal of clinical nutrition, 88 (2008) 558S-564S. https://doi.org/10.1093/ajcn/88.2.558s
- [64] C.F.R. Code of Federal Regulations 21, Nutrient Requirements for Infant Formulas. Infant Formula Act of 1980. Public Law No. 96-359, 94 Stat. 1190 [codified at 21 U.S.C. 350(a), 301, 321 (aa), 331, 374 (a)]. (1980). https://www.govinfo.gov/content/pkg/STATUTE-94/pdf/STATUTE-94-Pg1190.pdf
- [65] Fortification library, Summary of Mandatory and Voluntary Staple Food Fortification in Developing Countries, 2018.
- [66] Canadian Food Inspection Agency, Dairy Vitamin Addition, 2018. http://www.inspection.gc.ca/food/requirements-andguidance/labelling/industry/fortification/eng/1468504433692/1468504697186
- [67] Health Canada. Canda, Food and Drug Regulations (C.R.C., c. 870), 2019. https://laws-lois.justice.gc.ca/eng/regulations/c.r.c.\_e.870/
- [68] J. Laws, Food and Drug Regulations (C.R.C., c. 870), 2019. https://lawslois.justice.gc.ca/eng/regulations/c.r.c.,\_c.\_870/
- [69] Food and Agriculture Organization, Legislation pertaining to food fortification, (1992). http://www.fao.org/3/w2840e/w2840e0e.htm
- [70] A. Nilson, J. Piza, Food fortification: a tool for fighting hidden hunger, Food and Nutrition Bulletin, 19 (1998) 49-60. https://doi.org/10.1177/156482659801900109
- [71] Australia New Zealand Food Standards Code, Australia New Zealand Food Standards Code
   Standard 1.3.2 Vitamins and Minerals, 2017. https://www.legislation.gov.au/Details/F2017C00313
- [72] National Nutrition Council, Report of vitamin D Working Group (Valtion Ravitsemusneuvottelukunta D-Vitamiinityöryhmän Raportti In Finnish), 2010. https://www.ruokavirasto.fi/globalassets/teemat/terveytta-edistava-ruokavalio/ravitsemus--ja-ruokasuositukset/erityisohjeet-ja-rajoitukset/d-vitamiiniraportti2010.pdf
- [73] Ministry of Agriculture and Forestry of Finland, Maa-ja metsätalousministeriön asetus rasvattoman homogenoidun maidon D-vitaminoinnista., 2019. https://www.finlex.fi/fi/laki/alkup/2016/20160754

- [74] Livsmedelsverkets, Livsmedelsverkets författningssamling, (2018). https://www.livsmedelsverket.se/globalassets/om-oss/lagstiftning/berikn---kosttillsk--livsm-spec-gr-fsmp/livsfs-2018-5\_web.pdf?AspxAutoDetectCookieSupport=1
- [75] Nasjonalt råd for ernaering, Vitamin D i Norge: Behov for tiltak for å sikre god vitamin D-status? (Vitamin D in Norway, (2018).
   https://www.matportalen.no/kosthold\_og\_helse/tema/kostrad/nasjonalt\_raad\_for\_ernaering foreslaar nye tiltak for aa oke inntaket av vitamin d
- [76] Draft report of the Philippines food fortification project strategic plan for 1999-2004, (1999).
   https://www.strategic/default/files/DLU % 201000% 20Medium

https://extranet.who.int/nutrition/gina/sites/default/files/PHL%201999%20Medium-Turm%20Philippine%20Plan%20of%20Action%20for%20Nutrition%201994-2004.pdf

- [77] Food and Drug Administration Philippines, Administrative Order No. 4-A s. 1995, Guidelines on Micronutrient, (1995). https://ww2.fda.gov.ph/index.php/issuances-2/foodlaws-and-regulations-pertaining-to-all-regulated-food-products-and-supplements/foodadministrative-order/15892-aono4-as1995
- [78] Food and Drug Administration Philippines, Republic Act No. 8976, Philippine Food Fortification Act of 2000, (2000). http://ap.fftc.agnet.org/ap\_db.php?id=363
- [79] C.P. Isabelle M., Wijaya S.Y., Report on Regulatory Status of Micronutrient Fortification in Southeast Asia, 2014. file:///C:/Users/Viraj/Downloads/224\_\_ilsi\_sea\_region\_report.pdf
- [80] Standardization and Metrology Organization for G.C.C. (GSMO), Guidelines for Vitamins and Minerals Food Supplements, 2018. https://www.gso.org.sa/store/gso/standards/GSO:704988/GSO%20CAC-GL%2055:2015
- [81] J. Gayer, G. Smith, Micronutrient fortification of food in Southeast Asia: recommendations from an expert workshop, Nutrients, 7 (2015) 646-658. https://doi.org/10.3390/nu7010646
- [82] Agri-Food & Veterinary Authority of Singapore, A Guide to Food Labelling and Advertisements, 2010. http://www.classeexport.info/assistance/ANIA\_ALLIANCE7/LAITIER/SINGAPOUR/ETIQUETAGE/2-8-1\_Guide-Food-Labelling-Advertisements.pdf
- [83] Agri-Food & Veterinary Authority of Singapore, Sale of Food Act (Chapter 283) Food (Amendment) Regulations 2011, 2011. https://sso.agc.gov.sg/SL-Supp/S195-2011/Published/20110415?DocDate=20110415
- [84] Attorney General's Chamber Brunei Darussalam, Public Health (Food) Act (Chapter 182), 2001. http://www.agc.gov.bn/AGC%20Images/LAWS/ACT\_PDF/Cap.182.pdf
- [85] Food and Drug Administration Thailand, Rice., Notification of the Ministry of Public Health No.150 / 2536(w) Vitaminized, (1993). http://www.fao.org/faolex/results/details/en/c/LEX-FAOC160484
- [86] Food and Drug Administration Thailand, Notification of the Ministry of Public Health No.182 / 2541(1998) Nutrition Labelling, (1998). http://food.fda.moph.go.th/law/data/announ\_moph/V.English/No.182-41%20Nutrition%20Labelling.pdf
- [87] Food and Drug Administration Thailand, Notification of the Ministry of Public Health No.207 / 2543(2001) Margarine, (2000). http://www.fao.org/faolex/results/details/en/c/LEX-FAOC160572
- [88] F.D.A. Thailand, Notification of the Ministry of Public Health No. 350 / 2556 (2002) Cow's Milk, (2002). http://extwprlegs1.fao.org/docs/pdf/tha159849.pdf

- [89] F.D.A. USA, A food labeling guide, (2013). https://www.fda.gov/media/81606/download
- [90]WHO, Zimbabwe Launches National Food Fortification Strategy, (2015).

https://www.afro.who.int/news/zimbabwe-launches-national-food-fortification-strategy [91]UK Gov, Red Tape Challenge , 2015.

- https://webarchive.nationalarchives.gov.uk/20150507103822/http://www.redtapechallenge .cabinetoffice.gov.uk/about/
- [92] P.R. Pehrsson, K.Y. Patterson, M.A. Khan, Selected vitamins, minerals and fatty acids in infant formulas in the United States, Journal of Food Composition and Analysis, 36 (2014) 66-71. https://doi.org/10.1016/j.jfca.2014.06.004
- [93] M.F. Holick, Q. Shao, W.W. Liu, T.C. Chen, The vitamin D content of fortified milk and infant formula, Pediatric Nephrology, 7 (1993) 142-142. https://doi.org/10.1007/bf00864378
- [94] J. Johnson, V. Mistry, M. Vukovich, T. Hogie-Lorenzen, B. Hollis, B. Specker, Bioavailability of vitamin D from fortified process cheese and effects on vitamin D status in the elderly, Journal of Dairy Science, 88 (2005) 2295-2301. https://doi.org/10.3168/jds.s0022-0302(05)72907-6
- [95] R. Kaushik, B. Sachdeva, S. Arora, B.K. Wadhwa, Development of an analytical protocol for the estimation of vitamin D2 in fortified toned milk, Food chemistry, 151 (2014) 225-230. https://doi.org/10.1016/j.foodchem.2013.11.085
- [96] D. Wagner, G. Sidhom, S.J. Whiting, D. Rousseau, R. Vieth, The bioavailability of vitamin D from fortified cheeses and supplements is equivalent in adults, The Journal of nutrition, 138 (2008) 1365-1371. https://doi.org/10.1093/jn/138.7.1365
- [97] B. Ganesan, C. Brothersen, D.J. McMahon, Fortification of Cheddar cheese with vitamin D does not alter cheese flavor perception, Journal of dairy science, 94 (2011) 3708-3714. https://doi.org/10.3168/jds.2010-4020
- [98] M. Tippetts, S. Martini, C. Brothersen, D. McMahon, Fortification of cheese with vitamin D3 using dairy protein emulsions as delivery systems, Journal of dairy science, 95 (2012) 4768-4774. https://doi.org/10.3168/jds.2011-5134
- [99] A.-M. Natri, P. Salo, T. Vikstedt, A. Palssa, M. Huttunen, M.U. Kärkkäinen, H. Salovaara, V. Piironen, J. Jakobsen, C.J. Lamberg-Allardt, Bread fortified with cholecalciferol increases the serum 25-hydroxyvitamin D concentration in women as effectively as a cholecalciferol supplement, The Journal of nutrition, 136 (2006) 123-127. https://doi.org/10.1093/jn/136.1.123
- [100] C. Banville, J. Vuillemard, C. Lacroix, Comparison of different methods for fortifying Cheddar cheese with vitamin D, International Dairy Journal, 10 (2000) 375-382. https://doi.org/10.1016/s0958-6946(00)00054-6
- [101] D. Wagner, D.r. Rousseau, G. Sidhom, M. Pouliot, P. Audet, R. Vieth, Vitamin D3 fortification, quantification, and long-term stability in Cheddar and low-fat cheeses, Journal of agricultural and food chemistry, 56 (2008) 7964-7969. https://doi.org/10.1021/jf801316q
- [102] S.A. Kazmi, R. Vieth, D. Rousseau, Vitamin D3 fortification and quantification in processed dairy products, International Dairy Journal, 17 (2007) 753-759. https://doi.org/10.1016/j.idairyj.2006.09.009
- [103] V.K. Maurya, M. Aggarwal, Impact of Aqueous/Ethanolic Goji Berry (Lycium barbarum) Fruit Extract Supplementation on Vitamin D Stability in Yoghurt, Int. J. Curr. Microbiol. App. Sci, 6 (2017) 2016-2029. https://doi.org/10.20546/ijcmas.2017.608.240

