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A Quantitative Point-of-Need Assay 
for the Assessment of Vitamin D3 
Deficiency
S. Vemulapati1, E. Rey  1, D. O’Dell2, S. Mehta  3,4 & D. Erickson1,3

Vitamin D is necessary for the healthy growth and development of bone and muscle. Vitamin D 
deficiency, which is present in 42% of the US population, is often undiagnosed as symptoms may not 
manifest for several years and long-term deficiency has been linked to osteoporosis, diabetes and 
cancer. Currently the majority of vitamin D testing is performed in large-scale commercial laboratories 
which have high operational costs and long times-to-result. Development of a low-cost point-of-need 
assay could be transformative to deficiency analysis in limited-resource settings. The best biomarker of 
vitamin D status, 25hydroxyvitamin D3 (25(OH)D3), however, is particularly challenging to measure in 
such a format due to complexities involved in sample preparation, including the need to separate the 
marker from its binding protein. Here we present a rapid diagnostic test for the accurate, quantitative 
assessment of 25(OH)D3 in finger-stick blood. The assay is accompanied by a smartphone-assisted 
portable imaging device that can autonomously perform the necessary image processing. To achieve 
accurate quantification of 25(OH)D3, we also demonstrate a novel elution buffer that separates 25(OH)
D3 from its binding protein in situ, eliminating the need for sample preparation. In human trials, the 
accuracy of our platform is 90.5%.

Vitamin D refers to a group of fat soluble secosteroids responsible for promoting absorption of calcium, phosphate 
and zinc in the body1,2. It is also essential for the healthy growth and maintenance of bone and muscle3MEP_L_bib3.  
Vitamin D deficiency causes rickets in children4MEP_L_bib4 and low levels of vitamin D have been attributed to 
diabetes, heart disease, cancer and osteoporosis in adults5MEP_L_bib5. Vitamin D is also critical for ensuring optimal 
immune function; for example, vitamin D is required for producing antimicrobial peptides such as cathelicidin, 
necessary to combat pathogens such as Mycobacterium tuberculosis in human macrophages6MEP_L_bib6. Deficiency 
is defined by evaluating the serum concentrations of 25-hydroxyvitamin D, or 25(OH)D, a pro-hormone that is 
produced in the liver by hydroxylation of cholecalciferol, the biologically inert form of vitamin D that is produced 
in the skin. 25(OH)D is the major circulating form of vitamin D and is considered the best indicator of holistic 
vitamin D status. Supplemental vitamin D is available in two forms: ergocalciferol (vitamin D2) and cholecal-
ciferol (vitamin D3). Even though commonly prescribed supplements contain either vitamin D2 or vitamin D3, 
it has been demonstrated that cholecalciferol has a higher efficacy at raising the total serum 25(OH)D status in 
individuals7,8. As a result, many of the supplements now on the market contain cholecalciferol. The Endocrine 
Society guidelines suggest that individuals with serum concentration of 25(OH)D greater than 75 nmol/L can be 
considered healthy while those with values between 50 and 75 nmol/L are insufficient and lower than 50 nmol/L 
are deficient9MEP_L_bib9.

In the United States, the prevalence of vitamin D deficiency rate is estimated at 42%, with a higher incidence 
amongst the African American (82%) and Hispanic (69%) population10MEP_L_bib10. Deficiency can be corrected 
with supplementation and dietary changes particularly when detected early; however, many people are una-
ware of their status due to the lack of easy to access methods for quantifying 25(OH)D3 levels in human serum. 
Point-of-care vitamin D deficiency testing remains a significant challenge due to the presence of vitamin D bind-
ing protein, a carrier protein that helps transport 25(OH)D in blood. 95–99% of available 25(OH)D in blood is 
bound to vitamin D binding protein11,12 and due to the nature of the strong hydrophobic bond between them, it is 
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not possible to assess an individual’s vitamin D status without separating the two from each other. Furthermore, 
vitamin D binding protein is always present in significant molar excess in blood and has no correlation with the 
amount of circulating 25(OH)D13–15. As a result, it cannot be used as a target itself, a scheme which has been 
adopted for targets such as vitamin A16–19.

