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ADIPOSE TISSUE: STORAGE DEPOT AND 
TARGET FOR VITAMIN D

Overview
Adipocytes function in storage of energy reserves, secre-

tion of adipokines that regulate appetite, and control of 
thermogenesis. The major form of adipose tissue is termed 
white adipose tissue (WAT) and is located in subcutaneous 
and visceral depots. Development and maintenance of WAT 
is dependent on the nuclear receptor peroxisome prolifera-
tor-activated receptor γ (PPARγ), which drives adipogenesis 
(generation of new adipocytes from mesenchymal precur-
sors) and regulates fatty acid storage and glucose metabo-
lism. PPARγ regulates multiple target genes essential for 

adipocyte differentiation, lipid metabolism, and glucose 
homeostasis, as well as the expression of adipokines and 
cytokines secreted from adipose tissue. Brown adipose tissue 
(BAT) is a unique type of adipose tissue present in mammals 
that functions in body temperature regulation. Activated 
BAT uniquely expresses an “uncoupling protein” (UCP1) 
within the inner mitochondrial membrane, which uncouples 
substrate oxidation from ATP synthesis, leading to increased 
fuel oxidation and thermogenesis. The vitamin D receptor 
(VDR) and vitamin D-metabolizing enzymes (CYP24A1, 
CYP27B1) are expressed in adipose tissue, and vitamin D 
signaling has been shown to alter the differentiation and 
phenotype of both WAT and BAT adipocytes and to modu-
late adiposity and energy metabolism in vivo. Examples of 
recently uncovered mechanisms that contribute to the effects 
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of vitamin D on adipose tissue include 1,25(OH)2D modula-
tion of PPARγ and WNT signaling during adipogenesis in 
WAT and direct repression of UCP1 by VDR in BAT. These 
and other effects of vitamin D steroids on adipose tissue are 
reviewed in this chapter.

Storage of Vitamin D Metabolites in Adipose 
Tissue

In addition to serving as a target tissue for 1,25(OH)2D 
actions, adipose tissue contains a large proportion of the 
body’s vitamin D pool. Early studies demonstrated that the 
vast majority of an orally administered dose of radiolabeled 
vitamin D3 given to vitamin D-deficient rats was found in adi-
pose tissue, with ∼50% present as unmodified vitamin D3 [1].  
The kinetics of tissue uptake and clearance was studied in 
vitamin D-replete rats intracardially administered radio-
labeled vitamin D3 [2]. Tissues with high early concentra-
tions of radioactivity were liver (70% of dose within 20 mins) 
and serum; tissues with slower accumulation followed by 
decline included intestinal mucosa, kidney, bone, and mus-
cle. In contrast, adipose tissue radioactivity rose slowly and 
showed no decline with 10% of the dose recovered in adi-
pose tissue after 1 week. Metabolism was also tissue spe-
cific because 80% of the radioactivity in liver, serum, and 
mucosa after 1 week was present as more polar metabolites, 
but in kidney, adipose tissue, and muscle 70% of the recov-
ered radioactivity was present as vitamin D3. These studies 
clearly identified adipose tissue as the major site of uptake 
of unmodified vitamin D3 from the circulation. Similar stud-
ies with human adipose tissue obtained from autopsy and 
surgical sources confirmed uptake and storage of vitamin 
D3 in fat [3]. Lawson et  al. [4] developed an high-perfor-
mance liquid chromatography method sensitive enough to 
detect tissue vitamin D content and reported substantial 
(50–100 ng/g) amounts of vitamin D3 in human perirenal, 
pericardial, cervical, and axillary adipose tissue samples 
obtained at autopsy. It should be noted that per-renal fat 
has been characterized as a brown fat depot in humans [5], 
suggesting that vitamin D likely also accumulates in BAT. 
Lawson’s study did not identify any obvious differences in 
vitamin D3 concentration in adipose tissue according to sex, 
age, or time of year at which sample was collected.

A few studies have addressed whether the concentration of 
vitamin D in adipose tissue is affected by supplementation or 
UV exposure. Using vitamin D-deficient rats, Lawson’s group 
formally demonstrated that vitamin D3 accumulates in adipose 
tissue and (to a lesser extent) muscle in response to chronic UV 
exposure [6]. This study provided evidence that the pool of 
vitamin D3 in adipose tissue is released during vitamin D defi-
ciency with an estimated half-life of 12 days. Similar chronic 
dietary and UV exposure studies in minipigs confirmed that 
both epidermis-derived and orally administered vitamin D3 
are stored in adipose tissue and slowly released over time [7]. 
More recent data in orally replete minipigs kept indoors [8] 
indicated that ∼75% of the total body vitamin D3 pool (and 
35% of the 25(OH)D3 pool) is present in fat tissue.

Collectively, these studies demonstrate that regardless of 
source (oral vs. cutaneous), the majority of vitamin D in the 
body is in adipose tissue where it is predominantly stored in 
the form of vitamin D3. An exciting new approach (time-of-
flight secondary ion mass spectrometry) has even localized 
vitamin D3 within adipocyte lipid droplets [9]. During states 
of severe deficiency (at least in animal models), vitamin D3 lev-
els in adipose tissue become undetectable. Although 25(OH)
D is also present in adipose tissue, this metabolite is more 
evenly distributed throughout other body tissues (such as 
liver and muscle) than in vitamin D3 itself [8]. Most studies 
have reported that adipose tissue does not contain significant 
amounts of 1,25(OH)2D, although it can be detected at low lev-
els with very sensitive methods [9].

Given the demonstrated role of adipose tissue in storage of 
vitamin D, it has been of interest to determine whether obesity 
modifies uptake or release of the vitamin from fat. A recent 
metaanalysis of 23 published studies [10] has confirmed a sig-
nificantly elevated prevalence of vitamin D deficiency in obese 
(35% higher) and overweight (24% higher) subjects compared 
with normal subjects irrespective of age, latitude, or the spe-
cific cut-off used to define vitamin D deficiency. The etiology 
of low serum 25(OH)D in obese individuals is not fully under-
stood and is likely multifactorial. Underlying mechanisms 
that have been proposed include low vitamin D intake and/
or cutaneous synthesis, “sequestration” or volume dilution of 
vitamin D and 25(OH)D in the larger tissue mass (both adi-
pose and muscle tissue may contribute), and other factors such 
as genetic variation in vitamin D metabolism or transport [11].

With respect to the impact of obesity on vitamin D stores 
in adipose tissue, Malmberg [9] utilized fat biopsy material to 
compare the concentrations of D3, 25(OH)D3, and 1,25(OH)2D3 
in subcutaneous WAT (sWAT) of lean and obese individuals. 
Contrary to what would be predicted if adipose tissue “seques-
ters” 25(OH)D, both vitamin D3 and 25(OH)D3 concentrations 
in sWAT were significantly lower in obese samples relative 
to control samples despite similar serum 25OHD between 
groups in this study. In a study aimed at determining whether 
weight loss alters adipose stores of vitamin D, Piccolo et al. [12] 
used liquid chromatography/mass–spectrometry to measure 
25(OH)D3 concentration in sWAT biopsies of overweight and 
obese subjects (body mass index (BMI) between 28 and 37 kg/
m2) enrolled in a 12 week controlled diet restriction study. 
They found that sWAT and serum 25(OH)D3 concentrations 
were significantly correlated at baseline and after 12 weeks of 
diet restriction. However, there were no significant changes in 
either sWAT or serum 25(OH)D3 after diet restriction despite 
an average13% reduction in body fat in the subjects. These 
two studies suggest that adipose tissue does not concentrate 
25(OH)D at the expense of serum, and at least in overweight 
and obese females, 25(OH)D3 is not released from subcutane-
ous adipose tissue stores during moderate weight loss.

