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Abstract

Vitamin D deficiency is prevalent throughout the world, and growing evi-
dence supports a requirement for optimal vitamin D levels for the healthy
developing and adult brain. Vitamin D has important roles in proliferation
and differentiation, calcium signaling within the brain, and neurotrophic
and neuroprotective actions; it may also alter neurotransmission and synap-
tic plasticity. Recent experimental studies highlight the impact that vitamin
D deficiency has on brain function in health and disease. In addition, re-
sults from recent animal studies suggest that vitamin D deficiency during
adulthood may exacerbate underlying brain disorders and/or worsen recov-
ery from brain stressors. An increasing number of epidemiological studies
indicate that vitamin D deficiency is associated with a wide range of neu-
ropsychiatric disorders and neurodegenerative diseases. Vitamin D supple-
mentation is readily available and affordable, and this review highlights the
need for further research.
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INTRODUCTION

Vitamin D deficiency is prevalent throughout the world, particularly in high-risk groups includ-
ing pregnant woman, infants, dark-skinned migrants, and the elderly (115). In Australia, a recent
study showed that 31% of the population has vitamin D deficiency, which is defined as a serum
concentration of 25-dihydroxyvitamin D [25(OH)D] below 50 nmol/L (44). Although vitamin
D is essential for calcium homeostasis and bone metabolism, it also has a role in other physio-
logical functions, such as an immune modulator (9) and in cell proliferation and differentiation
(16). Research over the past 15 years has revealed many functions of vitamin D in brain devel-
opment and adult brain function. More recently, evidence has accumulated that suggests low
vitamin D levels during adulthood may also be associated with adverse brain-related outcomes. A
growing body of evidence from epidemiology and neuroscience links vitamin D deficiency with
a range of neuropsychiatric disorders and neurodegenerative diseases (53). If low vitamin D is
associated with adverse brain outcomes, this could have important public health implications be-
cause the treatment of vitamin D insufficiency (i.e., supplementation) is safe, cheap, and publicly
acceptable.
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This review has three broad aims: (a) to summarize the role vitamin D plays within the healthy
developing and adult brain, (b) to highlight the impact that vitamin D deficiency has on brain
function in health and disease, and (c) to provide up-to-date evidence supporting the links between
vitamin D deficiency and neuropsychiatric disorders and neurodegenerative diseases.

Vitamin D Synthesis

Vitamin D is synthesized from 7-dehydrocholesterol within the skin via UVB radiation. The
amount of synthesis is dependent on a wide range of factors including latitude, season, atmospheric
conditions, skin pigmentation, and age as well as personal habits including type of attire worn
during exposure to sunlight (84a), sunscreen use, and time spent outdoors (36). Importantly, at
high latitudes during winter and spring months, it is not possible to synthesize sufficient vitamin
D from sunlight, and therefore dietary intake and supplementation are vital to maintain adequate
levels of vitamin D (49).

The conversion of 7-dehydrocholesterol in the skin of humans and animals forms vitamin D3,
whereas the conversion of ergosterol in plants, yeast, and fungi forms vitamin D2 (112). Both
forms can be converted to the biologically active vitamin, but they may not have equal nutritional
value in people (81), although this is likely to vary in different species, such as rodents (84, 88).
Vitamin D3 is reported to be 87% more potent in raising and maintaining serum 25(OH)D levels
compared to vitamin D2 in people, and it provides two- to threefold greater storage capacity of
vitamin D in adipose tissue (81). Additionally, vitamin D2 supplementation may even suppress
endogenously formed vitamin D3 (176).

Vitamin D is converted to its biologically active form via two enzymatic steps, the first of which
occurs in the liver. Vitamin D is hydroxylated to 25(OH)D via either the microsomal (CYP2R1) or
the mitochondrial (CYP27A1) P450 25-hydroxylase enzymes (171). 25(OH)D is then converted
to the biologically active 1,25 dihydroxyvitamin D (vitamin D) in the kidney via 1α-hydroxylase
(CYP27B1). This enzyme is tightly controlled via feedback mechanisms from parathyroid
hormone, calcium, phosphate, calcitonin, fibroblast growth factor 23, and vitamin D itself (112).

Although the main expression of 1α-hydroxylase is within the kidney, a variety of other tissues
also express this enzyme, including the skin, immune cells, placental tissue, and pancreas (54, 203).
The presence of extrarenal 1α-hydroxylase suggests that an autocrine/paracrine mechanism plays
a role in localized effects of vitamin D (82).

Genomic Versus Nongenomic Pathways of Action

Vitamin D exerts its effects via both genomic and nongenomic pathways (18). The genomic
pathway begins with vitamin D binding to the vitamin D receptor (VDR), which is a member of
the steroid/thyroid superfamily of nuclear transcription factors (184). VDR is present throughout
the body in almost all tissue types (13, 54, 72, 195).