Current clinical methods for quantitation of 25(OH)D can be broadly divided into chromatographic 
methods with (LC/MS-MS: Liquid Chromatography Tandem Mass Spectrometry) and without (HPLC: High 
Performance Liquid Chromatography) mass spectrometric detection and competitive immunoassays such as 
RadioImmunoAssay (RIA). These techniques are expensive and time consuming due to the need for special-
ized equipment and personnel and the necessity to separate and remove vitamin D binding protein presents 
further complications by requiring elaborate sample preparation. Usually the sample is treated and incubated 
(for ~1 hour) with large amounts of organic solvents such as acetonitrile to perform the separation step. Further, 
organic solvents cannot be used directly with blood as they cause lysis of blood cells, and require that the blood 
be centrifuged into serum. Standard protocols also require an additional centrifugation step after the organic 
solvents are added in order to remove the precipitated protein. These tedious sample preparation requirements 
combined with the need for specialized equipment pose a severe limitation for the development of point-of-need 
tests for the assessment of vitamin D status.

In recent years, several research groups have employed microfluidic techniques to develop low cost methods 
to assess micronutrient status at the point-of-need. A microfluidic chip that was able to perform the detection of 
ferritin and CRP in human serum samples was demonstrated by Kartalov et al.20MEP_L_bib20. Similarly, Dimov et al. 
exhibited the “stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS)” for detection 
of vitamin B6

21MEP_L_bib21. While these works have demonstrated excellent proof of concepts for use at the point 
of care, they are limited by their inability to perform blood processing on chip and the need for expensive imag-
ing equipment. Lee et al.22MEP_L_bib22 demonstrated the vitamin AuNP-based Immunoassay Device (vitaAID), a 
system for quantification of vitamin D levels using a smartphone. In that work, a novel gold nanoparticle based 
immunoassay architecture was developed and analyzed by a smartphone camera, enabling quantification of 
serum samples without the need for expensive lab equipment. Even though the method helped transition vita-
min D testing out of the lab, the technique was limited by its inability to perform blood processing on chip and 
non-trivial incubation time (~6 hours).

In this work, we present a rapid diagnostic test that is capable of accurate, quantitative assessment of vitamin 
D status. Our test focuses on quantification of 25(OH)D3, the largest component of circulating 25(OH)D, in the 
deficient range ( < 50nmol/L), as that is where the greatest need is. Quantitative ability is necessary in the deficient 
range to help distinguish between individuals who are severely and moderately deficient. In order to maintain 
compatibility with existing manufacturing techniques, we developed our diagnostic test as a lateral flow assay. 
Furthermore, our diagnostic test is integrated into a smartphone-assisted imaging platform which allows for easy 
operation and hassle-free access to test results. In addition to being capable of processing blood on strip, our test 
incorporates a novel elution buffer that is compatible with lateral flow assays to achieve separation of 25(OH)D3 
from its binding protein in situ, eliminating the need for any sample preparation. We show reliable quantification 
of physiologically relevant vitamin D3 levels in standard solutions, commercial calibrators, human serum and 
finger stick blood.

Results
Vitamin D3 diagnostic test protocol: The system consists of a vitamin D3 diagnostic test, custom made cassette 
that houses the test and a portable reader (TIDBIT) (See Fig. 1). The TIDBIT has been designed so that when 
the cassette is inserted into the device, it is aligned with a CMOS camera that automatically captures an image of 
the test area. The TIDBIT can be operated via a smartphone or computer application and can be controlled with 
the help of the Nutriphone application. Once the image is taken, a custom python script automatically crops the 
image and deduces the ratio of intensities of the test line to the control line, or T/C ratio (See Fig. 2B and C). The 
T/C ratio is correlated to a value of 25(OH)D3 by using a calibration curve, that is determined prior to testing by 
analyzing samples of known 25(OH)D3 values.