- [104] L.A. Alfaro Sanabria, Development of a frozen yogurt fortified with a nano-emulsion containing purple rice bran oil, (2012). https://doi.org/10.1016/j.lwt.2015.01.055
- [105] A.L. Hanson, L.E. Metzger, Evaluation of increased vitamin D fortification in hightemperature, short-time–processed 2% milk, UHT-processed 2% fat chocolate milk, and low-fat strawberry yogurt, Journal of dairy science, 93 (2010) 801-807. https://doi.org/10.3168/jds.2009-2694
- [106] H. Indyk, V. Littlejohn, D. Woollard, Stability of vitamin D3 during spray-drying of milk, Food chemistry, 57 (1996) 283-286. https://doi.org/10.1016/0308-8146(95)00225-1
- [107] M.N. Riaz, M. Asif, R. Ali, Stability of vitamins during extrusion, Critical Reviews in Food Science and Nutrition, 49 (2009) 361-368. https://doi.org/10.1080/10408390802067290
- [108] A. Abbasi, Z. Emam-Djomeh, M.A.E. Mousavi, D. Davoodi, Stability of vitamin D3 encapsulated in nanoparticles of whey protein isolate, Food chemistry, 143 (2014) 379-383. https://doi.org/10.1016/j.foodchem.2013.08.018
- [109] N.J.A. Domingues, Carrier Systems for Vitamin D, (2013). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.904.2127&rep=rep1&type=pdf
- [110] K. Ziani, Y. Fang, D.J. McClements, Encapsulation of functional lipophilic components in surfactant-based colloidal delivery systems: vitamin E, vitamin D, and lemon oil, Food chemistry, 134 (2012) 1106-1112. https://doi.org/10.1016/j.foodchem.2012.03.027
- [111] R. Gupta, C. Behera, G. Paudwal, N. Rawat, A. Baldi, P.N. Gupta, Recent advances in formulation strategies for efficient delivery of vitamin D, AAPS PharmSciTech, 20 (2019) 11. https://doi.org/10.1208/s12249-018-1231-9
- [112] M. Haham, S. Ish-Shalom, M. Nodelman, I. Duek, E. Segal, M. Kustanovich, Y.D. Livney, Stability and bioavailability of vitamin D nanoencapsulated in casein micelles, Food & function, 3 (2012) 737-744. https://doi.org/10.1039/c2fo10249h
- [113] N. Garti, D.J. McClements, Encapsulation technologies and delivery systems for food ingredients and nutraceuticals, Elsevier2012. https://doi.org/10.1533/9780857095909
- [114] V.K. Maurya, M. Aggarwal, Enhancing bio-availability of vitamin D by Nano-engineered based delivery systems-An overview, Int. J. Curr. Microbiol. App. Sci, 6 (2017) 340-353. https://doi.org/10.20546/ijcmas.2017.607.040
- [115] Z.H. Qi, W.J. Shieh, Aqueous media for effective delivery of tretinoin, Journal of inclusion phenomena and macrocyclic chemistry, 44 (2002) 133-136. https://link.springer.com/article/10.1023/A:1023078126084
- [116] P. Jarho, A. Urtti, K. Järvinen, D.W. Pate, T. Järvinen, Hydroxypropyl-β-cyclodextrin increases aqueous solubility and stability of anandamide, Life sciences, 58 (1996) 181-185. https://doi.org/10.1016/0024-3205(96)00024-0
- [117] J. Szejtli, E. Bolla-Pusztai, P. Szabo, T. Ferenczy, Enhancement of stability and biological effect on cholecalciferol by beta-cyclodextrin complexation, Die Pharmazie, 35 (1980) 779-787.
- [118] B. Ozturk, S. Argin, M. Ozilgen, D.J. McClements, Nanoemulsion delivery systems for oil-soluble vitamins: Influence of carrier oil type on lipid digestion and vitamin D3 bioaccessibility, Food chemistry, 187 (2015) 499-506. https://doi.org/10.1016/j.foodchem.2015.04.065
- [119] N. Khalid, I. Kobayashi, Z. Wang, M.A. Neves, K. Uemura, M. Nakajima, H. Nabetani, Formulation characteristics of triacylglycerol oil-in-water emulsions loaded with

ergocalciferol using microchannel emulsification, Rsc Advances, 5 (2015) 97151-97162. https://doi.org/10.1039/c5ra18354e

- [120] S. Bochicchio, A.A. Barba, G. Grassi, G. Lamberti, Vitamin delivery: Carriers based on nanoliposomes produced via ultrasonic irradiation, LWT-Food Science and Technology, 69 (2016) 9-16. https://doi.org/10.1016/j.lwt.2016.01.025
- [121] N. Dattagupta, A.R. Das, C.N. Sridhar, J.R. Patel, Liposomes containing cationic lipids and vitamin D, Google Patents, 1998. https://doi.org/10.1517/13543776.8.9.1125
- [122] B. Farhang, Encapsulation of Bioactive Compounds in Liposomes prepared with Milk Fat Globule Membrane-Derived Phospholipids, 2013. https://doi.org/10.1007/s13594-012-0072-7
- [123] X. Fei, J. Heyang, Z. Yaping, G. Xinqiu, Supercritical antisolvent-based technology for preparation of vitamin D3 proliposome and its characteristics, Chinese Journal of Chemical Engineering, 19 (2011) 1039-1046. https://doi.org/10.1016/s1004-9541(11)60089-x
- [124] M. Frankenberger, B. Hofmann, B. Emmerich, C. Nerl, R.A. Schwendener, H. LÖMS ZIEGLER-HEITBROCK, Liposomal 1, 25 (OH) 2 vitamin D3 compounds block proliferation and induce differentiation in myelomonocytic leukaemia cells, British journal of haematology, 98 (1997) 186-194. https://doi.org/10.1046/j.1365-2141.1997.1682984.x
- [125] N.Ø. Knudsen, S. Rønholt, R.D. Salte, L. Jorgensen, T. Thormann, L.H. Basse, J. Hansen, S. Frokjaer, C. Foged, Calcipotriol delivery into the skin with PEGylated liposomes, European Journal of Pharmaceutics and Biopharmaceutics, 81 (2012) 532-539. https://doi.org/10.1016/j.ejpb.2012.04.005
- [126] M.M. Mady, M.W. Shafaa, E.R. Abbase, A.H. Fahium, Interaction of doxorubicin and dipalmitoylphosphatidylcholine liposomes, Cell biochemistry and biophysics, 62 (2012) 481-486. https://doi.org/10.1007/s12013-011-9334-x
- [127] M. Mohammadi, B. Ghanbarzadeh, H. Hamishehkar, Formulation of nanoliposomal vitamin D3 for potential application in beverage fortification, Advanced pharmaceutical bulletin, 4 (2014) 569. https://doi.org/10.15171/apb.2017.008
- [128] M. Mohammadi, B. Ghanbaarzaadeh, R. Rezaei Mokarram, M. Yar Hosseini, H. Hamishehkar, Study of Stability, Zeta-potential, and Steady Rheological Properties of Nanoliposomes Containing Vitamin D3, Med J Tabriz Univ Med Sci, 36 (2014) 102-111. https://doi.org/10.1080/02652048.2018.1554011
- [129] R. Naeff, S. Delmenico, R. Spycher, M. Corbo, F. Flother, Liposome-based topical vitamin D formulation, Google Patents, 1998. https://doi.org/10.1016/0169-409x(95)00080-q
- [130] K. Prüfer, K. Merz, A. Barth, U. Wollina, B. Sternberg, Interaction of liposomal incorporated vitamin D3-analogues and human keratinocytes, Journal of drug targeting, 2 (1994) 419-429. https://doi.org/10.3109/10611869408996818
- [131] M. Reza Mozafari, C. Johnson, S. Hatziantoniou, C. Demetzos, Nanoliposomes and their applications in food nanotechnology, Journal of liposome research, 18 (2008) 309-327. https://doi.org/10.1080/08982100802465941
- [132] A.K. Thompson, A. Couchoud, H. Singh, Comparison of hydrophobic and hydrophilic encapsulation using liposomes prepared from milk fat globule-derived phospholipids and soya phospholipids, Dairy Science & Technology, 89 (2009) 99-113. https://doi.org/10.1051/dst/2008036

