This article has been reviewed and accepted for publication. Please note that it has not been copyedited, proofread, or typeset and is not a final version.

Vitamin D in the Foot and Ankle

Paul James Baggott, MBBS*

Karan Malhotra, MBChB(Hons), FRCS (Tr & Orth)*

Julian Livingstone, BSc, FCPM, FFPM, RCPSG(Glasg)*

*Foot and Ankle Unit, Barnet and Chase Farm Hospitals, Royal Free London NHS Foundation Trust, Barnet, UK.

Corresponding author: Karan Malhotra, MBChB(Hons), FRCS (Tr & Orth), Foot and Ankle Unit, Barnet and Chase Farm Hospitals, Wellhouse Lane, Barnet, EN5 3DJ, UK. (E-mail: karan@doctors.org.uk)

Abstract

This manuscript reviews the role of Vitamin D and its deficiency in pathology of the foot and ankle. Vitamin D is an essential vitamin which targets a number of tissues and organs, and plays an important role in calcium homeostasis. Vitamin D deficiency is common, particularly at higher latitudes where there is reduced exposure to ultraviolet B radiation.

The effects of Vitamin D deficiency have been extensively studied but only a small portion of the literature has focused on the foot and ankle. Most of the evidence regarding the foot and ankle consists of retrospective studies which cannot determine whether Vitamin D deficiency is in fact the cause for the pathologies being investigated.

The available evidence suggests that insufficient levels of Vitamin D may result in an increased incidence of foot and ankle fractures. The effects of Vitamin D deficiency on fracture healing, bone marrow edema syndrome, osteochondral lesions of the talus, strength around the foot and ankle, tendon disorders, elective foot and ankle surgery, and other foot and ankle conditions are less clear.

Based on the available evidence, we are unable to recommend routine testing or supplementation of Vitamin D in patients presenting with foot and ankle pathology. However, Vitamin D supplementation is cheap, safe and may be of benefit in patients at high risk of deficiency. When it is supplemented the evidence suggests calcium should be cosupplemented. Further high-quality research is needed into the effect of Vitamin D in the foot and ankle. Cost-benefit analyses of routine testing and / or supplementation of Vitamin D for foot and ankle pathology are also required.

Introduction

Vitamin D is an essential vitamin, its active form in the human body is 1,25-dihydroxyvitamin D. It targets specific Vitamin D receptors (VDRs) modifying expression of over 200 genes in at least 36 different tissues throughout the body.¹ Apart from its well-known role in calcium homeostasis, it has various musculoskeletal, neuromuscular, and immune functions.¹⁻⁷ Its musculoskeletal targets include bone, bone marrow, cartilage, muscle, and osteoblasts.⁸⁻¹⁰ Its neuromuscular effects include increasing muscle strength and contractility, improving calcium handling and increasing calmodulin synthesis.^{4,11} Its immunological effects include

This article has been reviewed and accepted for publication. Please note that it has not been copyedited, proofread, or typeset and is not a final version.

regulation of both cell-mediated and humoral immunity. Vitamin D has targets in Blymphocytes and CD4 T-lymphocytes, effecting antibody production and immune response. It also regulates CD8 T-lymphocytes which may play a role in suppressing autoimmunity.⁵ Figure 1 is a summary of the production and actions of Vitamin D in the body.

In many regions of the world, Vitamin D deficiency is thought to afflict a significant proportion of the population.^{12,13} There are three sources of Vitamin D: exposure to sunlight, natural diet, and dietary supplementations. Vitamin D is manufactured in the skin upon exposure to direct sunlight: ultraviolet B radiation (UVR) converts 7-dehydrocholesterol to pre-Vitamin D₃ which in turn is metabolized in the liver to 25-hydroxyvitamin D (25(OH)D), or stored.^{3,9,13} Most adults do not obtain enough Vitamin D from sunlight alone; there is no safe dose of UVR that can provide adequate Vitamin D production without a significantly increased risk of skin cancer.¹⁴ Dietary supplementation is therefore essential; this requires a balanced diet with food high in vitamin D, and in many countries cereals and foods are fortified with Vitamin D.¹⁵ Despite this, patients in higher latitudes are still at risk of deficiency and may require additional supplementation.

Over the last decade Vitamin D deficiency and its varied effects, particularly in calcium homeostasis and bone health, have been increasingly recognized and supplementation has been recommended by a number of national and international bodies.^{13,14,16} Its role in osteoporosis and fractures has been well established and numerous studies have examined the levels of Vitamin D in fracture healing and other musculoskeletal pathology.^{4,10,11,17-22} However, the role of Vitamin D in pathology of the foot and ankle has been less extensively studied. A number of websites, internet forums, and even comments in journals suggest a

This article has been reviewed and accepted for publication. Please note that it has not been copyedited, proofread, or typeset and is not a final version.

relationship between Vitamin D deficiency and a variety of foot and ankle disorders, such as plantar fasciitis.²³ However, these purported links are often unreferenced or based on anecdote and Vitamin D has not been definitively linked to the majority of foot and ankle conditions.

This manuscript sets out to review the literature on Vitamin D and its deficiency, particularly with regard to pathology of the foot and ankle. We present the available evidence to highlight areas of ongoing research, areas with deficient research, and to attempt to draw conclusions regarding the need for routine testing and supplementation of Vitamin D in the foot and ankle population.

Methods

For this study we performed a review of the literature. We performed a search on multiple databases including: United States National Library of Medicine Online Database (Pubmed), MEDLINE and Ovid Online. The search was restricted to fully published articles, written in the English language and pertaining to humans. We searched for the keywords 'Vitamin D' paired with: 'foot', 'ankle', 'stress fractures', diabetic foot', 'bone marrow edema syndrome', 'talus', 'tendon', and 'plantar fasciitis'. The papers were screened for eligibility and clinical relevancy based on title and abstract. Papers were excluded if they did not actually pertain to the search criteria, if they were for opinion articles, letters or commentary, or if they were purely basic science papers. For those papers deemed eligible for inclusion, the full papers were obtained. Papers were considered to have met our inclusion criteria if they were

This article has been reviewed and accepted for publication. Please note that it has not been copyedited, proofread, or typeset and is not a final version.

prospective or retrospective studies examining the relationship between Vitamin D and the foot and ankle. Further cross referencing was performed if the included papers referenced relevant articles not picked up by our initial search criteria. Figure 2 is a flow diagram of the results of our search criteria.