Several studies have addressed the effects of obesity on 
the response to vitamin D supplementation or UV exposure. 
Wortsman et al. [13] conducted two studies with normal and 
obese subjects: one examined the rise in serum vitamin D3 
before and 24 h after exposure to whole-body UV-B radiation; 
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the other examined the rise in vitamin D2 before and 6, 10, 
and 24 h after a bolus dose of 50,000 IU vitamin D2. In both 
studies, the rise in serum vitamin D (D2 for oral supplemen-
tation and D3 for UV exposure) was attenuated in obese sub-
jects relative to nonobese controls. With the oral challenge, 
achieved serum 25(OH)D was also lower, and parathyroid 
hormone was higher, in the obese subjects. When analyzed 
in relation to BMI, two significant inverse correlations were 
found: BMI versus peak serum vitamin D2 after oral supple-
mentation, and BMI versus peak serum vitamin D3 after UV 
exposure. This group also examined the cutaneous synthesis 
of vitamin D3 after UV-B exposure of skin biopsies from nor-
mal and obese subjects, however, no differences in conver-
sion of 7-dehydrocholesterol to vitamin D3 were observed. 
These data demonstrate that for the same level of UV expo-
sure/cutaneous synthesis or intake, the level of circulating 
vitamin D achieved decreases as BMI increases. These find-
ings with vitamin D2 supplementation were confirmed for 
vitamin D3 intake by Didriksen et al. [11], who pooled data 
from three randomized controlled trials of vitamin D3 sup-
plementation (40,000 IU/week for 6 months) and found that 
subjects with higher BMI had the lowest baseline 25(OH)D 
levels and also the smallest increase in 25(OH)D after supple-
mentation. Similar conclusions were made based on analysis 
of a large dataset of self-reported vitamin D3 supplementa-
tion in relation to serum 25(OH)D [14]. From this population 
data, it was calculated that obese individuals require >2.5 
times higher doses of oral vitamin D than normal-weight 
individuals to achieve the same circulating level of 25(OH)
D. In a randomized controlled study of vitamin D-deficient 
women given seven doses of vitamin D3 ranging from 400 to 
4800 IU/day, it was found that women with low BMI (<25 kg/
m2) developed higher levels of serum 25(OH)D after supple-
mentation compared with women with high BMI [15]. The 
authors argue that the differences between lean and obese 
individuals result from volume dilution of vitamin D3 in the 
larger mass of fat and muscle as BMI increases, rather than 
concentration of the vitamin in fat tissue.

Only a handful of studies have measured the concentra-
tion of vitamin D metabolites in fat after supplementation. 
Didriksen et al. [16] studied 29 adults with impaired glucose 
tolerance in a randomized controlled trial of vitamin D sup-
plementation (20,000 IU/week for 3–5 years) versus placebo. 
In addition to serum 25(OH)D3, vitamin D3 and 25(OH)D3 
were measured in sWAT obtained by needle biopsy, and body 
fat was measured with dual-energy X-ray absorptiometry. In 
the 18 subjects supplemented with vitamin D3, the median 
concentrations of serum 25(OH)D3, sWAT D3, and sWAT 
25(OH)D3 were markedly increased [99 nmol/l, 209 ng/g, and 
3.8 ng/g, respectively] relative to the 11 subjects in the placebo 
group [62 nmol/l, 32 ng/g, and 2.5 ng/g]. Based on total body 
fat mass, the investigators calculated average body stores of 
6.6 mg vitamin D3 and 0.12 mg 25(OH)D3 in the subjects sup-
plemented with vitamin D3. These data clearly indicate that 
adipose tissue has the capacity to store large quantities of vita-
min D steroids in response to chronic oral loading. However, 
because the mechanisms that control uptake and release of 

vitamin D from adipose tissue (or other body pools) have yet 
to be defined, the degree to which such reserves can be uti-
lized, and under what conditions, are unclear. Identification of 
genes and pathways that regulate vitamin D storage in various 
tissues is a research priority. Understanding the underlying 
mechanisms will facilitate studies focused on whether genet-
ics or physiological states (such as rapid growth, pregnancy, or 
aging) alter adipose pools of vitamin D leading to differences 
in serum 25(OH)D. Given the growing incidence of metabolic 
disturbances in the population, it will be also be critical to 
determine how pathological conditions such as obesity, diabe-
tes, and metabolic syndrome alter the body’s ability to access 
these reserves.

EFFECT OF VITAMIN D ON ADIPOGENESIS 
AT THE CELLULAR LEVEL

Model Systems for the Study of Adipogenesis
Adipocytes originate from multipotent mesenchymal stem 

cells, which can also differentiate into bone, cartilage, muscle, 
marrow stromal cells, and other connective tissue lineages. For 
all of these lineages, the process begins with proliferation and 
proceeds through commitment, lineage progression, differ-
entiation, and maturation stages. Distinct triggers have been 
identified that promote commitment to each lineage in culture. 
For the adipocyte differentiation program, a “cocktail” of insu-
lin, dexamethasone, and 3-isobutyl-1-methylxanthine (IBMX, 
a phosphodiesterase inhibitor) in media supplemented with 
10% fetal bovine serum is sufficient to trigger adipogenesis 
in both established and primary culture models, including 
multipotent mesenchymal stromal cells derived from adi-
pose tissue, bone, bone marrow, and muscle. Other media 
additions commonly used to stimulate adipogenesis in these 
model systems include PPARγ agonists (rosiglitazone, trogli-
tazone), transferrin, indomethacin, and triiodothyronine [17]. 
The sources and concentrations of these reagents as well as the 
degree and kinetics of differentiation achieved vary consider-
ably with the lineage, stage, tissue origin, and species of the 
cell population used. Heterogeneity is more pronounced in 
primary cell model systems because of the presence of cells 
at variable stages of commitment in these preparations. The 
impact of vitamin D signaling has been studied in both pri-
mary and established models of adipogenesis, and consider-
able inconsistencies have been reported, with 1,25(OH)2D 
both enhancing and inhibiting adipocyte differentiation as 
described below. Sources of variability include not only the 
inherent heterogeneity of the model systems but also differ-
ences in methodology. The effects of 1,25(OH)2D have been 
studied using a wide variety of protocols (i.e., with or without 
adipogenic triggers, short- versus long-term exposure, physi-
ologic, and nonphysiologic concentrations, etc.) and with 
respect to many different outcomes (proliferation, lipid accu-
mulation, gene expression, cytokine secretion, etc.). Although 
these data clearly indicate that 1,25(OH)2D impacts both pre-
adipocytes and differentiated adipocytes, the data are not 
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entirely consistent, particularly with respect to lipid accumu-
lation. Highlights of the published data are provided below.