- [133] S. Moghassemi, A. Hadjizadeh, Nano-niosomes as nanoscale drug delivery systems: an illustrated review, Journal of controlled release, 185 (2014) 22-36. https://doi.org/10.1016/j.jconrel.2014.04.015
- [134] R. Arora, Advances in niosome as a drug carrier: a review, Asian Journal of Pharmaceutics (AJP): Free full text articles from Asian J Pharm, 1 (2016). https://doi.org/10.4103/0973-8398.150030
- [135] V.R. Yasam, S.L. Jakki, J. Natarajan, G. Kuppusamy, A review on novel vesicular drug delivery: proniosomes, Drug delivery, 21 (2014) 243-249. https://doi.org/10.3109/10717544.2013.841783
- [136] F. Haghiralsadata, G. Amoabedinyb, S. Naderinezhadc, M.N. Helderd, E.A. Kharanaghie, B. Zandieh-Doulabid, Overview of preparation methods of polymeric and lipid-based (noisome, solid lipid, liposome) nanoparticles: A comprehensive review, name International Journal of Polymeric Materials and Polymeric Biomaterials, (2017). https://doi.org/10.1080/00914037.2017.1332623
- [137] R.R. Wakaskar, General overview of lipid-polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes, Journal of drug targeting, 26 (2018) 311-318. https://doi.org/10.1080/1061186x.2017.1367006
- [138] M.R. Patel, M.F. San Martin-Gonzalez, Characterization of ergocalciferol loaded solid lipid nanoparticles, Journal of food science, 77 (2012) N8-N13. https://doi.org/10.1111/j.1750-3841.2011.02517.x
- [139] A. Kiani, M. Fathi, S.M. Ghasemi, Production of novel vitamin D3 loaded lipid nanocapsules for milk fortification, International journal of food properties, 20 (2017) 2466-2476. https://doi.org/10.1080/10942912.2016.1240690
- [140] I. Katouzian, S.M. Jafari, Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins, Trends in Food Science & Technology, 53 (2016) 34-48. https://doi.org/10.1016/j.tifs.2016.05.002
- [141] K.G.H. Desai, H. Jin Park, Recent developments in microencapsulation of food ingredients, Drying technology, 23 (2005) 1361-1394. https://doi.org/10.1081/drt-200063478
- [142] M.A. Chaves, P.L. Oseliero Filho, C.G. Jange, R. Sinigaglia-Coimbra, C.L.P. Oliveira, S.C. Pinho, Structural characterization of multilamellar liposomes coencapsulating curcumin and vitamin D3, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 549 (2018) 112-121. https://doi.org/10.1016/j.colsurfa.2018.04.018
- [143] S.J. Park, C.V. Garcia, G.H. Shin, J.T. Kim, Development of nanostructured lipid carriers for the encapsulation and controlled release of vitamin D3, Food chemistry, 225 (2017) 213-219. https://doi.org/10.1016/j.foodchem.2017.01.015
- [144] F. Sun, C. Ju, J. Chen, S. Liu, N. Liu, K. Wang, C. Liu, Nanoparticles based on hydrophobic alginate derivative as nutraceutical delivery vehicle: vitamin D3 loading, Artificial Cells, Blood Substitutes, and Biotechnology, 40 (2012) 113-119. https://doi.org/10.3109/10731199.2011.597759
- [145] G. Shu, N. Khalid, Y. Zhao, M.A. Neves, I. Kobayashi, M. Nakajima, Formulation and stability assessment of ergocalciferol loaded oil-in-water nanoemulsions: Insights of emulsifiers effect on stabilization mechanism, Food research international, 90 (2016) 320-327. https://doi.org/10.1016/j.foodres.2016.10.021
- [146] N. Walia, N. Dasgupta, S. Ranjan, L. Chen, C. Ramalingam, Fish oil based vitamin D nanoencapsulation by ultrasonication and bioaccessibility analysis in simulated gastro-

intestinal tract, Ultrasonics sonochemistry, 39 (2017) 623-635. https://doi.org/10.1016/j.ultsonch.2017.05.021

- [147] E. Hasanvand, M. Fathi, A. Bassiri, M. Javanmard, R. Abbaszadeh, Novel starch based nanocarrier for vitamin D fortification of milk: Production and characterization, Food and Bioproducts Processing, 96 (2015) 264-277. https://doi.org/10.1016/j.fbp.2015.09.007
- [148] O. Menéndez-Aguirre, A. Kessler, W. Stuetz, T. Grune, J. Weiss, J. Hinrichs, Increased loading of vitamin D2 in reassembled casein micelles with temperature-modulated high pressure treatment, Food research international, 64 (2014) 74-80. https://doi.org/10.1016/j.foodres.2014.06.010
- [149] D. Danino, Y.D. Livney, O. Ramon, I. Portnoy, U. Cogan, Beta-casein assemblies for enrichment of food and beverages and methods of preparation thereof, Google Patents, 2014. https://doi.org/10.1021/jf060119c
- [150] Y. Luo, Z. Teng, Q. Wang, Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3, Journal of agricultural and food chemistry, 60 (2012) 836-843. https://doi.org/10.1021/jf204194z
- [151] Z. Teng, Y. Luo, Q. Wang, Carboxymethyl chitosan–soy protein complex nanoparticles for the encapsulation and controlled release of vitamin D3, Food chemistry, 141 (2013) 524-532. https://doi.org/10.1016/j.foodchem.2013.03.043
- [152] M. Guttoff, A.H. Saberi, D.J. McClements, Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability, Food Chemistry, 171 (2015) 117-122. https://doi.org/10.1016/j.foodchem.2014.08.087
- [153] A. Almajwal, M. Abulmeaty, H. Feng, N. Alruwaili, A. Dominguez-Uscanga, J. Andrade, S. Razak, M. ElSadek, Stabilization of Vitamin D in Pea Protein Isolate Nanoemulsions Increases Its Bioefficacy in Rats, Nutrients, 11 (2019) 75. https://doi.org/10.20944/preprints201811.0305.v1
- [154] M. Matos, A. Laca, F. Rea, O. Iglesias, M. Rayner, G. Gutiérrez, O/W emulsions stabilized by OSA-modified starch granules versus non-ionic surfactant: Stability, rheological behaviour and resveratrol encapsulation, Journal of Food Engineering, 222 (2018) 207-217. https://doi.org/10.1016/j.jfoodeng.2017.11.009
- [155] N. Khalid, I. Kobayashi, M.A. Neves, K. Uemura, M. Nakajima, H. Nabetani, Encapsulation of cholecalciferol and ergocalciferol in oil-in-water emulsions by different homogenization techniques, European Journal of Lipid Science and Technology, 119 (2017) 1600247. https://doi.org/10.1002/ejlt.201600247
- [156] T. Winuprasith, P. Khomein, W. Mitbumrung, M. Suphantharika, A. Nitithamyong, D.J. McClements, Encapsulation of vitamin D3 in pickering emulsions stabilized by nanofibrillated mangosteen cellulose: Impact on in vitro digestion and bioaccessibility, Food hydrocolloids, 83 (2018) 153-164. https://doi.org/10.1016/j.foodhyd.2018.04.047
- [157] A. Loewen, B. Chan, E.C. Li-Chan, Optimization of vitamins A and D3 loading in reassembled casein micelles and effect of loading on stability of vitamin D3 during storage, Food chemistry, 240 (2018) 472-481. https://doi.org/10.1016/j.foodchem.2017.07.126
- [158] L. Salvia-Trujillo, B. Fumiaki, Y. Park, D. McClements, The influence of lipid droplet size on the oral bioavailability of vitamin D 2 encapsulated in emulsions: an in vitro and in vivo study, Food & function, 8 (2017) 767-777. https://doi.org/10.1039/c6fo01565d
- [159] I. Golfomitsou, E. Mitsou, A. Xenakis, V. Papadimitriou, Development of food grade O/W nanoemulsions as carriers of vitamin D for the fortification of emulsion based food

matrices: a structural and activity study, Journal of Molecular Liquids, 268 (2018) 734-742. https://doi.org/10.1016/j.molliq.2018.07.109