On review of the literature it became apparent that there was a significant paucity of data and significantly varied methodologies between the small number of studies. Furthermore, most studies pertaining to the foot and ankle included only a small number of patients, were retrospective studies, and comprised Level IV evidence; this precluded any in-depth analysis. We present the currently available literature to highlight our current understanding and areas for further research. We also present a summary of current concepts in Vitamin D deficiency and its systemic effects to put into context the available data in the foot and ankle setting.

Findings

Vitamin D Deficiency

Vitamin D deficiency is a global health problem thought to effect up to 1 billion people world-wide.^{13,24} There is significant geographical and seasonal variation in the prevalence of Vitamin D deficiency: it is more prevalent in higher latitudes and in the winter months due to decreased UVR,²⁵ where up to 50% of the adult population may be deficient.^{12,13} There is ongoing debate about what the threshold for classifying deficiency should be. The threshold currently used for diagnosing deficiency in the United Kingdom (UK) is <25 nmol/l (for

This article has been reviewed and accepted for publication. Please note that it has not been copyedited, proofread, or typeset and is not a final version.

conversion to µg/l, divide by 2.5). This is the lower limit, below which evidence suggests the risk of rickets in children and osteomalacia, in adults, increases.¹⁴ The Department of Health and Social Care in the UK recommends that serum 25(OH)D levels should be maintained above this level.²⁶ The Endocrine Task Force Group states levels of 25(OH)D between 30 nmol/l and 50 nmol/l are thought not to affect bone health, but may affect other tissues, including muscle metabolism.²⁷ In the United States of American (USA) the National Institutes of Health (NIH) have recommended that Vitamin D >50 nmol/l may be considered sufficient, levels between 30 and 50 nmol/l are insufficient for bone and overall health, and levels < 30 nmol/l are deficient and associated with risk of rickets / osteomalacia.¹⁵

Other groups calculate deficiency differently, by determining the level of 25(OH)D at which the concentration of immunoreactive parathyroid hormone (iPTH) begins to rise. Using this definition deficiency has been defined as <50 nmol/l and insufficiency between 50 nmol/l and 75 nmol/l.²⁸ These values are defined for adults as Vitamin D levels are not routinely measured in children and so it is difficult to identify definite thresholds for treatment.¹⁴ Table 1 highlights the varying definitions of Vitamin D deficiency.

Various studies use differing definitions of Vitamin D deficiency in their analysis and grouping of patients, which makes direct comparisons between studies difficult. Regardless of cut-off values, Vitamin D deficiency is prevalent in patients undergoing orthopedic surgery. Authors at similar latitudes (39°N to 40°N) have found a wide variation in the prevalence of Vitamin D deficiency in their elective patients: 17% to 81% when deficiency is defined as <50 nmol/l (Level of evidence: IV, for both studies).^{29,30} Other authors have found

6

67% to 83% of their elective foot and ankle patients had Vitamin D deficiency (<75 nmol/l) at latitudes 44.5°N to 52.3°N (Level of evidence: IV, for both studies).^{31,32}

General effects of Vitamin D deficiency

Vitamin D deficiency has health implications for pregnancy and lactation, childhood growth, cancer, cardio vascular disease, cerebrovascular disease, immune modulation, autoimmune disease, multiple sclerosis, age related macular degeneration, rheumatoid arthritis, systemic lupus erythematous (SLE), cognition, depression and schizophrenia.^{4,5,33} The literature is frequently inconsistent and consists of observational studies or randomized controlled trials that are often inconclusive.²⁶ However, Vitamin D deficiency has been shown to predispose to infections (Level of evidence: IV),^{33,34} and a meta-analysis has demonstrated that supplementation of Vitamin D can help prevent respiratory infection, particularly in those severely deficient (< 25 nmol/l) (Level of evidence: II).³⁵ There is therefore good quality evidence to support the role of Vitamin D supplementation in prevention of respiratory infections.

The musculoskeletal system

There is an established evidence base for the benefits of Vitamin D supplementation in childhood specifically with regard to rickets, osteomalacia, muscle strength and falls.^{10,26,36}. Vitamin D is important in preventing nutritional rickets¹⁴ and osteomalacia³⁷. It also acts on muscles via VDRs and enzyme CYP27B1 (1-alpha-hydroxylase).⁴ Higher levels of Vitamin D

have been found to improve muscle function and increase the relative number and size of type 2 muscle fibres.^{8,36} Correcting Vitamin D deficiency can reverse associated muscle weakness.¹⁷ Vitamin D supplementation is also beneficial in reducing falls risk through its impact on muscle strength.^{13,36,38} Severe Vitamin D deficiency has been associated with generalized musculoskeletal pain in adults,¹⁹ but the same may not hold true in children.³⁹

Vitamin D supplementation has been shown in animal models to promote bone healing and callus formation, and deficiency has been shown to impair bony healing.^{9,40} There are corollaries in human clinical studies, where supplementation of 800 IU/day of Vitamin D and 1 g/day calcium has been shown in a randomized controlled trial to increase early callus formation in proximal humeral fractures (Level of evidence: II).⁴¹ There is also a suggestion that deficiency may increase time to union in spinal fusion (Level of evidence: IV).⁴² However, Vitamin D deficiency and supplementation has not, in itself, been shown to alter the risk of non-union of fractures.^{20,21,43} A meta-analysis has similarly failed to demonstrate overall significant benefit to fracture healing when a cut-off of 75 nmol/l was used to define insufficiency (Level of evidence: II).¹⁸