Effects of 1,25(OH)2D Treatment and Vitamin D 
Receptor on Differentiation in 3T3-L1 Cells

The L1 subclone of 3T3 Swiss albino mouse embryonic 
fibroblasts (3T3-L1, CL-173 from ATCC) is the most commonly 
used cell model of adipogenesis because of its reproducible 
and rapid (within 7 days) adipose differentiation program in 
response to insulin, dexamethasone, and IBMX. 3T3-L1 cells 
are committed preadipocytes, which undergo mitotic expan-
sion to a confluent state prior to the onset of lipid accumula-
tion. An early clue to involvement of the vitamin D pathway 
in adipogenesis was the observation that VDR gene expression 
is dynamically and transiently upregulated early in 3T3-L1 
adipogenic differentiation [18], resulting in marked increases 
in VDR protein abundance within 4 h of switch to adipogenic 
media (Fig. 34.1A), an effect that has been attributed to the 
IBMX component of the differentiation mix [19]. As differenti-
ation proceeds, VDR expression decreases to almost undetect-
able levels in mature adipocytes [19–21]. The exact role of VDR 
in this model remains to be fully clarified because both knock-
down of endogenous mouse VDR [19] and forced expression 
of human VDR [22] inhibit adipogenesis, suggesting that the 
transient nature of the VDR upregulation may be critical. It is 

worth noting that 3T3-L1 cells represent committed preadipo-
cytes and cannot be induced to differentiate into the osteoblast 
lineage. Thus, this model is probably not appropriate to study 
whether VDR signaling is involved in control of the earliest 
events in mesenchymal stem cell lineage determination.

Of particular interest with respect to vitamin D signaling, 
undifferentiated (but not differentiated) 3T3-L1 cells express the 
endocytic receptor megalin, which facilitates uptake of 25(OH)D 
[23]. Furthermore, 3T3-L1 preadipocytes express CYP27B1 and 
synthesize 1,25(OH)2D when exposed to physiological concen-
trations of 25(OH)D [24], supporting a role for VDR ligands in 
control of preadipocyte differentiation. Inclusion of 1,25(OH)2D 
in the adipogenic media at concentrations of 1 nM or above is 
strongly inhibitory to the differentiation process in 3T3-L1 cells, 
with reduction in lipid accumulation (Fig. 34.1B) and suppres-
sion of key adipogenic transcription factors including PPARγ 
and C/EBPα [19,21,22,25]. 1,25(OH)2D also decreases the 
endogenous formation of PPARγ ligands by 3T3-L1 cells, con-
sistent with the finding that the PPARγ agonist troglitazone can 
partially overcome the inhibitory effects of 1,25(OH)2D on lipid 
accumulation [19,22]. Addition of 1,25(OH)2D within 48 h of the 
switch to adipogenic media is necessary for inhibition of dif-
ferentiation. Although 1,25(OH)2D is antiproliferative in many 
cell lines, it does not inhibit the mitotic expansion step of adipo-
genesis in 3T3-L1 cells [22]. The inhibitory effects of 1,25(OH)2D 
appear to be related, at least in part, to its ability to stabilize VDR 
expression, supporting the contention that sustained VDR sig-
naling blocks the differentiation program [19,22]. Indeed, Kong 
and Li [22] demonstrated that 1,25(OH)2D inhibited PPARγ 
expression in mouse embryo fibroblasts from wild-type but not 
VDR knockout (VDRKO) mice. Through comparative study 
of synthetic vitamin D analogs, Thomson et al. demonstrated 
[26] that ligand binding to the VDR is necessary for inhibition 
of 3T3-L1 cell adipogenesis. Similarly, earlier studies profiled a 
series of endogenous vitamin D metabolites and reported that 
inhibition of adipogenesis correlated with binding to VDR [21].

Inhibition of adipogenesis in 3T3-L1 cells by 1,25(OH)2D is 
typically measured as reduced lipid droplet formation, which 
correlates with decreases in expression of lipogenic genes 
such as fatty acid-binding protein 4 (FABP4) and lipoprotein 
lipase (LPL). Other data implicate the WNT/β-catenin path-
way as a 1,25(OH)2D target in 3T3-L1 cells. Components of 
the WNT/β-catenin pathway are substantially downregulated 
during adipogenesis, but 1,25(OH)2D treatment was found to 
increase the expression of WNT10B, DVL2, phosphorylated 
GSK3β, and nuclear β-catenin [27]. Given that β-catenin inhib-
its PPARγ signaling, these data support a model whereby the 
antiadipogenic effects of 1,25(OH)2D promote WNT/β-catenin 
signaling which in turn suppresses PPARγ activity.

In addition to the inhibitory effects of vitamin D signal-
ing on adipogenesis, 1,25(OH)2D has been shown to alter the 
phenotype of mature 3T3-L1 cells. Thus, even though VDR 
expression decreases during adipocyte differentiation, suf-
ficient VDR is present in fully differentiated 3T3-L1 adipo-
cytes for functional responses. Reported effects of 1,25(OH)2D 
include modulation of FGF23, leptin and C/EBPβ expres-
sion [28], cytokine synthesis and secretion [29], basal and 

FIGURE 34.1  Vitamin D pathway in 3T3-L1 adipogenesis. (A) vita-
min D receptor (VDR) protein expression in 3T3-L1 cells 2, 4, or 6 h after 
switch to adipogenic media containing dexamethasone, methylxanthine, 
and insulin (DMI). (B) Lipid accumulation in 3T3-L1 cells incubated in 
basal media or adipogenic media (ADIPO) in the presence or absence of 
100 nM 1,25(OH)2D (1,25D).
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TNFα stimulated proinflammatory responses (Il-6, MCP-1, 
IL-1β), and glucose uptake [30]. In addition, 1,25(OH)2D alters 
mitochondrial membrane potential, ATP production, UCP1 
expression, and generation of reactive oxygen species in differ-
entiated 3T3-L1 cells, suggesting effects on energy expenditure 
[31,32]. A detailed study by Chang and Kim [33] reported that 
24 h treatment of mature 3T3-L1 cells enhanced basal and iso-
proterenol-stimulated lipolysis in associated with changes in 
gene expression (FABP4, CEBPα, FAS, PPARγ, and SCD-1 were 
decreased whereas CPT1α, PGC1α, PPARα, and UCP1 were 
increased). 1,25(OH)2D also increased activity of the SIRT1 
deacetylase and enhanced cellular NAD-to-NADH ratio, sug-
gesting that vitamin D status might promote fat mobilization 
concurrently with activation of the NAD–SIRT1 pathway (a 
major regulator of systemic metabolism and aging). These 
data indicate that 1,25(OH)2D and VDR have the potential to 
influence paracrine signaling between mature adipocytes and 
immune cells as well as more distant communications between 
adipose depots and peripheral tissues.

Effects of 1,25(OH)2D on Additional Established 
Rodent Cell Line Models of Adipogenesis

The effects of 1,25(OH)2D have also been characterized in 
the Ob17 preadipocyte cell line, which was derived from epi-
didymal fat tissue of a genetically obese mouse (ob/ob) on the 
C57/BL6J genetic background [34]. VDR expression is also 
transiently increased during adipogenesis in Ob17 cells, but 
in contrast to 3T3-L1 cells, 1,25(OH)2D at low (0.25 nM) con-
centrations promotes, whereas higher concentrations inhibit, 
adipogenesis [34–36]. The discordant response of Ob17 cells to 
1,25(OH)2D (compared with 3T3-L1 cells) might be related to 
the underlying defect in ob/ob mice, which is a loss of function 
mutation in the adipokine leptin. Leptin secreted from adipo-
cytes is an important regulator of appetite, but adipocytes also 
have leptin receptors, and treatment of 3T3-L1 cells with exog-
enous leptin inhibits adipogenesis [37]. 1,25(OH)2D has been 
shown to directly regulate leptin transcription and secretion 
[38,39], and leptin can regulate renal vitamin D hydroxylases 
[40]. Further studies to define the interactions between leptin 
and 1,25(OH)2D in the context of cellular adipogenesis are 
warranted.