- [160] A.L. Schoener, R. Zhang, S. Lv, J. Weiss, D.J. McClements, Fabrication of plant-based vitamin D 3-fortified nanoemulsions: influence of carrier oil type on vitamin bioaccessibility, Food & function, (2019). https://doi.org/10.1039/c9fo00116f
- [161] V.K. Maurya, M. Aggarwal, A phase inversion based nanoemulsion fabrication process to encapsulate vitamin D3 for food applications, The Journal of Steroid Biochemistry and Molecular Biology, (2019). https://doi.org/10.1016/j.jsbmb.2019.03.021
- [162] S. Jiang, G. Yildiz, J. Ding, J. Andrade, T.M. Rababahb, A. Almajwalc, M.M. Abulmeatyc, H. Feng, Pea Protein Nanoemulsion and Nanocomplex as Carriers for Protection of Cholecalciferol (Vitamin D3), Food and Bioprocess Technology, (2019) 1-10. https://doi.org/10.1007/s11947-019-02276-0
- [163] Y. Tan, J. Liu, H. Zhou, J.M. Mundo, D.J. McClements, Impact of an indigestible oil phase (mineral oil) on the bioaccessibility of vitamin D3 encapsulated in whey protein-stabilized nanoemulsions, Food Research International, 120 (2019) 264-274. https://doi.org/10.1016/j.foodres.2019.02.031
- [164] G. Briault, X. Quenault, C. Poirier, J.-M. Pean, Pharmaceutical composition comprising a strontium salt, vitamin D and A cyclodextrin, Google Patents, 2011. https://patents.google.com/patent/US20110130370A1/en
- [165] D. Soares, M. Noseda, J. Felcman, M.A. Khan, G. Bouet, A.R. Mercê, Supramolecular assemblies of Al 3+ complexes with vitamin D 3 (cholecalciferol) and phenothiazine. Encapsulation and complexation studies in β-cyclodextrin, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 75 (2013) 137-145. https://doi.org/10.1007/s10847-012-0154-4
- [166] J. Szejtli, A. Gerloczy, A. Fonagy, Improvement of the absorption of 3H-Cholecalciferol by formation of its cyclodextrin complex, Die Pharmazie, 38 (1983) 100-101. https://doi.org/10.1007/978-94-009-7855-3\_11
- [167] J.S. Woo, H.G. Yi, J.N. Jin, Complex formulation for preventing or treating osteoporosis which comprises solid dispersion of vitamin D or its derivative and bisphosphonate, Google Patents, 2010. https://doi.org/10.1021/acs.joc.6b01508
- [168] E. Hasanvand, M. Fathi, A. Bassiri, Production and characterization of vitamin D 3 loaded starch nanoparticles: Effect of amylose to amylopectin ratio and sonication parameters, Journal of food science and technology, 55 (2018) 1314-1324. https://doi.org/10.1007/s13197-018-3042-0
- [169] X. Li, L. Lin, Y. Zhu, W. Liu, T. Yu, M. Ge, Preparation of ultrafine fast-dissolving cholecalciferol-loaded poly (vinyl pyrrolidone) fiber mats via electrospinning, Polymer Composites, 34 (2013) 282-287. https://doi.org/10.1002/pc.22402
- [170] X.-Y. Shi, T.-W. Tan, Preparation of chitosan/ethylcellulose complex microcapsule and its application in controlled release of vitamin D2, Biomaterials, 23 (2002) 4469-4473. https://doi.org/10.1016/s0142-9612(02)00165-5
- [171] H. Moeller, D. Martin, K. Schrader, W. Hoffmann, P.C. Lorenzen, Spray-or freeze-drying of casein micelles loaded with vitamin D2: Studies on storage stability and in vitro digestibility, LWT, 97 (2018) 87-93. https://doi.org/10.1016/j.lwt.2018.04.003
- [172] S. Mahdi Jafari, S. Masoudi, A. Bahrami, A Taguchi approach production of spray-dried whey powder enriched with nanoencapsulated vitamin D3, Drying Technology, (2019) 1-13. https://doi.org/10.1080/07373937.2018.1552598

- [173] N. Schafroth, C. Arpagaus, U.Y. Jadhav, S. Makne, D. Douroumis, Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process, Colloids and Surfaces B: Biointerfaces, 90 (2012) 8-15. https://doi.org/10.1016/j.colsurfb.2011.09.038
- [174] Y. Xie, A. WANg, Q. Lu, M. Hui, The effects of rheological properties of wall materials on morphology and particle size distribution of microcapsule, Czech Journal of Food Sciences, 28 (2010) 433-439. https://doi.org/10.17221/49/2009-cjfs
- [175] Y.L. Xie, H.M. Zhou, H.F. Qian, Effect of addition of peach gum on physicochemical properties of gelatin-based microcapsule, Journal of food biochemistry, 30 (2006) 302-312. https://doi.org/10.1111/j.1745-4514.2006.00061.x
- [176] R. Murugesan, V. Orsat, Spray drying for the production of nutraceutical ingredients—a review, Food and Bioprocess Technology, 5 (2012) 3-14. https://doi.org/10.1007/s11947-011-0638-z
- [177] N. Wilson, N. Shah, Microencapsulation of vitamins, ASEAN Food Journal, 14 (2007) 1. https://doi.org/10.1016/b978-0-12-404568-2.00038-8
- [178] A. Goncalves, B.N. Estevinho, F. Rocha, Microencapsulation of vitamin A: A review, Trends in Food Science & Technology, 51 (2016) 76-87. https://doi.org/10.1016/j.tifs.2016.03.001
- [179] P. Ezhilarasi, P. Karthik, N. Chhanwal, C. Anandharamakrishnan, Nanoencapsulation techniques for food bioactive components: a review, Food and Bioprocess Technology, 6 (2013) 628-647. https://doi.org/10.1007/s11947-012-0944-0
- [180] Y.-L. Xie, H.-M. Zhou, X.-H. Liang, B.-S. He, X.-X. Han, Study on the morphology, particle size and thermal properties of vitamin A microencapsulated by starch octenylsucciniate, Agricultural Sciences in China, 9 (2010) 1058-1064. https://doi.org/10.1016/s1671-2927(09)60190-5
- [181] Y.L. Xie, H.M. Zhou, Z.R. Zhang, Effect of relative humidity on retention and stability of vitamin A microencapsulated by spray drying, Journal of food biochemistry, 31 (2007) 68-80. https://doi.org/10.1111/j.1745-4514.2007.00099.x
- [182] S.M. Loveday, H. Singh, Recent advances in technologies for vitamin A protection in foods, Trends in food science & technology, 19 (2008) 657-668. https://doi.org/10.1016/j.tifs.2008.08.002
- [183] Q. Gao, C. Wang, H. Liu, Y. Chen, Z. Tong, Dual nanocomposite multihollow polymer microspheres prepared by suspension polymerization based on a multiple pickering emulsion, Polymer Chemistry, 1 (2010) 75-77. https://doi.org/10.1039/b9py00255c
- [184] W. Zheng, A water-in-oil-in-oil-in-water (W/O/O/W) method for producing drugreleasing, double-walled microspheres, International journal of pharmaceutics, 374 (2009) 90-95. https://doi.org/10.1016/j.ijpharm.2009.03.015
- [185] M.-H. Lee, S.-G. Oh, S.-K. Moon, S.-Y. Bae, Preparation of silica particles encapsulating retinol using O/W/O multiple emulsions, Journal of colloid and interface science, 240 (2001) 83-89. https://doi.org/10.1006/jcis.2001.7699
- [186] M. Daeihamed, S. Dadashzadeh, A. Haeri, M. Faghih Akhlaghi, Potential of liposomes for enhancement of oral drug absorption, Current drug delivery, 14 (2017) 289-303. https://doi.org/10.2174/1567201813666160115125756
- [187] Z. Huang, X. Li, T. Zhang, Y. Song, Z. She, J. Li, Y. Deng, Progress involving new techniques for liposome preparation, asian journal of pharmaceutical sciences, 9 (2014) 176-182. https://doi.org/10.1016/j.ajps.2014.06.001