A prospective longitudinal study looking at adolescent girls demonstrated a higher rate of stress fractures in participants with a lower Vitamin D (Level of evidence: III).⁴⁴ A Cochrane review has suggested that supplementation of Vitamin D and calcium may reduce the risk of stress fractures, particularly in the older age group (Level of evidence: II).⁴⁵ These findings have been corroborated by a number of military studies (Level of evidence: II).^{46,47}

Bischoff-Ferrari *et al.* performed a meta-analysis of 31,022 patients with fractures and found that there was a non-significant 10% reduction in future hip fracture and 7% reduction in

8

This article has been reviewed and accepted for publication. Please note that it has not been copyedited, proofread, or typeset and is not a final version.

non-vertebral fractures when taking 800 IU/day of Vitamin D (Level of evidence: II).²² A systematic review attempted to determine if Vitamin D deficiency was associated with poorer outcome after non-foot-and-ankle orthopedic surgery. Most studies included in their review were methodologically flawed, but the authors concluded that taken together it suggested that Vitamin D deficiency may be associated with non-specifically reduced outcomes of surgery (Level of evidence: III).⁴⁸

The evidence therefore supports co-supplementation of Vitamin D (800 IU/day) and calcium in patients with deficiency to prevent rickets / osteomalacia, improve muscle strength, reduce risk of falls and fractures in the elderly and reduce the risk of stress fractures. Further work is required to determine whether supplementation improves fracture healing.

Diabetes and the diabetic foot

Vitamin D has also been studied in the context of diabetes mellitus. Soderstrom *et al.* examined Vitamin D levels in diabetic neuropathy and found that Vitamin D can help improve pain in this setting (Level of evidence: III).⁶ They speculated that the effect may have been as a result of the effect Vitamin D concentration on calcium levels. However, there are also associations between glycemic control and Vitamin D and it was not clear whether increased levels of Vitamin D were simply a marker of improved health(Level of evidence: IV).^{6,49} Yoho *et al.* examined levels of Vitamin D in normal patients *versus* patients with longstanding diabetes. Although their entire population group had Vitamin D insufficiency, the degree of insufficiency was greater in the diabetic group (Level of

This article has been reviewed and accepted for publication. Please note that it has not been copyedited, proofread, or typeset and is not a final version.

evidence: III).⁵⁰ There was no difference, however, between Vitamin D level and presence or absence of Charcot neuro-arthropathy in diabetic patients.⁵⁰

Other studies have examined diabetic foot infections and found lower levels of Vitamin D were associated with a higher infection and ulcer rate.^{7,51,52} Tiwari *et al.* found the infection rate was four times higher in deficiency of Vitamin D and hypothesized that this may be due to immune cell suppression (Level of evidence: III).⁵¹ However, as these were all retrospective comparative studies, none of these papers could ascertain that it was indeed the Vitamin D deficiency which resulted in the increased infection rate, rather than other confounding factors such as glycemic control and neuropathy. Conversely, Afarideh *et al.* found a higher Vitamin D level in patients with diabetic foot ulcers, but their entire study population was Vitamin D deficient which is a significant confounding factor (Level of evidence: III).³⁴

The currently available evidence demonstrates that Vitamin D deficiency is prevalent in patients with diabetic foot disease, and suggests lower levels are associated with increased risk of infection and ulceration. However, the evidence is insufficient to determine whether supplementation alters outcome and further work is required in this area.

Fractures around the foot and ankle

Vitamin D is known to help prevent fractures,²² however, whether supplementation of Vitamin D improves fracture healing is less clear. One study reports a high prevalence (84%) of endocrine abnormalities in patients with unexplained fracture non-unions (Level of

This article has been reviewed and accepted for publication. Please note that it has not been copyedited, proofread, or typeset and is not a final version.

evidence: IV),⁴³ yet no difference in Vitamin D deficiency prevalence was found between groups with impaired bone union and normal fracture healing in two other studies (Level of evidence: III, for both studies).^{20,21}

Vitamin D insufficiency appears common in low energy fractures. Smith *et al.* compared patients with low energy foot and ankle fractures to patients with ankle sprains and found Vitamin D levels to be significantly lower in the fracture group (Level of evidence: III).⁵³ They also found that the fracture risk in the Vitamin D deficiency increased with smoking, obesity, and other medical risk factors.⁵³ By contrast, another prospective study which compared metatarsal fractures to ankle sprains, found that Vitamin D levels were similarly low between the two groups and concluded Vitamin D levels cannot predict risk of metatarsal fractures (Level of evidence: III).⁵⁴ Clutton and Perera report on 40 fifth metatarsal fractures and found only 35% had sufficient Vitamin D levels (>50 nmol/I) (Level of evidence: IV).⁵⁵ However, there was no control group and therefore causality cannot be inferred from this study. Finally, Shimasaki *et al.* performed a retrospective study on 37 football players with injuries and concluded that a lower Vitamin D correlated with an increased risk of metatarsal stress fractures after controlling for age and body mass index (Level of evidence: III).⁵⁶

There are a plethora of case reports attributing fracture healing to Vitamin D supplementation (Level of evidence: V).⁵⁷ However, few of these prove causation and the evidence base for appraising the role of Vitamin D in foot and ankle fractures lacks randomized controlled trials in humans, and instead relies heavily on Level IV evidence and animal studies (Level of evidence: IV).⁵⁸ Although Vitamin D deficiency does appear to be

11

This article has been reviewed and accepted for publication. Please note that it has not been copyedited, proofread, or typeset and is not a final version.

associated with increased risk of fractures, it is unclear whether this is the cause, or a reflection of some other deficiency.

Osteochondral lesions of the talus

Telleria *et al.* compared patients presenting with osteochondral lesions of the talus (OLT) to patients with ankle sprains in the summer months over a 9-year period (Level of evidence: III). They found a statistically significant difference in Vitamin D between the groups with deficiency being far more common in the OLT group.⁵⁹ This study does have a few limitations, however. They used the more stringent cut-off for low Vitamin D (<75 nmol/l), and if their data is analyzed with reference to values of 50 nmol/l then the difference is no longer statistically significant. Furthermore, their ankle sprain group was older by 12.6 years. Finally, it is not clear how Vitamin D levels impacted on their later outcomes and therefore we cannot assess the benefit of Vitamin D supplementation in these patients.