Similar to the Ob17 cell studies, a bimodal dose response 
to 1,25(OH)2D was reported by Ryan et  al. [41] in C2C12 
cells, an immortal myoblast line derived from a C3H mouse, 
which has the capacity to transdifferentiate into adipocytes 
or osteoblasts in response to different triggers. In this system, 
1,25(OH)2D at low concentrations (10−13 to 10−11 M) promoted 
adipocyte conversion (lipid accumulation and upregulation 
of PPARγ2 and FABP4) in the presence of insulin, dexameth-
asone, triiodothyronine, and rosiglitazone, whereas higher 
concentrations (≥10−9 M) were inhibitory. In yet another 
model system (BMS2 cells, a multipotent mesenchymal cell 
line derived from bone marrow), inhibition of adipogen-
esis by 1,25(OH)2D was reported at all concentrations tested 
[42]. As reported for 3T3-L1 cells, 1,25(OH)2D was less effec-
tive in blocking adipogenesis of BMS2 cells in response to 

PPARγ agonists than that induced by insulin, dexametha-
sone, and IBMX. This group also generated several clones 
from parental BMS2 cells and interestingly found at least one 
example of a clone in which adipogenesis was stimulated 
by 1,25(OH)2D. Thus, it is clear that heterogeneity is present 
even in established cell lines, contributing to differential sen-
sitivity to 1,25(OH)2D and its phenotypic effects with respect 
to adipogenesis.

Vitamin D Signaling in Primary Cultures of 
Mesenchymal Cells

Several groups have utilized primary cultures of multipo-
tent mesenchymal cells from various animal tissues for study 
of 1,25(OH)2D modulation of adipogenesis. Fetal calvaria-
derived mesenchymal cell cultures contain cells committed to 
either the osteoblast or adipocyte lineages as well as a low fre-
quency of bipotential progenitors capable of both adipogenic 
and osteogenic differentiation. In these heterogeneous cultures, 
1,25(OH)2D dose dependently (from 0.1 to 100 nM) stimulates 
adipocyte foci development while inhibiting osteoblastic dif-
ferentiation [43]. Follow-up studies indicated that 1,25(OH)2D 
significantly altered the distribution of mesenchymal progeni-
tors in the population, decreasing the percentage of osteogenic 
precursors while increasing the percentage of osteogenic/
adipogenic bipotent cells [44]. Despite initial bipotency, expo-
sure to 1,25(OH)2D triggered commitment of these cells to adi-
pogenesis because adipogenic differentiation was maintained 
after removal of 1,25(OH)2D. The effects of 1,25(OH)2D on 
adipogenesis were additive with dexamethasone at low con-
centrations and synergistic at higher concentrations of either 
compound. Through generation of individual clones from fetal 
rat calvarial preparations, Bellows and Heersche [45] demon-
strated that the 1,25(OH)2D-responsive adipocyte progenitors 
were distinct from the dexamethasone-responsive adipocyte 
progenitors. These data support the concept that 1,25(OH)2D 
modulates lineage determination in primary cultures of mes-
enchymal progenitor cells, leading to survival and/or out-
growth of precursors capable of commitment to adipogenic 
differentiation.

Using procedures similar to those for fetal rat calvarial cell 
preparations, the effects of 1,25(OH)2D on lineage determina-
tion of mesenchymal precursor cells isolated from bone mar-
row have been studied, again with conflicting results. Data 
from Kelly and Gimble [42] in murine femoral-derived bone 
marrow precursors are consistent with an antiadipogenic effect 
of 1,25(OH)2D at nanomolar concentrations (10−12–10−8 M). 
Other groups, however, reported that 1,25(OH)2D enhanced 
lipid accumulation in bone marrow precursors derived from 
rats [46] and pigs [47].

Role of the Vitamin D Receptor in Control of  
Adipogenesis

To determine the specific role of the VDR in adipogenic 
differentiation of murine cells, Narvaez et al. [48] established 
mesenchymal cultures from bone marrow of 6-month-old 
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wild-type and VDRKO mice for ex  vivo studies. Similar to 
3T3-L1 cells [18,19,22], VDR was induced in murine mesen-
chymal cells within 4h of transfer to adipogenic media (insu-
lin, dexamethasone, IBMX, indomethecin), remained high for 
24 h, and then decreased. In this model, peak lipogenesis was 
observed after 10 days in adipogenic media, and inclusion of 
10 nM 1,25(OH)2D enhanced lipid droplet formation. Inclusion 
of 1,25(OH)2D delayed the decrease in VDR expression and 
enhanced expression of PPARγ (see also Chapter 14). Cultures 
from VDRKO mice demonstrated impaired lipogenesis in both 
the presence and absence of 1,25(OH)2D, which was rescued 
by stable expression of human VDR. These data support the 
concept that adipogenesis per se is not defective in VDRKO 
cells because ectopic expression of VDR promoted both basal 
and 1,25(OH)2D stimulated adipogenesis. Consistent with 
these data, Kong and Li [38] demonstrated that 1,25(OH)2D 
stimulated leptin synthesis and secretion in adipose tissue cul-
tures from adult (3–4 month old) wild-type, but not VDRKO, 
mice. Furthermore, basal levels of leptin synthesis and secre-
tion were lower in cultures from VDRKO mice compared with 
that from their wild-type littermates.

In similar studies with bone marrow–derived mesenchymal 
precursors from neonatal 18-day-old wild-type and VDRKO 
mice, Cianferotti and Demay [49] reported opposite results. 
When cultured under adipogenic conditions, cultures from 
VDRKO mice accumulated more lipid than wild-type cultures 
and exhibited higher expression of PPARγ and other markers 
of adipogenic differentiation relative to those isolated from 
wild-type mice. These effects were correlated with upregula-
tion of DKK1 and SFRP2 (inhibitors of the WNT pathway) in 
VDRKO cells, and suppression of these genes in wild-type cells 
treated with 1,25(OH)2D. The underlying basis for the oppos-
ing results in this study compared with those of Narvaez et al. 
[48] and Kong and Li [38] cited above is unclear, but it is worth 
pointing out that this group utilized cells from neonatal rather 
than adult mice and omitted insulin from the adipogenic dif-
ferentiation media.