- [188] G. Bozzuto, A. Molinari, Liposomes as nanomedical devices, International journal of nanomedicine, 10 (2015) 975. https://doi.org/10.2147/ijn.s68861
- [189] V. Nekkanti, N. Venkatesan, G. V Betageri, Proliposomes for oral delivery: progress and challenges, Current pharmaceutical biotechnology, 16 (2015) 303-312. https://doi.org/10.2174/1389201016666150118134256
- [190] W. Liu, A. Ye, H. Singh, Progress in applications of liposomes in food systems, Microencapsulation and microspheres for food applications, Elsevier2015, pp. 151-170. https://doi.org/10.1016/b978-0-12-800350-3.00025-x
- [191] J.-S. Kim, Liposomal drug delivery system, Journal of Pharmaceutical Investigation, 46 (2016) 387-392. https://doi.org/10.1007/s40005-016-0260-1
- [192] L. Sagalowicz, M.E. Leser, Delivery systems for liquid food products, Current Opinion in Colloid & Interface Science, 15 (2010) 61-72. https://doi.org/10.1016/j.cocis.2009.12.003
- [193] N. Naseri, H. Valizadeh, P. Zakeri-Milani, Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application, Advanced pharmaceutical bulletin, 5 (2015) 305. https://doi.org/10.15171/apb.2015.043
- [194] N. Aditya, S. Ko, Solid lipid nanoparticles (SLNs): delivery vehicles for food bioactives, Rsc Advances, 5 (2015) 30902-30911. https://doi.org/10.1039/c4ra17127f
- [195] V.K. Sharma, Solid lipid nanoparticles system: an overview, International Journal of
- Research in Pharmaceutical Sciences, 2 (2016) 450-461.
- https://www.pharmascope.org/index.php/ijrps/article/download/904/847
- [196] M. Geszke-Moritz, M. Moritz, Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies, Materials Science and Engineering: C, 68 (2016) 982-994. https://doi.org/10.1016/j.msec.2016.05.119
- [197] N. Yadav, S. Khatak, U.S. Sara, Solid lipid nanoparticles-a review, Int. J. Appl. Pharm, 5 (2013) 8-18. https://www.tsijournals.com/articles/solid-lipid-nanoparticles-a-review.pdf
- [198] S. Weber, A. Zimmer, J. Pardeike, Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art, European Journal of Pharmaceutics and Biopharmaceutics, 86 (2014) 7-22. https://doi.org/10.1016/j.ejpb.2013.08.013
- [199] S. Gao, D.J. McClements, Formation and stability of solid lipid nanoparticles fabricated using phase inversion temperature method, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 499 (2016) 79-87. https://doi.org/10.1016/j.colsurfa.2016.03.065
- [200] T.C.B.-O. J. Gobbi de Lima, S.C. de Pinho, Characterization and evaluation of sensory acceptability of ice creams incorporated with beta-carotene encapsulated in solid lipid microparticles, Food Science and Technology, 36 (2016) 664-671. https://doi.org/10.1590/1678-457x.13416
- [201] A.M. Nik, S. Langmaid, A.J. Wright, Nonionic surfactant and interfacial structure impact crystallinity and stability of β-carotene loaded lipid nanodispersions, Journal of agricultural and food chemistry, 60 (2012) 4126-4135. https://doi.org/10.1021/jf204810m
- [202] R.H. Müller, U. Alexiev, P. Sinambela, C.M. Keck, Nanostructured lipid carriers (NLC): the second generation of solid lipid nanoparticles, Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement, Springer2016, pp. 161-185. https://doi.org/10.1007/978-3-662-47862-2\_11

- [203] F. Tamjidi, M. Shahedi, J. Varshosaz, A. Nasirpour, Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules, Innovative Food Science & Emerging Technologies, 19 (2013) 29-43. https://doi.org/10.1016/j.ifset.2013.03.002
- [204] A. Beloqui, M.Á. Solinís, A. Rodríguez-Gascón, A.J. Almeida, V. Préat, Nanostructured lipid carriers: Promising drug delivery systems for future clinics, Nanomedicine: Nanotechnology, Biology and Medicine, 12 (2016) 143-161. https://doi.org/10.1016/j.nano.2015.09.004
- [205] P. Jaiswal, B. Gidwani, A. Vyas, Nanostructured lipid carriers and their current application in targeted drug delivery, Artificial cells, nanomedicine, and biotechnology, 44 (2016) 27-40. https://doi.org/10.3109/21691401.2014.909822
- [206] A. Goncalves, B. Gleize, R. Bott, M. Nowicki, M.J. Amiot, D. Lairon, P. Borel, E. Reboul, Phytosterols can impair vitamin D intestinal absorption in vitro and in mice, Molecular nutrition & food research, 55 (2011) S303-S311. https://doi.org/10.1002/mnfr.201100055
- [207] A. Goncalves, S. Roi, M. Nowicki, A. Dhaussy, A. Huertas, M.-J. Amiot, E. Reboul, Fatsoluble vitamin intestinal absorption: absorption sites in the intestine and interactions for absorption, Food chemistry, 172 (2015) 155-160. https://doi.org/10.1016/j.foodchem.2014.09.021
- [208] C.W. Pouton, C.J. Porter, Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies, Advanced drug delivery reviews, 60 (2008) 625-637. https://doi.org/10.1016/j.addr.2007.10.010
- [209] J.A. Yáñez, S.W. Wang, I.W. Knemeyer, M.A. Wirth, K.B. Alton, Intestinal lymphatic transport for drug delivery, Advanced drug delivery reviews, 63 (2011) 923-942. https://doi.org/10.1016/j.addr.2011.05.019
- [210] M. Yao, J. Chen, J. Zheng, M. Song, D.J. McClements, H. Xiao, Enhanced lymphatic transport of bioactive lipids: cell culture study of polymethoxyflavone incorporation into chylomicrons, Food & function, 4 (2013) 1662-1667. https://doi.org/10.1039/c3fo60335k
- [211] H. Harde, M. Das, S. Jain, Solid lipid nanoparticles: an oral bioavailability enhancer vehicle, Expert Opinion on Drug Delivery, 8 (2011) 1407-1424. https://doi.org/10.1517/17425247.2011.604311
- [212] J. Norton, Y.G. Espinosa, R. Watson, F. Spyropoulos, I. Norton, Functional food microstructures for macronutrient release and delivery, Food & function, 6 (2015) 663-678. https://doi.org/10.1039/c4fo00965g
- [213] A.J. Loewen, Optimizing the loading of vitamin A and vitamin D into re-assembled casein micelles and investigating the effect of micellar complexation on vitamin D stability, University of British Columbia, 2014. https://doi.org/10.1016/j.foodchem.2017.07.126
- [214] T.A. Outila, P.H. Mattila, V.I. Piironen, C.J. Lamberg-Allardt, Bioavailability of vitamin D from wild edible mushrooms (Cantharellus tubaeformis) as measured with a human bioassay, The American journal of clinical nutrition, 69 (1999) 95-98. https://doi.org/10.1093/ajcn/69.1.95
- [215] V.J. Jasinghe, C.O. Perera, P.J. Barlow, Bioavailability of vitamin D 2 from irradiated mushrooms: an in vivo study, British Journal of Nutrition, 93 (2005) 951-955. https://doi.org/10.1079/bjn20051416
- [216] J.F. Hillyer, R.M. Albrecht, Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles, Journal of pharmaceutical sciences, 90 (2001) 1927-1936. https://doi.org/10.1002/jps.1143

- [217] P. Jani, G. Halbert, J. Langridge, A. Florence, The uptake and translocation of latex nanospheres and microspheres after oral administration to rats, Journal of Pharmacy and Pharmacology, 41 (1989) 809-812. https://doi.org/10.1111/j.2042-7158.1989.tb06377.x
- [218] A.P. Dowling, Development of nanotechnologies, Materials Today, 7 (2004) 30-35.
- [219] C.-F. Chau, S.-H. Wu, G.-C. Yen, The development of regulations for food nanotechnology, Trends in Food Science & Technology, 18 (2007) 269-280. https://doi.org/10.1016/j.tifs.2007.01.007
- [220] B. Laurent, The Politics of Governance: Nanotechnology and the Transformations of Science Policy, Nanotechnology in Agriculture and Food Science, (2017). https://doi.org/10.1002/9783527697724.ch2
- [221] V. Amenta, K. Aschberger, M. Arena, H. Bouwmeester, F.B. Moniz, P. Brandhoff, S. Gottardo, H.J. Marvin, A. Mech, L.Q. Pesudo, Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries, Regulatory Toxicology and Pharmacology, 73 (2015) 463-476. https://doi.org/10.1016/j.yrtph.2015.06.016
- [222] S. Itkonen, M. Erkkola, C. Lamberg-Allardt, Vitamin D fortification of fluid milk products and their contribution to vitamin D intake and vitamin D status in observational studies— A review, Nutrients, 10 (2018) 1054. https://doi.org/10.3390/nu10081054
- [223] W. Li, H. Peng, F. Ning, L. Yao, M. Luo, Q. Zhao, X. Zhu, H. Xiong, Amphiphilic chitosan derivative-based core–shell micelles: synthesis, characterisation and properties for sustained release of Vitamin D3, Food chemistry, 152 (2014) 307-315 https://doi.org/10.1016/j.foodchem.2013.11.147
- [224] V.K. Maurya, M. Aggarwal, Fabrication of nano-structured lipid carrier for encapsulation of Vitamin D3 for fortification of 'Lassi'; A milk based beverage. The Journal of Steroid Biochemistry and Molecular Biology, (2019) 105429. https://doi.org/10.1016/j.jsbmb.2019.105429