To run a vitamin D3 test, the user starts the Nutriphone application on the device of choice and follows the 
instructions. First the user applies a small amount (4 µL) of elution buffer on the edge of the sample pad. The user 
then collects 40 µL of blood from a finger prick and places it onto the sample collection pad. After allowing for the 
blood to separate into serum and mix with the elution buffer, the user is prompted by the smartphone application 
to apply 15 µL of running buffer for the filtered serum to enter the conjugate pad. After another short period of 
incubation, the user is again prompted to add 25 µL of running buffer to start the test. Following this step, the user 
must place the cassette in the TIDBIT, which automatically images and analyzes the test strip when the test and 

Figure 1. Protocol for Vitamin D3 diagnostic test. The TIDBIT is depicted as the last image on the right.
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control lines are fully developed. Briefly, a grayscale image is taken using the TIDBIT and processed by a python 
script to filter out the noise using a Gaussian filter. The noisy 2D image is filtered and converted to the grayscale, 
followed by a median filtering process to convert the 2D image into a 1D array, reducing the task to analyzing a 
1D digital signal. The test and control lines of concentrated AuNP – anti 25(OH)D3 are detected as local minima 
on the intensity plot. The respective peak values can be used to calculate a T/C ratio.

Design and implementation of a protein elution buffer. Vitamin D binding protein interferes with 
the capture and quantification of 25(OH)D3 via traditional immunoassay techniques. Commercial tests such as 
the DiaSorin RIA call for mixing the sample with 10X the amount of acetonitrile, an organic solvent, in order 
to liberate all 25(OH)D3 in the sample from the binding protein23MEP_L_bib23. This method cannot be directly 
translated for application with a low-cost point-of-need lateral flow platform for several reasons. Firstly, organic 
solvents cause lysis of red blood cells24MEP_L_bib24, making it unsuitable for use with blood samples; the sample 
must be first spun down into serum via centrifugation, a process that is difficult to perform in point-of-need 
settings. Secondly, if not neutralized or removed prior to running the test, acetonitrile could negatively affect 
the conjugated gold nanoparticles and the dispensed reagents on the test and control lines as the antibodies 
present are prone to denaturation themselves. Finally, adding large amounts of organic solvent is particularly 
unsuitable for lateral flow platforms, as they may adsorb to the nitrocellulose membrane and alter its wetting  
properties25MEP_L_bib26. It was therefore necessary to develop an elution buffer that could denature binding protein 
in the sample without lysing blood cells while maintaining compatibility with the nitrocellulose membrane, the 
conjugated nanoparticles and the dispensed reagents.

In order to perform the separation of 25(OH)D3 from its binding protein, our diagnostic test takes advantage 
of carefully optimized organic solvents and low pH buffers, which are known to be effective at denaturing pro-
teins. After assessing a number of possible combinations, we decided on a combination of Dimethyl sulfoxide 
(DMSO), ethanol and a low pH acetate buffer. We hypothesize that DMSO and ethanol are able to unfold vitamin 
D binding protein while also serving as organic solvents to stabilize the liberated 25(OH)D3

26MEP_L_bib25. This 
unfolding effect is further enhanced in the presence of a low pH buffer as most proteins undergo destabilization 
at low pH25MEP_L_bib26. As seen in Fig. 3B, there is no relationship between [25(OH)D3] and the T/C ratio when 
samples are tested for vitamin D3 without the use of any elution buffer.

Vitamin D3 diagnostic test architecture and principles. The vitamin D3 diagnostic test seen in Fig. 2 
consists of a: blood filtration membrane, a conjugate pad that dry stores gold nanoparticle conjugates (AuNP – 
anti 25(OH)D3), a spacer pad that allows for incubation of the sample with the elution buffer and the conjugates, a 
nitrocellulose membrane that houses immobilized 25(OH)D3-BSA and secondary antibodies and a cellulose fiber 
absorbent pad respectively. When applicable, the blood filtration membrane can be substituted for a cellulose 
fiber pad to perform testing in human serum. Our test strip adopts a competitive type architecture as 25(OH)D3 
is unable to bind to more than one antibody at a time due to its small size (~350 Daltons).