Taken together, these studies in both established and pri-
mary cultures indicate that 1,25(OH)2D and VDR exert sub-
stantial effects on lineage determination in mesenchymal 
progenitor cells, although the specific effects vary with model 
system. The divergent responses to 1,25(OH)2D in distinct 
in  vitro model systems may be related to culture conditions 
(i.e., Ob17 cells differentiate in response to insulin and triiodo-
thyronine rather than insulin, dexamethasone, and IBMX, and 
some studies fail to fully describe media additives), cell line 
origin (embryonic, fetal, neonatal, or adult tissue), and spe-
cies/genetic background (rat, pig, different strains of inbred 
mice). With respect to the latter, comparison of bone mar-
row preparations from five strains of inbred mice has indeed 
demonstrated differences in media requirements for growth 
as well as differentiation potential and surface epitopes [50], 
therefore it is conceivable that responses to 1,25(OH)2D could 
differ with genetic background. Another variable is that some 
cells (i.e., 3T3-L1) endogenously produce PPARγ ligands on 
treatment with adipogenic media, whereas others require 
exogenous supplementation with synthetic PPARγ ligands 

for differentiation. These uncertainties make it difficult to 
dissect the interactions between PPARγ and VDR activity. 
Furthermore, even in clonal cell lines, adipogenesis is a highly 
heterogeneous process, with only a subset of cells progress-
ing to the characteristic phenotype of lipid droplet forma-
tion. Single-cell profiling techniques have demonstrated that 
changes in adipogenic marker genes do not strictly correlate 
with lipid droplet accumulation, and that the cell-to-cell vari-
ability in lipid droplet formation is highly dependent on the 
activity of the insulin signaling pathway [51]. For primary cul-
tures an additional factor may be donor age because changes 
in adiposity are observed in VDRKO mice that become more 
pronounced with age (see Impact of Vitamin D Signaling on 
Adiposity in Mouse Models section). Thus, the differences in 
ages of donors (18 days–6 months) in the studies with VDRKO 
mice [38,48,49] may in part explain the contradictory results.

Effect of 1,25(OH)2D on Differentiation of 
Human Mesenchymal Precursors

Given the heterogeneity and discrepancies observed in ani-
mal cell models of adipogenesis, several groups have instead 
focused on defining the effects of 1,25(OH)2D on human 
mesenchymal progenitor cells. As described for murine pri-
mary cultures, human mesenchymal progenitor cells can be 
obtained from various sources, with the most commonly uti-
lized being adipose-derived. The commercial vendor Zen-Bio 
(http://www.zen-bio.com/) provides primary cultures of 
human adipose-derived mesenchymal cells with deidentified 
data on tissue source of cells (subcutaneous vs. visceral) as well 
as age, gender, and BMI of donors. Narvaez et al. [48] assessed 
the effect of 1,25(OH)2D on Zen-Bio sourced mesenchymal 
progenitor cells derived from subcutaneous adipose tissue 
of adult females with healthy BMI. Cultures from multiple 
donors were incubated in basal media and under adipogenic 
conditions in the presence and absence of 10 nM 1,25(OH)2D 
for 14 days. Although 1,25(OH)2D did not enhance lipid accu-
mulation in basal media, cells cultured in adipogenic media 
plus 1,25(OH)2D exhibited enhanced lipid accumulation (Fig. 
34.2) associated with upregulation of adipogenic markers such 
as PPARγ and FABP4. Of note, the effects of 1,25(OH)2D were 
not dependent on the presence of the PPARγ ligands trogliti-
zone or ciglitazone, and cotreatment with VDR and PPARγ 
ligands did not exert additive or synergistic effects on lipid 
accumulation in these cultures. These data are consistent 
with those of Nimitphonga et al. [52] who studied the effects 
of 1,25(OH)2D on cultures of human preadipocytes isolated 
from subcutaneous and omental adipose tissue of patients 
with high mean BMI (33–42 kg/m2). Cells treated with 10 nM 
1,25(OH)2D in the presence of adipogenic triggers exhibited 
increased expression of PPARγ, LPL and FABP4 genes, and 
triglyceride accumulation, which was more pronounced in 
the absence of PPARγ agonists. This study also demonstrated 
that both preadipocytes and differentiated adipocyte cultures 
expressed CYP27B1 and, consistent with functional enzyme, 
adipogenesis was enhanced in response to physiologic con-
centrations of 25(OH)D.

http://www.zen-bio.com/
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In the paper by Narvaez [48], the induction of adipogen-
esis and its promotion by 1,25(OH)2D was most pronounced 
in early passage primary cultures, suggesting that adipo-
genic precursors in these mixed cultures are short-lived. 
Indeed, 1,25(OH)2D has been shown to delay senescence 
while maintaining differentiation capacity in human bone–
derived mesenchymal stem cell cultures [53], suggesting that 
cellular aging may be an important factor in the ability of 
precursors to undergo adipogenic differentiation as well as 
its modulation by endogenous factors such as 1,25(OH)2D. 
This suggestion is consistent with the previously discussed 
data demonstrating regulation of the antiaging pathway gov-
erned by NAD-SIRT1 by 1,25(OH)2D in mature 3T3-L1 cells 
and the age-related decline in differentiation potency of cells 
from VDRKO mice.

Low-passage primary cultures of human adipose-derived 
progenitor cells from female donors with normal BMI were 

utilized for genomic profiling of 1,25(OH)2D actions [48]. 
Microarray analysis was conducted in cells treated with vehi-
cle or 10 nM 1,25(OH)2D under both basal and adipogenic 
conditions to identify genes that were selectively altered in 
cells differentiated in the presence of 1,25(OH)2D [48]. Cells 
grown in basal media were less responsive to 1,25(OH)2D than 
those grown in adipogenic media. There was limited overlap 
in 1,25(OH)2D-regulated gene expression under these two 
conditions, with only four genes (TGFβ2, Lectin 9C, Lectin 9B, 
and Serine C2) other than CYP24A1 regulated by 1,25(OH)2D 
under both conditions. A cohort of 86 genes (26 upregulated, 
60 downregulated) was identified that was significantly 
altered by 1,25(OH)2D treatment only in the presence of adipo-
genic media. Many of the genes that were downregulated by 
1,25(OH)2D under adipogenic conditions (i.e., TGFBI, CD9, 
TPM1, THBD) are associated with bone, cartilage, and muscle 
formation suggesting that their downregulation by 1,25(OH)2D 
may serve to inhibit differentiation into these lineages while 
promoting adipogenic differentiation. A notable exception is 
JAG1, which was upregulated by 1,25(OH)2D under adipo-
genic conditions. JAG1 encodes the Jagged-1 ligand in the 
Notch signaling pathway, which is essential for human osteo-
blastogenesis, but has been shown to both promote and inhibit 
adipogenesis depending on the model system [54,55].

This array analysis identified STEAP4 as a VDR-
modulated gene with strong potential to modulate adipo-
genesis as this was the gene that was most highly induced 
by 1,25(OH)2D in adipogenic media. STEAP4 encodes a 
metalloreductase that has been linked to obesity, insulin sen-
sitivity, metabolic homeostasis, and inflammation. During 
1,25(OH)2D stimulation of adipogenesis in cultures from dif-
ferent donors and clones, there was good correlation between 
STEAP4 induction and the magnitude of lipid accumulation. 
Human studies have demonstrated that STEAP4 is highly 
expressed in healthy adipose tissue but reduced in adipose 
tissue from obese and insulin-resistant subjects [56–58]. 
Furthermore, STEAP4 expression in adipose tissue inversely 
correlates with obesity-associated metabolic disturbances 
such as body fat, blood pressure, and fasting glucose [57]. 
Mechanistically, because STEAP4 enhances insulin actions in 
adipocytes [59–63], and insulin is a required component of 
adipogenic media, it is possible that promotion of adipogen-
esis by 1,25(OH)2D is mediated via STEAP4 stimulation of 
insulin signaling. Consistent with this concept, 1,25(OH)2D 
was shown to enhance insulin sensitivity in human adipo-
cytes (Marcotorchino et al. [30]). It is also worth noting that 
STEAP4 is induced in human adipocytes by cytokines and 
the adipokine leptin [62] and that 1,25(OH)2D exerts antiin-
flammatory effects in adipocytes [30,64]. These data suggest 
that STEAP4 may mediate many of the pleiotropic effects of 
1,25(OH)2D on adipocyte biology. In addition to STEAP4, 
1,25(OH)2D selectively altered expression of ADAMTS5 [65], 
HIG2 [66], and IGF2 [67–69], all of which have been asso-
ciated with lipogenesis. Clearly, further studies are war-
ranted to identify how these genes and their regulation by 
1,25(OH)2D contribute to the process of adipogenesis both 
in vitro and in vivo.