#### Legends:







Figure 2: Physiochemical and physiological processes involved in digestion and absorption of vitamin D in GIT. The fate of vitamin D based nanoscle materials in intestinal lumen. Where  $F_B$ : fraction of the encapsulated vitamin D which released from food matrix into the gastric juice in GIT,  $F_A$ : fraction of the vitamin D which is transported through the intestinal epithelium and then transported to the portal or lymph,  $F_M$ : The fraction absorbed vitamin D which is an active form after bypass the chemical modification by organs such as liver and kidney



Figure 3. Fortification strategy for development of vitamin D enriched food system

| Food processing | Food                 | Impact on vitamin D                              | Reference |
|-----------------|----------------------|--------------------------------------------------|-----------|
|                 |                      |                                                  |           |
| Baking          | Fish, meat           | Significant reduction in cholecalciferol         | [23, 24]  |
|                 | Bread                | 24-31% loss in ergocalciferol                    | [22]      |
| Boiling         | Egg                  | Significant loss in25-<br>hydroxycholecalciferol | [23]      |
|                 |                      | 22-24% loss in vitamin D                         | [22]      |
| Frying          | Mushroom             | Significant loss in ergocalciferol               | [23]      |
|                 | Egg and<br>Margarine | 22-24% loss in vitamin D                         | [22]      |
| Cooking         | Beef                 | 35–42% of the original vitamin D                 | [21]      |
| Pasteurization  | Milk                 | No significant loss                              | [25]      |
| Sterilization   | Milk                 | No significant loss                              | [25]      |
| Solar Drying    | Fish meat            | Significant loss                                 | [26]      |
| Steaming        | Fish oil             | Significant loss                                 | [27]      |
| Oven Drying     | fish meal            | Significant loss                                 | [28]      |
| Smoking         | Fish                 | Significant loss                                 | [29]      |
| Roasting        | Beef                 | Significant loss                                 | [21]      |
|                 |                      |                                                  |           |
|                 |                      |                                                  |           |

### **Table 1:** Effect of processing practices on vitamin D

**Table 2:** Vitamin D fortified foods and fortification level across the globe, where \* is signifies to

 mandatory fortification

| Country | Category | Food name                                                                                                      | Fortification level | Reference            |
|---------|----------|----------------------------------------------------------------------------------------------------------------|---------------------|----------------------|
|         |          |                                                                                                                | For adults          |                      |
| USA     | Dairy    | Fluid milk                                                                                                     | 400 IU/ 946 mL      | X                    |
|         |          | Acidified milk                                                                                                 | 400 IU/ 946 mL      | [52, 61, 65,<br>222] |
|         |          | Cultured milk                                                                                                  | 400 IU/ 946 mL      |                      |
|         |          | Concentrated milk                                                                                              | 400 IU/ 946 mL      |                      |
|         |          | Evaporated milk, fortified                                                                                     | 89 IU/100 g         |                      |
|         |          | Evaporated milk                                                                                                | 89 IU/100 g         |                      |
|         |          | Dry whole milk                                                                                                 | 89 IU/100 g         |                      |
|         |          | Yogurt                                                                                                         | 89 IU/100 g         |                      |
|         |          | Low fat yogurt                                                                                                 | 89 IU/100 g         |                      |
|         |          | Nonfat yogurt                                                                                                  | 89 IU/100 g         |                      |
|         |          | Margarine                                                                                                      | 89 IU/100 g         |                      |
|         |          | Cheese and cheese<br>products<br>(excluding cottage<br>cheese, ricotta<br>cheese, and hard<br>grating cheeses) | 81 IU/30g           |                      |
|         |          | Calcium-fortified<br>fruit juices and<br>drinks                                                                | 100 IU/RACC         |                      |
|         | Cereals  | Enriched Farina                                                                                                | >350 IU/100 g       |                      |
|         |          | Enriched rice                                                                                                  | 550–2200 IU/kg      |                      |
|         |          | Ready-to-eat<br>breakfast cereals                                                                              | 350 IU/100 g        |                      |
|         |          | Enriched macaroni products                                                                                     | 89 IU/100g          |                      |
|         |          | Enriched farina                                                                                                | ≥550 IU/kg          |                      |
|         |          | Enriched noodle                                                                                                | 90 IU/100g          |                      |

|             | products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Enriched<br>vegetable<br>macaroni products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 550–2200 IU/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | Enriched<br>vegetable<br>noodle products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 550–2200 IU/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Other foods | Special dietary<br>meal replacement<br>bars or other type<br>bars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100 IU/ 40g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Beverages   | Orange juice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100 IU/240 ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 201010800   | Malted drink mix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 123 IU/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | Special dietary<br>soy-protein based<br>meal replacement<br>beverages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 140 IU /240ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Dairy       | Milk, milk<br>powder, sterilized<br>milk, (naming the<br>flavour) milk*<br>Condensed milk<br>*Skim milk with<br>added milk solids,<br>partly skimmed<br>milk with added<br>milk solids,<br>(naming the<br>flavour) skim<br>milk, (naming the<br>flavour) partly<br>skimmed milk,<br>(naming the<br>flavour) skim milk<br>with added milk<br>solids, (naming<br>the flavour) partly<br>skimmed milk<br>with added milk<br>solids, (naming<br>the flavour) partly<br>skimmed milk<br>with added milk<br>solids, skim milk,<br>partly skimmed<br>milk, skim milk | 300-400 IU/100g<br>Optional<br>300-400 IU/100g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [52, 66-69,<br>222]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | Other foods<br>Beverages<br>Dairy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | productsEnrichedvegetablemacaroni productsEnrichedvegetablenoodle productsother foodsSpecial dietary<br>meal replacement<br>bars or other type<br>barsBeveragesOrange juiceMalted drink mix<br>and powderSpecial dietary<br>soy-protein based<br>meal replacement<br>beveragesDairyMilk, milk<br>powder, sterilized<br>milk, (naming the<br>flavour) milk*Condensed milk*Skim milk with<br>added milk solids,<br>partly skimmed<br>milk, (naming the<br>flavour) skim<br>milk, (naming the<br>flavour) skim<br>milk, (naming the<br>flavour) skim<br>milk, (naming the<br>flavour) partly<br>skimmed milk<br>solids, (naming the<br>flavour) partly<br>skimmed milk<br>with added milk<br>solids, (naming the<br>flavour) partly<br>skimmed milk<br>with added milk<br>solids, (naming the<br>flavour) partly<br>skimmed milk,<br>solids, (naming the<br>flavour) partly<br>skimmed milk<br>with added milk<br>solids, (naming the<br>flavour) partly<br>skimmed milk,<br>solids, (naming the<br>flavour) partly<br>skimmed milk<br>with added milk<br>solids, (naming the<br>flavour) partly<br>skimmed milk<br>with added milk<br>solids, (naming the<br>flavour) partly<br>skimmed milk<br>with added milk<br>solids, skim milk<br>with added milk<br>solids, skim milk<br>powder | productsproductsEnriched<br>vegetable<br>macaroni products550–2200 IU/kgEnriched<br>vegetable<br>noodle products550–2200 IU/kgOther foodsSpecial<br>meal replacement<br>bars or other type<br>bars100 IU/ 40gBeveragesOrange juice100 IU/240 mlMalted drink mix<br>and powder123 IU/gSpecial<br>dietary<br>soy-protein based<br>meal replacement<br>beverages140 IU /240mlDairyMilk, milk<br>powder, sterilized<br>milk, (naming the<br>flavour) milk*300-400 IU/100gCondensed milk<br>flavour) skim<br>milk (naming the<br>flavour) skim<br>milk, (naming the<br>flavour) partly<br>skimmed milk,<br>solids, (naming<br>the flavour) partly<br>skimmed milk<br>with added milk<br>solids, skim milk<br>horded milk<br>solids, skim |