The architecture of the diagnostic test was designed in order to prevent any need for specialized sample prepa-
ration. Prior to starting the test, the user dispenses a small amount of elution buffer onto the front edge of the 
blood filtration membrane to prevent the interaction of the elution buffer and the red blood cells present in the 
blood sample. Once the user dispenses the blood on the sample pad, it automatically flows forward through the 
filtration paper and separates into serum while simultaneously mixing with the elution buffer. This causes bound 
25(OH)D3 to be released from the binding protein present in the sample. After the first instance of running 

Figure 2. Vitamin D3 Lateral Flow Assay. (A) Image and schematic of the 25(OH)D3 strip architecture and 
components. (B) Image and intensity plot of a participant with low Vitamin D3 and high T/C ratio (C) Image 
and intensity plot of a participant with healthy levels of 25(OH)D3 and low T/C ratio.
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buffer is applied, the sample enters the conjugated pad and the unbound 25(OH)D3 interacts with the AuNP-anti 
25(OH)D3 conjugates. This step is critical for the proper functioning of the assay. Based on the amount of 25(OH)
D3 in the sample, there is a competitive interaction between the immobilized 25(OH)D3-BSA on the nitrocel-
lulose and the 25(OH)D3 in the sample for binding sites on the AuNP-antibody conjugates as the sample flows 
through the nitrocellulose. As seen in Fig. 2B, an individual with vitamin D3 deficiency will observe a T/C ratio 
that is high as most binding sites on the conjugates will be empty and free to bind to the immobilized 25(OH)
D3. Conversely, an individual with healthy levels of 25(OH)D3 will observe a T/C ratio that is low as most of the 
binding sites on the conjugates are occupied with 25(OH)D3 from the sample which prevents them from binding 
at the test line (Fig. 2C).

25(OH)D3 quantification in standard solution and commercial calibrators. In Fig. 4A, we demon-
strate that the T/C ratio can be correlated to a 25(OH)D3 concentration in standard solutions. At each concen-
tration, two strips were used and the maximum lower and upper deviations from the average T/C values were 
shown. The coefficient of variation of our assay ranges from 1.7% at 100 nmol/L to 14.7% at 125 nmol/L. We then 
fitted a linear curve such that [25(OH)D3] = f(T/C). We also tested the performance our assay with standard solu-
tions that were spiked with 25(OH)D2 in order to evaluate the cross-reactivity of the assay (inset in Fig. 4A). To 

Figure 3. Elution Buffer. (A) Elution of 25(OH)D3 from binding protein with the help of organic solvents and 
low pH buffer and (B) Calibration curve obtained from analyzing samples without the use of elution buffer. As 
seen, there is no relationship between [25(OH)D3] and T/C ratio without the use of the elution buffer.

A B

Figure 4. Calibration curve in standards. (A) T/C ratios of the colorimetric signals at different 25(OH)D3 
concentration in standard buffers. T/C ratio = a[25(OH)D3] + b, where a = −0.0251 and b = 3.983. Linear 
logistic curve was fitted with R2 = 0.95. The inset demonstrates a calibration curve performed with standard 
buffers that were spiked with 25(OH)D2 to verify cross-reactivity. A linear logistic curve was fitted with 
R2 = 0.0059 indicating no dependence of T/C ratio on [25(OH)D2] (B) T/C ratios of the colorimetrics signals at 
different 25(OH)D3 concentrations in commercial serum based calibrators. T/C ratio = + −

+ ( )
d a d

1 OH D
c

b[25( ) 3]
, 

where a = 2.81, b = 2.63, c = 26.2 and d = 1.52. A four parameter logistic curve was fitted with R2 = 0.99. At each 
concentration two strips were used and the maximum and minimum deviation from the average is shown as 
error bars.
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verify the accuracy of the assay in serum, 25(OH)D3 levels were also quantified in commercially available serum 
based standards (ChromSystems Inc). The calibrators are based on pooled human serum and contain artificially 
spiked values of 25(OH)D3 that lie in the physiologically relevant range. As seen in Fig. 4B, our assay is able to 
reliably distinguish between a deficient, insufficient and healthy sample. These standards did not require the use 
of the elution buffer as these samples were prepared by artificially introducing 25(OH)D3 into the sample. The 
coefficient of variation of our assay ranges from 2.63% at 85 nmol/L to 11.2% at 0 nmol/L.