Strength around the foot and ankle

The evidence for the role of Vitamin D in foot and ankle strength is unclear. Bird *et al.* carried out a study with 88 older adult patients and found a seasonal variation in Vitamin D of 15%, a seasonal variation in physical activity of 13%, and a seasonal variation of ankle dorsiflexion strength of 8%, although quadriceps strength stayed the same (Level of evidence: IV).⁶⁰ They performed a regression analysis and found both age and season correlated to ankle strength. The Vitamin D levels peaked 4 weeks later than other variables, which is likely due to the

time needed for 25(OH)D to be formed after increasing sunlight exposure.⁶⁰ This does however suggest that the increase in strength was seen due to the increased activity in warmer weather, rather than the increased level of Vitamin D which came later. The authors acknowledge this and further highlight that most falls occurred in the winter due to trips, which they speculate may be linked to inability to clear obstacles on account of weaker ankle dorsiflexion, but cannot attribute this to Vitamin D deficiency.⁶⁰

In another study involving 20 patients with type 2 diabetes mellitus, no significant relationship was found between ankle plantarflexion strength and Vitamin D (Level of evidence: IV, for results regarding Vitamin D).⁶¹ Therefore, the evidence linking Vitamin D levels and strength around the foot and ankle is not of sufficient quality to be able to draw any firm conclusions regarding its effects, and the need for monitoring or supplementation.

Tendons and soft tissues around the foot and ankle

Vitamin D may have a role in tendon healing,² however there is a lack of high quality evidence available to assess this. Although not specific to the foot and ankle, there have been case reports of spontaneous bilateral quadriceps tendon ruptures in patients with secondary hyperparathyroidism (either due to renal dialysis or Vitamin D deficiency) (Level of evidence: V).^{62,63} In these series, however, there was no histology to confirm the pathology, and it is not possible conclude that it was the Vitamin D deficiency which caused the ruptures.

This article has been reviewed and accepted for publication. Please note that it has not been copyedited, proofread, or typeset and is not a final version.

There is currently only one study looking the role of Vitamin D in plantar fasciitis and Achilles tendinopathy. In this retrospective series, the authors found very low Vitamin D levels (<15 nmol/l) and hyperparathyroidism correlated with an increased incidence of plantar fasciitis in children (Level of evidence: IV, for role of Vitamin D).⁶⁴ The study was performed at a rheumatology clinic, so there may have been other relevant comorbidities and it is not clear if the findings are due to Vitamin D deficiency, some other deficiency, or parathyroid hormone excess. In looking at subclinical Achilles tendon enthesopathy in patients with inflammatory bowel disease, Kimyon *et al.* found no association between Vitamin D and tendon enthesopathy in a sample of 100 patients (Level of evidence: III).⁶⁵ There is therefore insufficient evidence to confirm whether Vitamin D deficiency plays a role in plantar fasciitis or Achilles tendinopathy and whether supplementation can impact the outcome of these conditions.

Outcome of foot and ankle surgery

The evidence for the role of Vitamin D in elective foot and ankle surgery is inconclusive. Moore *et al.* conducted a retrospective case-control study into the risk factors for non-union in elective foot and ankle surgery and found the non-union rate in patients with Vitamin D deficiency was eight times greater than those without (Level of evidence: III).⁶⁶ Conversely, despite noting a significant prevalence of Vitamin D deficiency, Michelson *et al.* report that the level of Vitamin D did not affect their outcome and union rates in elective foot and ankle surgery.³¹

This article has been reviewed and accepted for publication. Please note that it has not been copyedited, proofread, or typeset and is not a final version.

In a retrospective study of 98 patients, Warner *et al.* demonstrated ankle fracture outcomes after operative fixation (measured at 1 year follow up) were inferior in patients with low Vitamin D (<50 nmol/l) perioperatively (Level of evidence: IV).⁶⁷

Other foot and ankle pathology

Calcaneal stiffness has been found to be greater with higher Vitamin D concentrations in adolescents (Level of evidence: IV).⁶⁸ This study however did not stratify for activity, which is an important confounding variable as calcaneus stiffness is also a sensitive marker of physical activity.⁶⁹ This may be due to repetitive loading, rather than levels of Vitamin D.

There are other purported associations between Vitamin D and various foot and ankle pathologies, such as heel pain, Sever's disease (calcaneal apophysitis), and other conditions. However, to our knowledge there is no conclusive evidence to suggest a link with any other foot and ankle conditions.

Bone Marrow Edema Syndrome

Bone marrow edema syndrome (BMES) is a condition that is not fully understood. The main features are a sudden onset of pain in the lower extremity and a hyper-intense but ill-defined osseous signal on magnetic resonance imaging. The cause is unknown but involves increased bone turnover. Horas *et al.* conducted a retrospective study over 4 years and found 84% of patients with BMES (26 out of 31) had Vitamin D deficiency (defined as <75 nmol) (Level of evidence: IV).⁷⁰ However, there was no comparator group to determine

This article has been reviewed and accepted for publication. Please note that it has not been copyedited, proofread, or typeset and is not a final version.

whether the rate of Vitamin D deficiency was any different than in the general population. A smaller study into patients with BMES of the foot and ankle similarly found a high prevalence Vitamin D insufficiency (<75 nmol/l), osteoporosis and osteopaenia (Level of evidence: IV).⁷¹ They recommend that patients with BMES are referred for investigation and treatment of bone mineral density, however no causality could be drawn between symptoms and Vitamin D level, and it remains unclear whether Vitamin D supplementation has any benefit in BMES.