FIGURE 34.2  Vitamin D pathway in primary cultures of human 
adipose-derived pluripotent mesenchymal cells. (A) Vitamin D receptor 
(VDR) protein expression in adipose-derived mesenchymal cell cultures 
from two female donors of normal body mass index grown in basal media, 
adipogenic (ADIPO) media, or adipogenic media plus 10 nM 1,25(OH)2D 
(ADIPO + 1,25D). (B) Phase contrast images depicting lipid accumulation 
in mesenchymal cell cultures from two female donors of normal BMI. Cells 
were incubated in basal media, adipogenic media (ADIPO), or adipogenic 
media plus 10 nM 1,25(OH)2D (ADIPO + 1,25D).
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IMPACT OF VITAMIN D SIGNALING ON 
ADIPOSITY IN MOUSE MODELS

Genetically Engineered Mouse Models
Incidental observations on VDRKO mice initially sug-

gested defects in maintenance of adipose tissue surrounding 
the prostate and mammary glands [70–72]. To specifically 
assess the impact of VDR ablation on adiposity and diet-
induced obesity, Narvaez et al. [73] monitored body weights, 
food intake, metabolic factors, and gene expression in 
VDRKO mice on two distinct genetic backgrounds from 
weaning to 6 months of age. To maintain normocalcemia, 
wild-type and VDRKO mice were reared on the high-calcium 
rescue diet with normal or high fat content. These data dem-
onstrated that VDRKO mice on either the inbred C57Bl6 or 
outbred CD1 genetic backgrounds exhibited reduced adipos-
ity on both low- and high-fat rescue diets compared with 
wild-type mice. Interestingly, VDR ablation does not pre-
vent adipose deposition during early development because 
young VDRKO mice have normal fat stores [73]. The lean 
phenotype of VDRKO mice begins in young adulthood and 
is characterized by reduced body and adipose tissue weights, 
decreased adipocyte size, and hypoleptinemia. Importantly, 
mice lacking CYP27B1, the 1α-hydroxylase enzyme that gen-
erates 1,25(OH)2D, displayed a lean phenotype similar to that 
of VDRKO mice, implicating liganded VDR in the observed 
effects.

The mechanisms underlying the inability of VDRKO and 
CYP27B1KO mice to accumulate weight with age or high-fat 
feeding are likely complex and not fully understood. Several 
groups have confirmed that VDR ablation is associated with 
hyperphagia [73,74], indicating that the chronic hypolepti-
nemia in these animals appropriately stimulates appetite and 
argues against an effect of VDRKO at the level of the hypothal-
amus. However, studies to assess the sensitivity of VDRKO 
mice to exogenous leptin administration would be necessary 
to confirm this suggestion. Intestinal lipid transport is not 
impaired in VDRKO mice [75], indicating that malabsorption 
is an unlikely cause of the lean phenotype. Direct effects of 
VDR signaling on adipocytes are suggested by the presence of 
VDR in both WAT and BAT [73] and by in vitro data indicat-
ing that 1,25(OH)2D alters lipid accumulation, β-oxidation of 
fatty acids, and gene expression in ex  vivo cultures derived 
from bone marrow or adipose tissue of wild-type but not 
VDRKO mice [38,48,75]. This suggestion is supported by data 
from Wong et al. [76] who demonstrated that ectopic expres-
sion of human VDR in wild-type CD1 mice (using the FABP4 
promoter, which targets expression to mature adipocytes) 
reduced fatty acid β-oxidation and increased fat mass relative 
to control mice [76].

To date, one group has used cre-lox technology to delete 
VDR specifically in mature adipocytes [77]. In this study, Vdr-
flox mice were crossed with Fabp4-cre mice to generate mice 
with adipose-specific VDR deletion (termed mouse line with 
adipose specific VDR deletion (CVF) mice). CVF mice and 
Fabp4-cre control mice (termed control mouse line (CN1) mice) 

were reared on high-calcium “rescue” diets (for comparison to 
global VDRKO mice) or on high-fat diets (to stimulate adipos-
ity). VDR expression was significantly reduced in adipose tis-
sue of CVF mice compared with CN1 mice. The phenotype of 
mice with adipose-specific VDR ablation did not mimic that 
of mice with global VDR deletion. Contrary to what would 
be expected if VDR functioned in WAT to maintain adiposity, 
female adipose-specific VDRKO mice exhibited higher growth 
rates after puberty and increased visceral fat pad weight com-
pared with control mice on both rescue and high-fat diets. The 
impact of adipose-specific VDR ablation on body weight and 
visceral adiposity was gender specific and was not observed 
in males. Expression of UCP1 and PPARγ was elevated in 
WAT of female CVF mice, supporting these genes as targets 
of repression by VDR in mature adipocytes. Adipose-specific 
VDR deletion did not impair glucose tolerance or alter the 
weight of BAT, liver, pancreas, or bone in either male or female 
mice in response to high-fat feeding. These data indicate that 
VDR functions in mature adipocytes to suppress visceral adi-
posity, possibly through interaction with female reproductive 
hormones such as estrogens. Although these data may seem 
incongruent with results from global VDRKO mice, it should 
be noted that the FABP4 promoter used to drive VDR deletion 
by Matthews et al. [77] is not active in preadipocytes or in mes-
enchymal stem cells, thus VDR deletion is restricted to mature 
adipocytes that have already undergone adipogenic differen-
tiation. Because available data indicate that VDR expression 
is quite low in mature adipocytes, the lack of a significant 
phenotype in male mice with adipose-specific VDR deletion 
suggests that if the lean phenotype of global VDRKO mice is 
directly mediated in adipose tissue, it is likely secondary to 
loss of VDR function in mesenchymal precursors or preadi-
pocytes rather than in mature adipocytes. The presence of a 
phenotype in female mice with adipose-specific VDR deletion 
may indicate that estrogen or other female reproductive hor-
mones upregulate VDR or its activity in mature adipocytes to 
promote lipolysis. Interactions between estrogen and vitamin 
D signaling have been well documented, and estrogen replace-
ment therapy is known to prevent central adiposity associated 
with menopause [78]. Clearly, more studies are needed to dis-
sect the actions of VDR in mature adipocytes versus less dif-
ferentiated precursors in both males and females.