Vitamin D3 deficiency testing in human serum. Our assay was used to quantify the vitamin D3 levels in 
human serum samples that were collected from a human trial to demonstrate the assay’s applicability in the clini-
cal setting (Fig. 5A,B and C). Native serum samples required the use of elution buffer to separate 25(OH)D3 from 
vitamin D binding protein. As expected of our competitive type architecture, the T/C ratio for a participant with 
vitamin D deficiency appears to be significantly greater than that of a participant with vitamin D insufficiency. 
Actual serum 25(OH)D3 values were quantified using tandem liquid chromatography/mass spectrometry (LC/
MS-MS). Figure 5B shows a ROC curve for the serum tests based on a linear calibration curve that was deter-
mined from the same batch of test strips (Fig. 5A). We used the DeLong method27MEP_L_bib27 to obtain an asymp-
totically exact method to evaluate the area under curve (auc) using 300,000 iterations with a cutoff of 50 nmol/L. 
A similar method was used to evaluate the performance of the assay at a cutoff of 30 nmol/L28MEP_L_bib28 that can 
be seen in Fig. 5C. Diagnostic accuracy, defined as the proportion of correctly classified subjects to all subjects, 
was evaluated as 90.5% and 100% for the two cutoffs respectively. Both cutoffs are based on recommendations 
made by the Institute of Medicine. The root mean square error was assessed to be 5.4 nmol/L. The coefficient of 
variation ranged from 0.05% at 43 nmol/L to 16.6% at 57 nmol/L.

Vitamin D3 deficiency testing in finger prick blood samples. We used our assay to quantify vitamin 
D3 levels in finger prick blood from volunteers after obtaining informed consent, as per a protocol approved 
by the Institutional Review Board at Cornell University. Samples were run and analyzed at the site of the trial. 
Figure 5D demonstrates a calibration curve for the sample set with R2 value of 0.94. From Fig. 5D, it is apparent 
that our assay demonstrates a linear correlation between the T/C ratio and [25(OH)D3]. Additionally, by observ-
ing the change in T/C ratio, we are able to demonstrate that our test can distinguish between a severely deficient, 
deficient and insufficient participant with reasonable certainty. The coefficient of variation ranged from 0.5% at 
39 nmol/L to 17.2% at 48 nmol/L.

Figure 5. Analysis of human trial samples (A) Linear calibration curve for 21 human serum samples with 
R2 = 0.91. T/C ratio = a[25(OH)D3] + b where a = −0.075 and b = 5.689 (B) ROC curve obtained with Delong 
method with n = 300000 and auc 0.836 at a cutoff of 50nmol/L (C) ROC curve obtained from Delong method 
with n = 300000 and auc 1 at a cutoff of 30 nmol/L (D) Calibration curve from 6 human finger stick blood 
samples with R2 = 0.94. T/C ratio = a[25(OH)D3] + b where a = −0.033 and b = 2.9925.
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Discussion
In this work, we demonstrate a rapid and easy to use microfluidic platform for the assessment of vitamin D sta-
tus. We showed the quantification of 25(OH)D3 in the physiologically relevant range within minutes. This was 
achieved by using a competitive type lateral flow assay that incorporates a novel elution buffer which separates 
25(OH)D3 from its binding protein on the strip, therefore eliminating the need for tedious sample preparation. 
The assay produces a colorimetric image that can be analyzed to obtain a T/C ratio that can be correlated to a 
concentration of 25(OH)D3 in the sample (serum or blood). We further validate the system by quantifying lev-
els in trivial amounts of human serum and a finger prick of blood. Given the limitations of traditional clinical 
diagnostic methods, our assay has the potential to make an immediate impact in the point-of-need setting as an 
accurate tool for the assessment of vitamin D3 status.