|             | *Evaporated skim               | 300-400 IU/100g |   |
|-------------|--------------------------------|-----------------|---|
|             | milk, concentrated             |                 |   |
|             | skim milk,                     |                 |   |
|             | evaporated partly              |                 |   |
|             | skim milk,                     |                 |   |
|             | concentrated                   |                 |   |
|             | partly skimmed                 |                 |   |
|             | milk                           |                 |   |
|             | Food represented               | 300-400 IU/100g |   |
|             | for use in a very              |                 |   |
|             | low-energy diet*               |                 |   |
|             | *Meal                          | 300-400 IU/100g |   |
|             | replacements and               |                 |   |
|             | nutritional                    |                 |   |
|             | supplements*                   |                 |   |
|             | Goat's milk, goat's            | Optional        |   |
|             | milk powder                    |                 |   |
|             | Partly skimmed                 | 300-400 IU/100g | 1 |
|             | goat's milk,                   |                 |   |
|             | skimmed goat's                 |                 |   |
|             | milk, partly                   |                 |   |
|             | skimmed goat's                 |                 |   |
|             | milk powder,                   |                 |   |
|             | skimmed goat's                 |                 |   |
|             | milk powder                    |                 |   |
|             | Evaporated goat's              | Optional        |   |
|             | milk                           | 1               |   |
|             | Evaporated partly              | Optional        |   |
|             | skimmed goat's                 |                 |   |
|             | milk, evaporated               |                 |   |
|             | skimmed goat's                 |                 |   |
|             | milk                           |                 |   |
|             | Margarine*                     | 530 IU/100 g    |   |
| Other foods | <sup>*</sup> Liquid whole egg, | Optional        |   |
|             | dried whole egg,               |                 |   |
|             | frozen whole egg,              |                 |   |
|             | liquid yolk, dried             |                 |   |
|             | yolk, frozen yolk,             |                 |   |
|             | liquid egg white               |                 |   |
|             | (liquid albumen),              |                 |   |
|             | dried egg white                |                 |   |
|             | (dried albumen),               |                 |   |
|             | liquid whole egg               |                 |   |
|             | mix, dried whole               |                 |   |
|             | egg mix, frozen                |                 |   |
|             | whole egg mix,                 |                 |   |

|           |       | liquid yolk mix,<br>dried yolk mix,<br>frozen yolk mix |                 |             |
|-----------|-------|--------------------------------------------------------|-----------------|-------------|
|           | -     | Infant formulas                                        | 530 IU/100 g    |             |
|           |       | liquid diets                                           |                 |             |
|           | I     | Latin Amer                                             | rica            |             |
|           |       |                                                        |                 |             |
| Brazil    | Dairy | Dried skimmed                                          | 2000–2400 IU/kg |             |
|           |       |                                                        |                 | [52, 66-69] |
|           |       |                                                        | (°)             |             |
| Guatemala | Dairy | Skim milk                                              | 400–600 IU/L    |             |
|           |       | Whole milk                                             | 400–600 IU/L    |             |
| Honduras  | Dairy | Milk                                                   | 400 IU/L        |             |
|           |       | Margarine                                              | 1500 IU/kg      |             |
| Mexico    | Dairy | Sterilized low-fat<br>milk                             | 400 IU/L        | [52, 66-69] |
|           |       | Pasteurized low-<br>fat                                | 400 IU/L        |             |
|           |       | Milk                                                   | NA              |             |
|           |       | Evaporated whole                                       | 400 IU/L        |             |
|           |       | Margarine/Spreads                                      | 2000 IU/kg      |             |
| Argentina | Dairy | Fluid and dried                                        | 400 IU/L        | [65]        |

| Panama         | Dairy                 | Margarine                                                                                                               | 1500 IU/kg      | [70]        |
|----------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|
| Ecuador        | Dairy                 | Margarine                                                                                                               | 2000-4000 IU/kg | [52, 66-69] |
| Peru           | Dairy                 | Margarine                                                                                                               | 3000 IU/kg      | [70]        |
| Venezuela      | Dairy                 | Dried milk powder                                                                                                       | 400 IU/L        | [70]        |
| Chile          | Dairy                 | Margarine                                                                                                               | 3000 IU/kg      | [70]        |
| Colombia       | Dairy                 | Margarine*                                                                                                              | 200-400 IU/100g | [69. 70]    |
| Uruguay        | Cereals               | Rice                                                                                                                    | NA              | [69]        |
| Ecuador        | Dairy                 | Margarine*                                                                                                              | 200-400 IU/100g | [69]        |
|                |                       | Australia and Nev                                                                                                       | w Zealand       |             |
| New<br>Zealand | Dairy                 | Edible oils and<br>spreads Edible oil<br>spreads and<br>margarine:                                                      | 40-164 IU/10g   |             |
|                | Beverages             | Formulated<br>Beverages                                                                                                 | 100 IU/10g      |             |
|                |                       | Beverages<br>containing no less<br>than 3% m/m<br>protein derived<br>from legumes                                       | 40-164 IU/200ml |             |
|                | S                     | Analogues of<br>yoghurt and dairy<br>desserts<br>containing no less<br>than 3.1% m/m<br>protein derived<br>from legumes |                 | [71]        |
| 3              |                       | Analogues of<br>cheese containing<br>no less than 15%<br>m/m protein<br>derived from<br>legumes                         | 40-164 IU /150g |             |
|                | Analogue<br>Beverages | Orange juice                                                                                                            | 44-123 IU/g     |             |

|           | Analogues    | Beverages                                                    | 40-164 IU/25g      |              |        |
|-----------|--------------|--------------------------------------------------------------|--------------------|--------------|--------|
|           | derived      |                                                              |                    |              |        |
|           | from cereals |                                                              |                    |              |        |
| Australia | Dairy        | Edible oil spreads                                           | 220-640 IU/100g    |              |        |
|           | Cereals      | Breakfast cereals                                            | 100 IU/serving     |              |        |
|           |              | Europe                                                       |                    |              |        |
| UK        | Beverage     | Orange beverage                                              | 1000 IU/240ml      | [69,         | 72-75, |
|           | Dairy        | Margarine                                                    | 282–352.8 IU/100 g | 222]         |        |
|           | Cereals      | Bread                                                        | 200 IU/100g        |              |        |
|           |              | Infant formula                                               | NA                 |              |        |
| Austria   | Dairy        | Milk                                                         | NA                 | $\mathbf{O}$ |        |
| Bulgaria  | Dairy        | Milk                                                         | NA                 |              |        |
| Estonia   | Dairy        | Milk                                                         | NA                 | •            |        |
| France    | Dairy        | Milk                                                         | NA                 |              |        |
| Germany   | Oil          | D-fluorette in first<br>few months of life                   | NA                 |              |        |
| Iceland   | Dairy        | 1.5% fat milk                                                | 20 IU/100g         |              |        |
|           | (Voluantary) | 0.3% fat milk                                                | 15.2 IU/100g       |              |        |
| Sweden    | Dairy        | *Milk with ,3% fat                                           | 38-44 IU/100g      |              |        |
|           | 5            | *Lactose<br>free/vegetable<br>based milk<br>alternative      | 38-44 IU/100g      |              |        |
|           | 9            | *Sour milk<br>products with<br><3% fat                       | 11-44 IU/100g      |              |        |
|           |              | *Lactose<br>free/vegetable<br>based sour milk<br>alternative | 11-44 IU/100g      |              |        |
|           |              | *Margarine, fat<br>spread and fluid<br>margarines            | 780-840 IU/100g    |              |        |

| Norway      | Diary   | Extra low fat milk | 16 IU/100g         |         |
|-------------|---------|--------------------|--------------------|---------|
|             |         | Lactose free milk  | 16 IU/100g         |         |
|             |         | Margarine          | 32 IU/100g         |         |
|             |         | Butter             | 32 IU/100g         |         |
| The         | Cereals | Porridge cereals   | 200 IU-649 IU/100g |         |
| Netherlands |         | Breakfast cereals  | 68 IU–400 IU/100g  |         |
|             | Cookies | Infant cookies     | 120 IU-400 IU/100g |         |
|             | Dairy   | (Fruit)            | 38 IU-50 IU/100g   |         |
|             |         | fromagefrais       |                    |         |
|             |         | Ready-to-drink     | 40 IU-80 IU/100g   |         |
|             |         | Milk porridge      | 20 III/a           |         |
|             |         |                    | 3010/g             |         |
|             | D 1     |                    | 38–38 IU/g         |         |
|             | Drinks  | Instant cacao      | 320 IU/100g        |         |
|             |         | Soja drink junior  | 29.6 IU/100g       |         |
| Finland     | Dairy   | Milk (except       | 40 IU/100g         |         |
|             |         | organic milk)*     |                    |         |
|             |         | Sour milk*         | 40 IU/100g         |         |
|             |         | Yoghurt*           | 40 IU/100g         |         |
|             |         | Vegetable based    | 40 IU/100g         |         |
|             |         | milk alternative   |                    |         |
|             |         | Margarine          | 800 IU/100g        |         |
|             |         | Fat spreads        | 800 IU/100g        | 5 40 7  |
| Turkey      |         | Rice               | NA                 | [69]    |
|             |         | Asia               |                    |         |
| Philippines | Dairy   | Filled milk,       | ≥973IU/L           |         |
|             |         | sweetened          |                    | [76,70] |
|             |         | Margarine          | 3300 IU/kg         | [/6-/9] |
|             |         |                    |                    |         |
| Saudi       | Cereals | Enriched wheat     | ≥551.15 IU/kg      |         |
| Arabia      |         | and                |                    | 1001    |
| Bahrain     | Cereals | Enriched and       | >551.15 IU/kg      | [00]    |
|             |         | enriched           |                    |         |
| Morocco     |         | Morgorino          | 250 200 III/100g   | [70]    |
| MOIOCCO     |         | Dico               | 230-300 10/100g    | [79]    |
| Sui Loulzo  |         | Morgoring          | 200 HI/100~        | [69]    |
| SII Lalika  |         | wargarine          | 500 IU/ 100g       | [07]    |
| India       | Oil     | Vanaspati          | 44 IU- 64 IU/100g  | [48]    |
|             |         |                    |                    |         |