Supplementation of Vitamin D

Diet is an important source of Vitamin D and it is accepted that a balanced diet should include foods naturally rich in, or fortified with Vitamin D.¹⁵ Vitamin D intake can be in the form of either D₂ or D₃ is measured in either International Units (IU) or micrograms (μ g) (1 IU = 0.025 μ g / 1 μ g = 40 IU). The recommended Reference Nutrient Intake for the UK population is 400 IU/day.²⁶ The Global Consensus Recommendations on Prevention and Management of Nutritional Rickets recommends 600 IU/day of Vitamin D for children over 1 year of age and adults, and at least 500 mg/day of calcium.¹⁴ In the USA the NIH suggests a recommended dietary allowance of 600 IU/day for all ages from 1 to 70 years (including pregnant and lactating women) and 800 IU/day for those over 70 years of age.⁷² These quantities are often not achieved through diet alone and the NIH in the USA and the National Health Service (NHS) in the UK recommend daily supplementation of 400 IU/day of Vitamin D for at risk groups.^{72,73}

If adherence is good, daily supplementation of Vitamin D has been demonstrated as more effective than a large single dose.⁷⁴ Vitamin D toxicity is rare, but can be seen in levels >250 nmol/l, when it is often associated with hyper-calciuria and low parathyroid hormone levels. Doses of up to 4000 IU/day have been demonstrated as safe, and one study suggested toxicity may not occur unless daily doses approach 40,000 IU.^{12,14,24,75}

There is as yet no firm consensus on the specific quantity of supplementation required to prevent bone disease. It is however agreed that Vitamin D should be co-supplemented with calcium. National UK guidelines for prevention of osteoporosis recommend Vitamin D and calcium supplementation in all patients with osteoporosis and osteoporotic fractures.^{16,76,77} Holick examined prevention of fractures and falls with higher doses of Vitamin D (up to 800 IU/day) and found that it was only effective when accompanied by calcium supplementation (Level of evidence: III).¹³ Bischoff-Ferrari *et al.* performed a meta-analysis, which suggested that 800 IU/day of Vitamin D and calcium were both required to reduce fracture risk in the elderly (Level of evidence: II).³⁷

Discussion

There are a few key limitations to effectively understanding the relevance of the literature on Vitamin D to foot and ankle surgery. Firstly, it is difficult to separate out the role of Vitamin D from calcium since they are often co-administered in studies. Secondly, the literature on Vitamin D is quite limited. Most of the research focuses on osteomalacia / rickets, and increasingly on fracture risk, stress fractures, muscle strength and falls. Thirdly,

there is no consensus in the values used for cut-offs for Vitamin D. The current global consensus is that 50 nmol/l is sufficient, but many studies use 75 nmol/l as a cut-off. Since studies use different cut-off values, it is difficult to make meaningful comparisons between them. Further, not all studies have provided data that can be extrapolated.

A further difficulty with applying the findings of studies involving Vitamin D insufficiency to different population subgroups is the general prevalence of deficiency in the population and the seasonal and latitude variations in UVR. At latitude 52°N UVR is ineffective for synthesizing Vitamin D in human skin from October through March, whereas at latitude 34°N Vitamin D can be synthesized in the middle of winter.⁷⁸ Studies are often performed at higher latitudes where Vitamin D deficiency is more prevalent in the general population; it is therefore harder to attribute deficiency to the conditions being investigated.

Majority of the literature consists of Level III and IV evidence, and while their conclusions certainly merit further investigation with well-designed studies, it is easy to misattribute the cause of poorer outcomes when synthesizing conclusions from retrospective studies. Nevertheless, based on the combined results of studies above, a number of authors have recommended supplementation. Although they acknowledge the evidence for its use is not strong, supplementation is cheap and safe.⁷⁹ In the UK the annual cost of Vitamin D supplementation has been estimated as between £5.80 and £20.70, depending on the demographics and dose required.⁸⁰ The costs in the USA are similar; at the time of writing this manuscript 400 IU of Vitamin D costs \$0.06 per dose at major pharmacies, which equates to roughly \$22.00 annually. Testing for Vitamin D deficiency, by contrast is relatively expensive, the costs vary widely according to provider and country, but have been estimated

18

This article has been reviewed and accepted for publication. Please note that it has not been copyedited, proofread, or typeset and is not a final version.

as roughly \$50 per test in the USA⁸¹ and £17 per test in the UK.⁸⁰ Considering the costs, the widespread prevalence of Vitamin D deficiency, and the safety of low-dose supplementation, it appears unjustified to recommend routine testing in most patients.

A panel of experts convened by the American College of Foot and Ankle Surgeons, as part of a consensus group on peri-operative management, could not reach a conclusion on whether Vitamin D levels should be routinely tested before foot and ankle arthrodesis procedures for the aforementioned reasons (Level of evidence: V).⁸² In a consensus meeting of UK foot and ankle surgeons on the role of Vitamin D and calcium in fractures, it was concluded that supplementation may reduce fracture risk and improve healing in high risk or deficient groups, and they recommended that testing or direct supplementation might be appropriate in these patients (Level of evidence: V).⁸³ The effects of routine supplementation in foot and ankle surgery however, is yet to be determined and the majority do not routinely advise supplementation.⁸³

Conclusion

More research is needed into the effect of Vitamin D in foot and ankle surgery, including cost-benefit analysis of routine testing of Vitamin D for foot and ankle pathologies. The best evidence available is for the role of Vitamin D in preventing foot and ankle fractures (Level II evidence available). The role of vitamin D in fracture healing, bone marrow edema syndrome, osteochondral lesions of the talus, strength around the foot and ankle and

This article has been reviewed and accepted for publication. Please note that it has not been copyedited, proofread, or typeset and is not a final version.

tendon injures, however, is less clear (no Level II evidence). The evidence for Vitamin D supplementation in foot and ankle surgery is not conclusive.

Based on our review of the literature we cannot currently recommend routine testing or supplementation of Vitamin D levels for patients with foot and ankle injury, or undergoing elective surgery. However, supplementation is cheap and safe and may be considered in high risk groups. Better evidence in the form of high quality studies are required for all aspects of Vitamin D in the foot and ankle.