In addition to potential direct effects of 1,25(OH)2D on adi-
pocytes, VDR deficiency may exert other, more global effects 
that impact overall energy balance. Data have accumulated for 
altered energy metabolism as a major contributor to the lean 
phenotype of VDRKO mice. Narvaez et al. [73] reported that 
UCP1 expression in adipose tissue of VDRKO mice was 25-fold 
higher than that of wild-type mice. As noted earlier, UCP1 
mediates nonshivering thermogenesis via uncoupling of mito-
chondrial respiration and its expression is normally limited to 
BAT. UCP1 and its homologs UCP2 and UCP3 are upregulated 
in both WAT and BAT of VDRKO mice [73,75]. The marked 
elevation of UCPs in VDRKO mice is associated with enhanced 
energy expenditure [71,75], which is likely of sufficient magni-
tude to prevent weight gain despite hyperphagia and high fat 
intake. In direct support of this concept, transgenic expression 
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of human VDR in adipose tissue resulted in decreased expres-
sion of UCPs in WAT and BAT, lower energy expenditure, and 
enhanced weight gain relative to control mice [76]. Cellular 
studies have demonstrated that UCP1, UCP2, and UCP3 are 
directly repressed by VDR [31,75,79,80], indicating that upreg-
ulation of UCPs in VDRKO tissue results from derepression. 
More recently, brown adipocyte differentiation in  vitro was 
shown to be suppressed by either 1,25(OH)2D treatment or 
VDR overexpression [81]. It is important to note that VDR sup-
pression of UCPs may extend to tissues other than WAT and 
BAT, including skeletal muscle. Ectopic upregulation of UCP1 
in muscle has been shown to have dramatic effects on whole-
body energy expenditure, resulting in a phenotype similar to 
that of VDRKO mice [82]. Thus, enhanced energy expenditure 
and atrophy of adipose tissue in VDRKO mice is multifacto-
rial, reflecting VDR actions in multiple tissues and cell types.

Another newly recognized VDR target gene, Elov13, codes 
for a fatty acid elongase that is critical for lipid accumula-
tion in BAT [83]. Ji et al. [84] profiled the lipid composition of 
WAT from wild-type and VDRKO mice and identified a class 
of saturated and monounsaturated fatty acids (C18–C24) that 
were specifically elevated in the sWAT of VDRKO mice com-
pared to wild-type controls. The altered fatty acid composi-
tion in VDRKO tissue was attributed to lack of repression of 
Elovl3 because a negative VDR response element was identi-
fied in the proximal promoter of the gene. Because Elovl3 is 
dramatically upregulated in BAT during cold exposure [83], 
it is tempting to speculate that the upregulation of Elovl3 in 
VDRKO tissue, and resulting alteration in fatty acid availabil-
ity is causally related to the enhanced β-oxidation and UCP-
mediated thermogenesis.

Additional metabolic abnormalities may contribute to the 
phenotype of VDRKO mice, including disturbed glucose 
metabolism [85–89]. Vitamin D and the VDR have long been 
implicated in control of insulin secretion from pancreatic 
beta cells [90], and insulin secretion in response to glucose 
challenge was impaired in a distinct strain of VDR mutant 
mice [87]. VDRKO mice on the C57Bl6 genetic background 
had normal circulating insulin and glucose, but VDRKO 
mice did not exhibit the characteristic hyperglycemia and 
hyperinsulinemia when bred onto the obesity-prone CD1 
background [73]. The possibility that VDR acts in multiple 
tissues to control overall body metabolism is supported by 
data from mice with liver or endothelial cell-specific VDR 
deletion, which exhibited alterations in systemic lipid and 
glucose metabolism [89,91]. Further characterization of insu-
lin secretion, tissue sensitivity to insulin, glucose tolerance, 
and lipid metabolism during VDR ablation as a function of 
age and diet will be an important future direction to clarify 
the complex phenotype of these mice.

Effect of Vitamin D Deficiency and 
Supplementation on Adiposity and Metabolism  
in Animal Models

Numerous studies have examined whether manipulation of 
dietary vitamin D or treatment with natural or synthetic VDR 

ligands alters adiposity and metabolism in animal models, 
and again conflicting results have been reported. Based on the 
lean phenotype and resistance to diet-induced obesity in nor-
mocalcemic mice lacking VDR or CYP27B1 [73–75], one would 
predict that vitamin D deficiency would reduce weight gain 
and, conversely, that vitamin D supplementation or treatment 
with VDR ligands might enhance indices of adiposity, particu-
larly in response to high-fat diets. Consistent with the changes 
in leptin observed in VDRKO and VDR transgenic mice dis-
cussed above, Kong et al. [38] demonstrated that treatment of 
mice with a vitamin D analog for 1 week elevated serum leptin 
and increased leptin gene expression in adipose tissue. In a 
model of diet-induced obesity based on the “Western-style” 
diet, which is high in fat but low in methyl donors, calcium, 
and vitamin D, Bastie et al. [92] demonstrated that restoring 
calcium and vitamin D to the Western diet promoted more 
rapid weight gain, increased fat utilization, and impaired glu-
cose tolerance. Consistent with these data, dietary vitamin D 
deficiency in conjunction with high-fat feeding was associated 
with reduced weight gain, decreased visceral adiposity, lower 
serum leptin, and elevated UCPs in WAT of Sprague–Dawley 
rats [93] and improved metabolic parameters, including insu-
lin sensitivity, in ICR mice [94]. It should be noted, however, 
that dietary vitamin D deficiency studies—particularly in 
young growing animals—are often confounded by adverse 
effects on calcium homeostasis. In fact, in the rat study [93], the 
effects of vitamin D deficiency on adiposity and metabolism 
were associated with severe hypocalcemia and were reversed 
by the addition of calcium alone to the vitamin D-deficient 
diet. Because calcium may independently affect body weight 
[95], further studies to dissect out the contributions of each 
individual nutrient to control of adiposity in vivo are clearly 
needed.

In direct contrast to the predictions based on findings in 
VDRKO mice and the data cited above, the majority of studies 
have demonstrated that vitamin D supplementation attenu-
ates diet-induced obesity, and that suboptimal vitamin D sta-
tus (rather than overt vitamin D deficiency) promotes weight 
gain. Marcotorchino [96] reported that 10-week supplemen-
tation of mice fed high-fat diets with vitamin D3 (15,000 IU/
kg diet) limited weight gain, improved glucose homeostasis, 
increased lipid oxidation, and enhanced energy expenditure 
relative to mice consuming high-fat diets with the standard 
vitamin D content of 1500 IU/kg diet. Similar results were 
reported by Fan [97] who chronically treated mice with vita-
min D3 by gavage and reported decreases in body weight 
associated with upregulation of UCP3 in muscle. In another 
study, gradual weight reduction, lower levels of C-peptide 
and insulin, and attenuation of fatty liver was observed in 
high-fat diet–fed mice treated with 1,25(OH)2D compared 
with control animals [98,99]. Consistent with these data on 
vitamin D supplementation attenuating weight gain, several 
studies have demonstrated that suboptimal vitamin D status 
exerts the opposite effects, i.e., increases in body weight and 
worsening of metabolic syndrome. In the goto-kakizaki rat 
model of type 2 diabetes, chronic vitamin D restriction (25 IU/
kg diet for 8 weeks) resulted in elevated insulin resistance 
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and dysregulation of glucose metabolism in association with 
decreased adipose PPAR-γ expression and deterioration in 
β-cell function and mass relative to control rats fed 1000 IU 
vitamin D/kg diet [100].