Our work presented here is the first quantitative, point-of-need diagnostic test for the assessment of vitamin 
D3 status and represents a critical step towards transitioning vitamin D deficiency testing out of the lab and 
into the hands of individuals. Unlike commercial platforms that have been developed for micronutrient testing, 
our test is able to process finger stick blood, denature vitamin D binding protein in situ and quantify levels of 
25(OH)D3 in the sample in a few minutes without the need for expensive equipment. These unique traits cou-
pled with a high diagnostic accuracy (90.5%) make our test sufficient for application at the point of need. Our 
assay is designed specifically for assessing 25(OH)D3 status in the deficient range ( < 50 nmol/L) as this is where 
differentiation is most important. However, we have also demonstrated that our test is able to reliably quantify 
concentrations in the complete physiologically relevant range (0–150nmol/L). Since our assay is unable to detect 
25(OH)D2, the quantitative ability is limited when used in settings where ergocalciferol is the preferred supple-
ment. However, the recent uptake in vitamin D3 supplementation suggests that our diagnostic test is practical for 
use in many point-of-need settings29,30. Given the minimal amount of expertise needed to run the assay, our test 
enables individuals to evaluate their own vitamin D status irrespective of their medical training or knowledge. 
The low cost and portability of the testing platform will also make monitoring and evaluation of the efficacy of 
nutritional interventions feasible in both research and programmatic settings. Furthermore, we have developed 
a protein elution buffer that could be adopted to improve several other diagnostic tests that require specialized 
sample preparation because of the presence of a binding protein (vitamins A, B7 and B12).

Materials and Methods
The monoclonal anti-25(OH)D3 IgG produced in mouse (GenScript Inc) was conjugated with 40 nm Gold 
Nanoparticles using the InnovaCoat Gold Conjugation Kit (Innova Biosciences Ltd). For the conjugation, 0.23 µg 
AuNP in freeze dried form was mixed with 1ug anti 25(OH)D3 IgG in 0.01 M amine free phosphate buffer saline 
at pH 7.4. The anti-25(OH)D3 IgG is attached to the surface of AuNP via lysine residues during a 15-minute 
incubation and the reaction was terminated by adding 0.1 M tris-buffered saline (TBS) with 0.1% Tween 20. To 
remove excess antibodies, DI water was added in 10 times the volume of the conjugate mixture as centrifuged at 
9000 g for 10 min. Upon removal of the supernatant, the final gold nanoparticle concentration was reconstituted 
in 0.01 M TBS containing 2% BSA and the final optical density was verified by using Spectramax 384 to measure 
absorbance of the conjugates at a wavelength of 530 nm. The conjugates were stored at 4 °C until use. Conjugate 
pads were prepared by first diluting the conjugates to roughly 0.7–0.8 OD (depending on application) in a conju-
gate buffer (2 mM Borate buffer with 5% sucrose) which contained appropriate preservatives. Glass Fiber conju-
gate pads (EMD Millipore) with 30cmx5 cm dimensions were soaked in diluted conjugate solution for 2 minutes 
followed by drying at 37 °C for a minimum of 12 h.

Vitamin D3 lateral flow assay preparation. Hi Flow Plus 180 membrane Cards (EMD Milipore) were 
used as the assay platform. The membrane cards have a 2mm clear polyester film backing that contains the nitro-
cellulose membrane and the adhesive that allows for assembly of conjugate and sample pads. The nitrocellulose 
part of the assay extends for 2.5 cm in length and has a nominal capillary flowrate of 45 seconds/cm. This is the 
slowest flow rate offered by the manufacturers and was chosen to allow for maximum reaction time between the 
sample and the conjugates due to the relatively low detection range. The test and control lines were prepared by 
using a Lateral Flow Reagent Dispenser (Claremont Bio) to dispense 0.4 mg/mL of anti-mouse IgG produced in 
goat and 1 mg/mL of 25(OH)D3-BSA. The two lines are separated by 3mm and have line widths of 1mm. These 
lines were dispensed using the Legato 200 Dual Syringe Pump (Claremont Bio) at 6.7 µL/min. Once the rea-
gents were dispensed, they were dried for a minimum of 12 hours at 37 °C. The final assay was assembled by first 
applying the spacer pad onto the bottom of the nitrocellulose portion with 2–3mm overlap followed by a dried 
conjugate pad. The sample pad, which is the final component, varies based on the sample that is to be tested. 
Cellulose pads (EMD Milipore) were used for serum samples and FR1 blood filtration membranes (MDI mem-
brane technologies) were used for blood samples. In both cases, the sample pad was attached below the conjugate 
pad with 2mm overlap. The FR-1 membrane has a thickness of 0.35 mm and capacity of 30 µL/cm2 and measured 
to be 30 cm × 2.5 cm while the Cellulose pad measured to be 30 cm × 1 cm. Another cellulose fiber sample pad 
was attached at the top of the nitrocellulose card to serve as an absorbent pad to collect any waste from the assay. 
The assembled assay was then cut into 4mm strips using a rotary paper trimmer. The strips were then kept sealed 
in a plastic container and wrapped in aluminum foil in a humidity controlled chamber (Secador) for a few days 
to prevent adverse effects of exposure to varying temperature and humidity. Test strips remain integral for up to 
several weeks while stored in these conditions. However, their shelf life can be extended up to a year if they are 
sealed in light safe mylar pouches and stored at room temperature.