Financial Disclosure: The authors have no financial disclosures

Conflict of Interest: The authors declare no conflicts of interest

Legends for Tables and Figures

Table 1

Table depicting the differing definitions of Vitamin D sufficiency / deficiency. It can be seen that patients considered Vitamin D replete using the definition laid out by the Global Consensus Recommendations on Prevention and Management of Nutritional Rickets ¹³ and the National Institutes of Health ¹⁴ may be considered insufficient by measurement of immunoreactive parathyroid hormone levels (iPTH levels).²⁷

This article has been reviewed and accepted for publication. Please note that it has not been copyedited, proofread, or typeset and is not a final version.

	Based on Bone Health ^{13, 14}	Based on iPTH Levels ²⁷
Sufficient	> 50 nmol/l	> 75 nmol/l
	(>20 μg/l)	(>30 μg/l)
Insufficient	20.50 mm.cl/l	F0.75 mmal/l
	30-50 hmol/1	50-75 hmol/1
	(12-20 μg/l)	(20-30 μg/l)
Deficient	< 30 nmol/l	< 50 nmol/l
	(<12 μg/l)	(<20 μg/l)

Figure 1: The stages of Vitamin D production in the human body and its various targets.

This article has been reviewed and accepted for publication. Please note that it has not been copyedited, proofread, or typeset and is not a final version.

This article has been reviewed and accepted for publication. Please note that it has not been copyedited, proofread, or typeset and is not a final version.

Figure 2: Flow diagram of the papers identified through applying our search criteria, and the papers finally included.

This article has been reviewed and accepted for publication. Please note that it has not been copyedited, proofread, or typeset and is not a final version.

References

1. NORMAN AW: From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr **88:** 491S, 2008.

2. CURTIS L: Nutritional research may be useful in treating tendon injuries. Nutrition **32:** 617, 2016.

3. HOLICK MF: "Vitamin D," In: Modern Nutrition in Health and Disease, edited by SHILS ME, SHIKE M, Ross AC, et al., p. 376, Lippincott Williams & Wilkins, Philadelphia, 2006.

4. POJEDNIC RM, CEGLIA L: The emerging biomolecular role of vitamin D in skeletal muscle. Exerc Sport Sci Rev **42**: 76, 2014.

5. HAYES CE, NASHOLD FE, SPACH KM, et al.: The immunological functions of the vitamin D endocrine system. Cell Mol Biol (Noisy-le-grand) **49:** 277, 2003.

6. SODERSTROM LH, JOHNSON SP, DIAZ VA, et al.: Association between vitamin D and diabetic neuropathy in a nationally representative sample: results from 2001-2004 NHANES. Diabet Med **29:** 50, 2012.

7. TIWARI S, PRATYUSH DD, GUPTA SK, et al.: Vitamin D deficiency is associated with inflammatory cytokine concentrations in patients with diabetic foot infection. Br J Nutr **112**: 1938, 2014.

8. BISCHOFF-FERRARI HA, DIETRICH T, ORAV EJ, et al.: Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged > or =60 y. Am J Clin Nutr **80:** 752, 2004.

9. BRUMBAUGH PF, SPEER DP, PITT MJ: 1 alpha, 25-Dihydroxyvitamin D3 a metabolite of vitamin D that promotes bone repair. Am J Pathol **106:** 171, 1982.

10. SKARIA J, KATIYAR BC, SRIVASTAVA TP, et al.: Myopathy and neuropathy associated with osteomalacia. Acta Neurol Scand **51:** 37, 1975.

11. CEGLIA L: Vitamin D and skeletal muscle tissue and function. Mol Aspects Med **29:** 407, 2008.

12. PEARCE SH, CHEETHAM TD: Diagnosis and management of vitamin D deficiency. BMJ **340**: b5664, 2010.

13. HOLICK MF: Vitamin D deficiency. N Engl J Med **357:** 266, 2007.

14. MUNNS CF, SHAW N, KIELY M, et al.: Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. J Clin Endocrinol Metab **101**: 394, 2016.

15. ROSS AC, TAYLOR CL, YAKTINE AL, et al.: "Dietary Reference Intakes for Calcium and Vitamin D," In: The National Academies Collection: Reports funded by National Institutes of Health, edited by, National Academies Press, Washington (DC), 2011.

16. Vitamin D: supplement use in specific population groups. National Institute for Health and Care Excellence; 2014 [01/02/2018]; Available from: https://www.nice.org.uk/guidance/ph56.

17. ZIAMBARAS K, DAGOGO-JACK S: Reversible muscle weakness in patients with vitamin D deficiency. West J Med **167:** 435, 1997.

18. SPRAGUE S, PETRISOR B, SCOTT T, et al.: What Is the Role of Vitamin D Supplementation in Acute Fracture Patients? A Systematic Review and Meta-Analysis of the Prevalence of Hypovitaminosis D and Supplementation Efficacy. J Orthop Trauma **30**: 53, 2016.

19. MCBETH J, PYE SR, O'NEILL TW, et al.: Musculoskeletal pain is associated with very low levels of vitamin D in men: results from the European Male Ageing Study. Ann Rheum Dis **69**: 1448, 2010.

20. HAINING SA, ATKINS RM, GUILLAND-CUMMING DF, et al.: Vitamin D metabolites in patients with established non-union of fracture. Bone Miner **1**: 205, 1986.

21. BOSZCZYK AM, ZAKRZEWSKI P, POMIANOWSKI S: Vitamin D concentration in patients with normal and impaired bone union. Pol Orthop Traumatol **78:** 1, 2013.

22. BISCHOFF-FERRARI HA, WILLETT WC, ORAV EJ, et al.: A pooled analysis of vitamin D dose requirements for fracture prevention. N Engl J Med **367:** 40, 2012.

23. DANCZAK A: Aches and pains in primary care. Br J Gen Pract **60**: 374, 2010.

24. PATTON CM, POWELL AP, PATEL AA: Vitamin D in orthopaedics. J Am Acad Orthop Surg **20**: 123, 2012.

25. LEVIS S, GOMEZ A, JIMENEZ C, et al.: Vitamin d deficiency and seasonal variation in an adult South Florida population. J Clin Endocrinol Metab **90:** 1557, 2005.