A recent study has implicated vitamin D actions in neu-
ral control of body weight and feeding behavior. Trinko 
et  al. [101] monitored body weights of mice fed a high-fat 
diet with normal (1100 IU/kg diet) or reduced (110 IU/
kg diet) vitamin D3 for over 100 days. Interestingly, no dif-
ferences in body weight between groups was observed for 
the first 50 days, but for the remainder of the study the mice 
fed low vitamin D exhibited increased weight gain and ele-
vated food intake compared with vitamin D-sufficient mice. 
Investigators focused on whether vitamin D status might 
alter feeding behavior and body weight through VDR activ-
ity in brain areas linked to dopamine signaling. In support 
of this concept, VDR expression was detected in dopamine-
producing, as well as in dopamine-receiving, neurons. 
Furthermore, acute treatment with 1,25(OH)2D selectively 
altered gene expression and enhanced dopamine response. 
Consistent with regulation of dopamine by 1,25(OH)2D, mice 
fed reduced levels of dietary vitamin D3 showed blunted 
dopaminergic responses. These data support an intriguing 
and novel mechanistic link between VDR actions in brain 
and changes in weight and feeding behavior. It is worth not-
ing that in this study 1,25(OH)2D treatment and vitamin D 
deficiency had similar effects on amphetamine consumption, 
another behavior regulated by dopamine circuits. Thus, the 
effects of vitamin D status on feeding behavior and body 
weight may represent one of several actions regulated by 
VDR via neural dopamine activity.

To summarize, the majority of the animal feeding stud-
ies suggest that supplementation with vitamin D above the 
recommended amounts traditionally present in rodent chow, 
or treatment with 1,25(OH)2D, attenuates both body weight 
gain and metabolic disturbances associated with high-fat 
diets. In agreement with these data, several studies have 
demonstrated that chronic suboptimal vitamin D deficiency 
exacerbates the effects of high-fat feeding. “Suboptimal” 
vitamin D status should be considered conceptually distinct 
from severe vitamin D deficiency, which leads to weight loss, 
hypocalcemia, and rickets. However, inconsistencies in study 
protocols, diet composition (definition of high fat, amount of 
vitamin D and calcium, other nutrients), genetic strains of 
mice and rats, which are differentially sensitive to weight 
gain, and choice of end points make it difficult to reconcile 
the published data. In particular, the kinetics of changes in 
serum 25(OH)D during chronic dietary vitamin D restriction 
have not been reported, and no studies have assessed vita-
min D concentrations in adipose tissue. Most of these dietary 
studies have been conducted in young growing animals, 
and thus may not be applicable to older animals or those 
fed normal or distinct obesogenic diets. Thus, Mallya et al. 
[102] fed adult mice diets containing 50, 250, 500, or 1500 IU 
vitamin D3/kg diet for 4 months and reported no effects on 
body weight despite significant differences in vitamin D sta-
tus as measured by 25(OH)D. Thus, in the absence of high-fat 

feeding, moderate vitamin D deficiency in adulthood may 
have minimal or no effect on body weight.

TRANSLATIONAL CONSIDERATIONS

Vitamin D Status and Body Weight: Insight Into 
Clinical Trials

Several randomized clinical trials of vitamin D supplemen-
tation in relation to weight loss have been conducted, with the 
majority indicating that increasing vitamin D status, as mea-
sured by serum 25(OH)D, has little effect on body weight in 
overweight or obese people [103]. A few newer studies are 
cited below as examples, but a thorough discussion is outside 
of the scope of this chapter. Readers are referred to recent pub-
lished reviews [104–108], which discuss not only the role of 
vitamin D in weight loss but also the potential effects of vita-
min D supplementation on metabolic consequences of obesity 
such as insulin sensitivity and inflammation.

A major consideration of vitamin D supplementation trials 
is the baseline vitamin D status of the population under study. 
If suboptimal vitamin D status is associated with weight gain, 
then recruitment of subjects based on low serum 25(OH)D will 
likely be necessary to detect an effect of vitamin D supplemen-
tation on weight loss. This strategy was employed by Wamberg 
et al. [109] who randomized 52 obese men and women with 
plasma 25(OH)D < 50 nmol/L to 26 weeks of treatment with 
7000 IU (175 μg) of vitamin D daily or placebo. End points 
included body composition and assessment of subcutaneous 
and visceral WAT depots, insulin resistance, plasma lipids, 
and inflammatory markers. Although vitamin D supplemen-
tation increased average serum 25OHD from 33 to 110 nmolar, 
there were no changes in body composition, WAT depots, or 
any other end points. Thus, increasing 25OHD levels by vita-
min D treatment for 26 weeks had no effects on body weight 
or metabolic complications of obesity in adults with high BMI 
(35 kg/m2) and low baseline plasma 25OHD. Contrasting 
results were reported by Salehpour et al. [110] who conducted 
a double-blind trial of 77 overweight women randomized 
to 1000 IU vitamin D (25 μg) daily or placebo for 12 weeks. 
Although a lower dose of vitamin D was used in this study 
compared with Wamberg’s, a significant increase in serum 
25(OH)D was still observed (from 37 to 75 nmolar), and there 
were statistically significant decreases in body fat mass in the 
vitamin D group compared with the placebo group. In addi-
tion, an inverse correlation between change in serum 25(OH)
D and body fat mass was found. It is surprising that the lower 
dose of vitamin D given for a shorter period of time in this 
study elicited beneficial effects on body fat, whereas a higher 
dose given for a longer period of time in Wamberg’s study 
did not. One important factor could be baseline BMI, as the 
subjects in Wamberg’s study had an average BMI of 35 kg/m2  
as opposed to 29 kg/m2 in Salehpour’s study. Given the multi-
factorial nature of obesity, it is tempting to speculate that indi-
viduals with long standing or severe obesity may be resistant 
to signals that promote weight loss, including vitamin D.
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CONCLUSIONS AND FUTURE DIRECTIONS

In summary, adipose tissue has long been recognized 
as a major site of vitamin D storage, and new technologies 
have facilitated quantitation of the amount of vitamin D and 
25(OH)D in adipose tissue depots. Although it appears likely 
that vitamin D storage and release is regulated (for example, 
during physiological states such as puberty, pregnancy, and 
aging), but virtually nothing is known about the mechanisms 
by which this might be achieved. Understanding regulatory 
signals and genetic determinants of vitamin D storage might 
provide insight into how pathological conditions such as 
obesity and metabolic syndrome alter the process, leading to 
lower serum 25(OH)D in such conditions. With respect to adi-
pose tissue as a target for vitamin D, both mesenchymal pre-
cursors and mature adipocytes express the VDR and the major 
vitamin D-metabolizing enzymes [24,73,111]. Direct actions 
of 25(OH)D, 1,25(OH)2D, and VDR on adipogenic differen-
tiation and gene expression have been documented, although 
the effects differ with model system. Animal studies support 
a modulatory role for dietary vitamin D and VDR activity in 
control of body weight, but much contradictory data exist, 
and detailed mechanisms are lacking. It is likely that vitamin 
D has distinct effects on mesenchymal precursors, preadipo-
cytes, and mature adipocytes, which could account for much 
of the variability derived from in vitro studies and differences 
in the phenotypes of genetically engineered mice. In addition 
to direct effects on adipose tissue, it is quite clear that vitamin 
D signaling integrates pathways in different tissues (including 
muscle, liver, bone, and possibly brain) that influence metabo-
lism and energy expenditure and indirectly alter the balance of 
lipogenesis and lipolysis in adipose tissue. Although obesity 
in humans is consistently associated with low serum 25(OH)
D, most studies have failed to detect significant effects of vita-
min D supplementation on overall body weight, although 
some data support beneficial effects of supplementation on fat 
mass, waist circumference, insulin sensitivity, and/or inflam-
mation. As recent studies have demonstrated that vitamin D 
supplementation alters adipose tissue gene expression [112], 
and VDR has been identified as a gene induced by insulin in 
“healthy” obesity [113], further mechanistic research into the 
role of vitamin D and its receptor in adipose tissue biology is 
critical to resolve the current inconsistencies in this field and to 
facilitate translational impact.
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