|            |         | Edible oil                   | 44 IU– 64 IU/100g |                       |
|------------|---------|------------------------------|-------------------|-----------------------|
|            | Dairy   | Milk                         | 200 -300 IU/L     |                       |
| Indonesia  |         | Margarine*                   | 2500-3500 IU/kg   |                       |
| Thialand   |         | Sweetened<br>condensed milk* |                   | [70, 77-79,<br>81-89] |
| Malaysia   | Dairy   | Condensed milk               | 111 IU/100 g      |                       |
|            |         | Malted milk<br>Powder        | 667 IU/100g       | C.                    |
|            |         | Liquid foods                 | 100 IU/100g       |                       |
|            |         | Dried milk                   | 333 IU/100g       |                       |
|            | Cereals | Bread                        | 83 IU/100g        |                       |
|            |         | Breakfast cereals            | 333 IU/100g       |                       |
|            |         | Wheat Flour                  | 167 IU/100g       |                       |
|            |         | Extract of meat              | 2000 IU/100g      |                       |
|            |         | Other solid food             | 167 IU/100g       |                       |
| Singapore  |         | Food not specified           | 400 IU/serving    |                       |
| Brunei     |         | Food not specified           | 50 IU/ serving    |                       |
| Darussalam |         |                              |                   |                       |
|            | 1       | Africa                       |                   | 570.003               |
| Zimbabwe   |         | Cooking oil                  | NA                | [70, 90]              |
| Nigeria    |         | Margarine                    | NA                | [69]                  |
|            |         |                              |                   |                       |

 Table 3: Microencapsulation techniques widely adopted for development of vitamin D-nanomaterials

| Microencaps<br>ulation            | Preparation method                            | Matrix composition                                                                                            | References |
|-----------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------|
| techniques                        |                                               |                                                                                                               |            |
| Liposome                          | Homogenization                                | Phosphatidylcholine                                                                                           | [97]       |
|                                   | Thin film hydration method                    | L-α-Phosphatidylcholine,<br>L-αphosphatidyl - DL glycerol<br>sodium salt                                      | [120]      |
|                                   | Thin film hydration method                    | 1-O-Octadecyl-2-O-benzyl-3-<br>methylthio-1,2-propanediol                                                     | [121]      |
|                                   | Supercritical antisolvent-based<br>Technology | Hydrogenated phosphatidylcholine                                                                              | [123]      |
|                                   | Film hydration-sonication technique           | Soybean phosphatidylcholine                                                                                   | [127]      |
|                                   | Homogenization                                | Methylparaben and<br>propylparaben and disodium<br>edetate                                                    | [129]      |
|                                   | Film hydration-sonication                     | 1,2-dimyristoyl-sn-glycero-3-                                                                                 | [130]      |
|                                   | technique                                     | phosphocholine                                                                                                |            |
|                                   | Hydration                                     | Xanthan and guar gums                                                                                         | [142]      |
| Solid lipid<br>nanoparticles      | Hot homogenization technique                  | Glyceryl tri palmitate,<br>Polyoxyethylene and<br>Sorbitanmonolaurate                                         | [138]      |
| Nanostructure<br>d lipid carriers | Phase-inversion temperature                   | Capric and caprylic acid<br>triglyceride,<br>Polyethylene glycol hydroxyl<br>stearate and<br>Soybean lecithin | [139]      |
| )                                 | Phase-inversion temperature                   | Oleic acid,<br>Glycerol monostearate and<br>Tween 80                                                          | [143]      |
| Emulsion<br>system                | Microchannel emulsification                   | Tween 20 and<br>decaglycerolmonolaurate (Sunsoft<br>A-12) or β-lactoglobulin.                                 | [119]      |
|                                   | Homogenizing                                  | Oleoyl alginate ester                                                                                         | [144]      |
|                                   | Homogenizing                                  | Quillajasaponin, Triglycerides in MCT                                                                         | [118]      |

| Homogenization method         | Sodium caseinate,                | [145] |
|-------------------------------|----------------------------------|-------|
|                               | Lecithin,                        |       |
|                               | Decaglycerolmonooleate           |       |
| Wash out                      | Tween 20,                        | [146] |
| Method followed by            | Fish oil                         |       |
| ultrasonication               |                                  |       |
| Solvent evaporation assisted  | <i>N,N</i> -                     | [223] |
| lyophilization                | dimethylhexadecylcarboxymethy    |       |
|                               | l chitosan.                      |       |
| Sonication                    | High amylose corn starch and     | [147] |
|                               | Alpha-amylase                    |       |
| Acidification assisted with   | Whey protein isolate             | [108] |
| ultrasonication               |                                  |       |
| High pressure treatment       | Casein                           | [148] |
| Microfluidization             | Whey protein concentrate,        | [98]  |
|                               | Calcium caseinate and            |       |
|                               | Sodium caseinate                 |       |
| Acidification                 | B-casein                         | [149] |
| Ultra-high-pressure           | Tween-80 and Casein              | [112] |
| homogenization                |                                  |       |
| Phase                         | Zein and Carboxymethyl           | [150] |
| Separation method assisted    | chitosan                         |       |
| lyophilization                |                                  |       |
| Isoelectric precipitation     | Carboxymethyl chitosan and       | [151] |
|                               | Soy protein isolate              |       |
|                               |                                  |       |
| Micro fluidization            | Tween 20, 60 or 80 and           | [110] |
|                               | Medium chain triglycerides       |       |
|                               |                                  |       |
|                               | MCT 1 T 20 40 60 90              | [150] |
| Spontaneous emulsification    | MC1 011, 1 ween- 20, 40, 60, 80  | [152] |
|                               | and 85                           |       |
| Sonication                    | Pea protein isolate              | [153] |
| High pressure homogenization  | Orange oil starch and miglyol    | [153] |
| ringh pressure homogenization | 812                              | [154] |
| High pressure homogenization  | Souhean oil/ olive oil/or medium | [155] |
| The pressure nonlogenization  | ship triglycoride and Twoon      | [155] |
|                               | 20                               |       |
| High_pressure                 | Cellulose                        | [156] |
| homogenization                | Centulose                        | [130] |
| Illtra-high-pressure          | Casein                           | [157] |
| homogenization                |                                  |       |
| Microfluidization             | Corn oil and tween 80            | [158] |
| High pressure homogenization  | Polysorbate 20 tween 20 and      | [150] |
| mgn pressure noniogenization  | soupean legithin                 |       |
|                               | soyocan <u>icerunn</u>           |       |

|                | High-pressure homogenization | Corn/fish/ flaxseed oil and pea          | [160] |
|----------------|------------------------------|------------------------------------------|-------|
|                |                              | protein                                  |       |
|                | Phase inversion              | Caprylic-/capric triglyceride,           | [161] |
|                |                              | Leciva S70, Kolliphor <sup>®</sup> HS 15 |       |
|                | pH-shifting and sonication   | Pea protein isolate                      | [162] |
|                | combined treatment           |                                          |       |
|                | Sonication and ph-shifting   | Pea protein isolate                      | [153] |
|                | Homogenization               | Corn oil and whey protein                | [163] |
|                |                              | isolate                                  |       |
| Molecular      | Chemical modification        | Cyclodextrin,                            | [164] |
| complexes      |                              | Strontium salt                           |       |
|                | Solvent evaporation method   | $\beta$ -cyclodextrin                    | [165] |
|                | Solvent evaporation method   | $\beta$ -cyclodextrin                    | [117] |
|                | Solvent evaporation method   | $\beta$ -cyclodextrin                    | [166] |
|                | Chemical modification        | Bisphosphonate,                          | [167] |
|                |                              | cyclodextrin                             |       |
|                | Sonication                   | Amylose and amylopectin                  | [168] |
|                | Complex coacervation         | Carbohydrate (cress                      | [162] |
|                |                              | seed mucilage, CSM) and a                |       |
|                |                              | protein (gelatin)                        |       |
| Electrospinnin | -                            | Polyvinylpyrrolidone                     | [169] |
| g              |                              |                                          |       |
| Spray drying   | -                            | Chitosan                                 | [170] |
|                | -                            | Casein                                   | [171] |
|                | -                            | Whey protein                             | [172] |