26. Vitamin D and Health. Scientific Advisory Committee on Nutrition; 2016 [05/02/2018]; Available from: https://www.gov.uk/government/groups/scientific-advisory-committee-on-nutrition.

27. HOLICK MF: Vitamin D: evolutionary, physiological and health perspectives. Curr Drug Targets **12:** 4, 2011.

28. ADAMS JS, HEWISON M: Update in vitamin D. J Clin Endocrinol Metab 95: 471, 2010.

29. GOULA T, KOUSKOUKIS A, DROSOS G, et al.: Vitamin D status in patients with knee or hip osteoarthritis in a Mediterranean country. J Orthop Traumatol **16**: 35, 2015.

30. BOGUNOVIC L, KIM AD, BEAMER BS, et al.: Hypovitaminosis D in patients scheduled to undergo orthopaedic surgery: a single-center analysis. J Bone Joint Surg Am **92**: 2300, 2010.

31. MICHELSON JD, CHARLSON MD: Vitamin D Status in an Elective Orthopedic Surgical Population. Foot Ankle Int **37:** 186, 2016.

32. AUJLA RS, ALLEN PE, RIBBANS WJ: Vitamin D levels in 577 consecutive elective foot & ankle surgery patients. Foot Ankle Surg, 2017.

33. WHITE JH: Vitamin D signaling, infectious diseases, and regulation of innate immunity. Infect Immun **76:** 3837, 2008.

34. AFARIDEH M, GHANBARI P, NOSHAD S, et al.: Raised serum 25-hydroxyvitamin D levels in patients with active diabetic foot ulcers. Br J Nutr **115**: 1938, 2016.

35. MARTINEAU AR, JOLLIFFE DA, HOOPER RL, et al.: Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ **356**: i6583, 2017.

36. ABRAMS GD, FELDMAN D, SAFRAN MR: Effects of Vitamin D on Skeletal Muscle and Athletic Performance. J Am Acad Orthop Surg **26:** 278, 2018.

37. BISCHOFF-FERRARI HA, WILLETT WC, WONG JB, et al.: Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA **293**: 2257, 2005.

38. BISCHOFF-FERRARI HA, DAWSON-HUGHES B, WILLETT WC, et al.: Effect of Vitamin D on falls: a meta-analysis. JAMA **291:** 1999, 2004.

39. МАНМООDZADEH H, NASIMFAR A, SADEGHI E, et al.: Study of Vitamin D Level in Children with Non-specific Musculoskeletal Pain. Intl J Pediat **5:** 4533, 2017.

40. METZGER MF, KANIM LE, ZHAO L, et al.: The relationship between serum vitamin D levels and spinal fusion success: a quantitative analysis. Spine (Phila Pa 1976) **40:** E458, 2015.

41. DOETSCH AM, FABER J, LYNNERUP N, et al.: The effect of calcium and vitamin D3 supplementation on the healing of the proximal humerus fracture: a randomized placebo-controlled study. Calcif Tissue Int **75**: 183, 2004.

42. RAVINDRA VM, GODZIK J, DAILEY AT, et al.: Vitamin D Levels and 1-Year Fusion Outcomes in Elective Spine Surgery: A Prospective Observational Study. Spine (Phila Pa 1976) **40:** 1536, 2015.

43. BRINKER MR, O'CONNOR DP, MONLA YT, et al.: Metabolic and endocrine abnormalities in patients with nonunions. J Orthop Trauma **21:** 557, 2007.

44. SONNEVILLE KR, GORDON CM, KOCHER MS, et al.: Vitamin d, calcium, and dairy intakes and stress fractures among female adolescents. Arch Pediatr Adolesc Med **166**: 595, 2012.

45. AVENELL A, MAK JC, O'CONNELL D: Vitamin D and vitamin D analogues for preventing fractures in post-menopausal women and older men. Cochrane Database Syst Rev: CD000227, 2014.

46. LAPPE J, CULLEN D, HAYNATZKI G, et al.: Calcium and vitamin d supplementation decreases incidence of stress fractures in female navy recruits. J Bone Miner Res **23**: 741, 2008.

47. DAO D, SODHI S, TABASINEJAD R, et al.: Serum 25-Hydroxyvitamin D Levels and Stress Fractures in Military Personnel: A Systematic Review and Meta-analysis. Am J Sports Med **43**: 2064, 2015.

48. IGLAR PJ, HOGAN KJ: Vitamin D status and surgical outcomes: a systematic review. Patient Saf Surg **9:** 14, 2015.

49. Сни KC, Сни A, Go VL, et al.: Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am J Clin Nutr **79:** 820, 2004.

50. YOHO RM, FRERICHS J, DODSON NB, et al.: A comparison of vitamin D levels in nondiabetic and diabetic patient populations. J Am Podiatr Med Assoc **99:** 35, 2009.

51. TIWARI S, PRATYUSH DD, GUPTA B, et al.: Prevalence and severity of vitamin D deficiency in patients with diabetic foot infection. Br J Nutr **109:** 99, 2013.

52. ZUBAIR M, MALIK A, MEERZA D, et al.: 25-Hydroxyvitamin D [25(OH)D] levels and diabetic foot ulcer: is there any relationship? Diabetes Metab Syndr **7:** 148, 2013.

53. SMITH JT, HALIM K, PALMS DA, et al.: Prevalence of vitamin D deficiency in patients with foot and ankle injuries. Foot Ankle Int **35:** 8, 2014.

54. WILLIAMS BR, THOMAS AJ, COLLIER RC, et al.: Vitamin D Levels Do Not Predict Risk of Metatarsal Fractures. Foot Ankle Spec **11**: 37, 2018.

55. CLUTTON J, PERERA A: Vitamin D insufficiency and deficiency in patients with fractures of the fifth metatarsal. Foot (Edinb) **27:** 50, 2016.

56. SHIMASAKI Y, NAGAO M, MIYAMORI T, et al.: Evaluating the Risk of a Fifth Metatarsal Stress Fracture by Measuring the Serum 25-Hydroxyvitamin D Levels. Foot Ankle Int **37:** 307, 2016.