Elution buffer preparation. A combination of organic solvents and low pH buffers was used to ensure the 
separation of vitamin D binding protein and 25(OH)D3 on strip. We mixed 4.7 parts of 1:1 mixture of Dimethyl 
sulfoxide (VWR) and Pure Ethanol (Acros Organics) with 1 part of pH 4.0 acetate buffer (VWR). In the case of 
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finger prick blood testing, 4 µL of this mixed buffer was added to the area of overlap between the blood filtration 
membrane and the conjugate pad to allow for the filtered serum to interact with the elution buffer prior to the 
reaction with the conjugates. Elution buffer cannot be added directly to whole blood as the organic solvents cause 
lysing of blood cells. As for serum, the same amount of elution buffer was mixed in with the sample in a plastic 
1.5 mL micro-centrifuge vial prior to applying the sample to the strip.

Vitamin D3 test strip protocol and human trials. Capillary tubes were used for the collection of con-
stant amount of blood from the participants. First, 4 µL of elution buffer was pipetted onto the area of overlap 
between the sample pad and the conjugate pad. This allows for the filtered serum to interact with the elution 
buffer prior to the conjugates. Elution buffer is added prior to the interaction of the sample with the AuNP-anti 
25(OH)D3 conjugates to avoid affecting the performance of the gold nanoparticles. Nanoparticle aggregation 
was observed when the conjugates are mixed directly with elution buffer. Additionally, adding elution buffer to 
the sample prior to incubation reduces the adverse effects of the elution buffer on the conjugates. After allowing 
for 4 minutes for the sample to filter into serum, 15 µL of running buffer is added to flow the sample and elu-
tion buffer mixture into the conjugate pad. After allowing for an additional four minutes of incubation, 25 µL 
of running buffer is added to start the flow onto the nitrocellulose membrane. At this point, the user inserts the 
cartridge into the imaging device. The imaging device automatically images the diagnostic test when the test and 
control lines are fully developed.

The human trials were approved by the Institutional Review Board for Human Subjects at Cornell University 
and carried out in accordance with their regulations. Informed consent was obtained from all participants prior 
to testing. For the trial, the participants were subjected to a finger prick (UniStik) for a drop of blood which was 
collected using a capillary tube and dispensed onto the sample pad. A trained and certified phlebotomist then 
drew 5 mL of blood via venipuncture which was used for tandem mass spectrometry analysis. Following 1 hour 
incubation at room temperature, serum was separated by centrifugation at 2000 g for 10 min. Serum 25(OH)D 
levels were characterized using tandem mass spectrometry (LC/MS-MS).

TIDBIT and image processing. Test strips were imaged using a portable imaging device designed specifi-
cally for colorimetric detection and quantification. The device consists of a 5 megapixel 1080p HD CMOS camera 
(Rasbperry Pi), focusing lens and LEDs (Thorlabs Inc), raspberry Pi computer board, rechargeable lithium ion 
battery pack (Adafruit Industries) and slide out cassette tray, all surrounded by a 3D printed light tight container. 
Once the cassette is inserted into the imaging device, it is automatically imaged and processed using a custom 
python script.

Data availability. All data generated or analyzed during the current study are available from the correspond-
ing author on reasonable request.
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