57. HECHTMAN KS, QUINTERO LC, SAN GIOVANNI TP, et al.: Vitamin D deficiency in an athlete sustaining refracture after intramedullary screw fixation of a Jones fracture: coincidence or contributing factor? Curr Orthop Pract **24:** 98, 2013.

This article has been reviewed and accepted for publication. Please note that it has not been copyedited, proofread, or typeset and is not a final version.

58. BERNHARD A, MATUK J: Vitamin D in Foot and Ankle Fracture Healing: A Literature Review and Research Design. Foot Ankle Spec **8**: 397, 2015.

59. TELLERIA JJM, READY LV, BLUMAN EM, et al.: Prevalence of Vitamin D Deficiency in Patients With Talar Osteochondral Lesions. Foot Ankle Int: 1071100717745501, 2018.

60. BIRD ML, HILL KD, ROBERTSON IK, et al.: Serum [25(OH)D] status, ankle strength and activity show seasonal variation in older adults: relevance for winter falls in higher latitudes. Age Ageing **42:** 181, 2013.

61. ALMURDHI MM, REEVES ND, BOWLING FL, et al.: Reduced Lower-Limb Muscle Strength and Volume in Patients With Type 2 Diabetes in Relation to Neuropathy, Intramuscular Fat, and Vitamin D Levels. Diabetes Care **39:** 441, 2016.

62. GAO MF, YANG HL, SHI WD: Simultaneous bilateral quadriceps tendon rupture in a patient with hyperparathyroidism undergoing long-term haemodialysis: a case report and literature review. J Int Med Res **41:** 1378, 2013.

63. UZER G, ELMADAG M, YILDIZ F, et al.: Simultaneous spontaneous Bilateral Quadriceps Tendon Rupture Related with Hyperparathyroidism Secondary to Viatmin D Deficiency: A Case Report. Bezmialem Science **1**: 33, 2013.

64. ABOGAMAL A, MAHMOUD E, ABDELAZIZ A, et al.: Prevalence of Lower Limb Traction Apophysitis among Children with Low Vitamin D and Secondary Hyperparathyroidism - Ultra Sonographic Study. J Med Sci Clin Res **5:** 17222, 2017.

65. KIMYON G, TEKIR D, KISACIK B, et al.: The Frequency of Subclinical Achilles Enthesopathy in Inflammatory Bowel Disease and its Relation with Vitamin D. Annals of the Rheumatic Diseases **74**: 1154, 2015.

66. MOORE KR, HOWELL MA, SALTRICK KR, et al.: Risk Factors Associated With Nonunion After Elective Foot and Ankle Reconstruction: A Case-Control Study. J Foot Ankle Surg **56**: 457, 2017.

67. WARNER SJ, GARNER MR, NGUYEN JT, et al.: Perioperative vitamin D levels correlate with clinical outcomes after ankle fracture fixation. Arch Orthop Trauma Surg **136**: 339, 2016.

68. TSUGAWA N, UENISHI K, ISHIDA H, et al.: Association between vitamin D status and serum parathyroid hormone concentration and calcaneal stiffness in Japanese adolescents: sex differences in susceptibility to vitamin D deficiency. J Bone Miner Metab **34:** 464, 2016.

69. GRAHN KRONHED AC, KNUTSSON I, LOFMAN O, et al.: Is calcaneal stiffness more sensitive to physical activity than forearm bone mineral density? A population-based study of persons aged 20-79 years. Scand J Public Health **32**: 333, 2004.

70. HORAS K, FRAISSLER L, MAIER G, et al.: High Prevalence of Vitamin D Deficiency in Patients With Bone Marrow Edema Syndrome of the Foot and Ankle. Foot Ankle Int **38**: 760, 2017.

71. SPRINCHORN AE, O'SULLIVAN R, BEISCHER AD: Transient bone marrow edema of the foot and ankle and its association with reduced systemic bone mineral density. Foot Ankle Int **32**: S508, 2011.

72. Vitamin D: Fact sheet for health professionals. National Institutes of Health: Office of Dietary Supplements; 2018 [13/05/2018]; Available from: https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/.

73. Vitamins, supplements and nutrition in pregnancy. NHS Choices; 2017 [10/04/2018]; Available from: https://www.nhs.uk/conditions/pregnancy-and-baby/vitamins-minerals-supplements-pregnant/.

74. SANDERS KM, STUART AL, WILLIAMSON EJ, et al.: Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA **303**: 1815, 2010.

75. VIETH R: Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr **69:** 842, 1999.

76. COMPSTON J, COOPER A, COOPER C, et al.: UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos **12**: 43, 2017.

77. SUNYECZ JA: The use of calcium and vitamin D in the management of osteoporosis. Ther Clin Risk Manag **4:** 827, 2008.

78. WEBB AR, KLINE L, HOLICK MF: Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin Endocrinol Metab **67:** 373, 1988.

79. McCABE MP, SMYTH MP, RICHARDSON DR: Current concept review: vitamin D and stress fractures. Foot Ankle Int **33**: 526, 2012.

80. Costing statement: Vitamin D: increasing supplement use among at-risk groups. National Institute for Health and Care Excellence; 2014 [13/05/2018]; Available from: https://www.nice.org.uk/guidance/ph56/resources/costing-statement-69288013.

81. Most people don't need Vitamin D testing. BlueCross BlueShield; 2015 [13/05/2018]; Available from: https://www.bcbs.com/news/press-releases/most-people-dont-need-vitamin-d-testing.

82. MEYR AJ, MIRMIRAN R, NALDO J, et al.: American College of Foot and Ankle Surgeons((R)) Clinical Consensus Statement: Perioperative Management. J Foot Ankle Surg **56**: 336, 2017.

83. Malhotra K, Wright S, Luckshmana J, et al. Consensus of the 7th Round Table: Aspects of Foot and Ankle Surgery; 2017 [15/02/2018]; Available from: http://orthosol.com/wp-content/uploads/2018/02/7th-Consensus-of-Round-Table-2017-CARDIFF.pdf.