Once vitamin D is bound to the receptor, VDR is phosphorylated to induce a change in con-
formation to release corepressors and allow VDR to heterodimerize with the retinoid X receptor
(18). This heterodimer then recruits coregulatory protein complexes and binds one of many vi-
tamin D response elements within the genome to influence gene transcription. The vitamin D
response element is composed of two hexameric binding sites on DNA, arranged as either direct
repeats interspaced with a small but varying number of nucleotides or as inverted palindromes
interspaced by nine nucleotides (80, 170).

The ability of this heterodimer to influence gene transcription is dependent upon the range
of coregulatory protein complexes, such as steroid receptor coactivators and VDR-interacting
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protein, which determines whether repression or activation occurs (57). The recently established
genome-wide map of VDR binding identified over 2,700 genomic positions occupied by the VDR,
showing the pleiotropic nature of vitamin D (163).

Like other neurosteroid hormones, vitamin D initiates nongenomic rapid responses via either a
membrane-bound VDR (130) or a protein-disulfide isomerase-associated 3 (PDIA3) protein (35).
The variety of signal transduction systems that are rapidly activated by vitamin D include influx
of Ca2+; intracellular release of Ca2+ stores; modulation of adenylate cyclase, phospholipase C,
and protein kinases; and alteration of the phosphorylation states of cellular proteins (35, 55).

Rapid nongenomic effects of vitamin D may therefore play a role in a variety of cellular pro-
cesses, with evidence supporting the role of vitamin D in proliferation and immune function (102).
Importantly, both the VDR and PDIA3 receptors are present in the adult brain (51, 150).

Vitamin D Metabolism in the Brain

The activating enzyme of vitamin D, 1α-hydroxylase, is found in a wide variety of tissues through-
out the body, including the brain (54, 203), along with 25-hydroxylase (68) and the enzyme required
for the degradation of the biologically active form of vitamin D, 24-hydroxylase (CYP24A1) (11).
Animal studies have shown that the VDR is also found within specific brain regions, including the
hippocampus, amygdala, hypothalamus, thalamus, cortex, and cerebellum (159, 191).

The distribution of the VDR and 1α-hydroxylase has also been elucidated in the adult human
brain and is similar to that found in the rat (54). The VDR and the 1α-hydroxylase enzyme
are colocalized and are found in both neurons and glial cells. The VDR seems to be exclusively
nuclear in mature neurons, whereas 1α-hydroxylase is located within the cytosol (54). One recent
study showed some immunohistochemical staining of VDR in the soma of mature dopaminergic
cells; however, western blots confirmed that the VDR was restricted to the nucleus of both the
developing and mature midbrain (43). In contrast, previous studies have shown that unliganded
VDR constantly shuttles between nucleus and the cytoplasm (158).

The VDR is present early in the development of the rat, between embryonic day (E)12 and
E15, with levels of VDR increasing until weaning (postnatal day 21) and still present in the adult
brain (25, 43, 190). The time-dependent expression of VDR in the brain during fetal development
supports a role for vitamin D in brain development. The initial VDR expression in brain corre-
sponds within the appearance of dopaminergic neurons within the mesencephalon. Additionally,
VDR is present within dopaminergic neurons in the adult substantia nigra (43).

THE ACTIONS OF VITAMIN D WITHIN THE BRAIN

Growing evidence shows that vitamin D has many functions in both the developing and adult brain,
including maintaining calcium balance and signaling, regulating neurotrophic factors, providing
neuroprotection, modulating neurotransmission, and contributing to synaptic plasticity.

Vitamin D and Calcium Signaling Within the Brain

A high level of calcium in the brain leads to neurotoxicity, and one action of vitamin D within the
brain is associated with a reduction in calcium levels. Vitamin D has been shown to downregulate
or modulate L-type voltage-gated calcium channels (L-VGCCs) (202, 205). This occurs through
downregulation of L-type voltage-sensitive calcium channel (L-VSCC)-A1C subunit mRNA
and protein, mediated by VDR mechanisms (71). Vitamin D treatment has also been shown to
downregulate L-VSCC-A1D subunit mRNA, but this does not occur via VDR (71). In mice
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lacking vitamin D, L-VGCCs are shown to be upregulated, leading to increased Ca2+ influx
(205). Evidence suggests that vitamin D can directly provide neuroprotection against excitotoxic
insults in vitro by its downregulation of L-VGCCs (19).

Vitamin D also regulates the gene expression of a number of calcium-binding proteins, includ-
ing parvalbumin and calbindin D28k (46, 187), and proteins associated with Ca2+ homeostasis
(51). The evidence suggests that the effects of vitamin D on Ca2+ occur via both genomic and
nongenomic actions (51, 144, 202).

Neurotrophic Properties

The first evidence to support the role of vitamin D in neuronal differentiation, maturation, and
growth came from in vitro studies showing that treatment with vitamin D led to changes in
several neurotrophic factors, with increased synthesis of nerve growth factor (NGF) (146, 198),
glial cell line–derived neurotrophic factor (GDNF) (143), and neurotrophin 3 (NT-3), and with
decreased synthesis of NT-4 (145). Vitamin D treatment was also shown to increase levels of the
low-affinity neurotrophin receptor (p75NTR) in vitro (142). Depletion of vitamin D during rat fetal
development leads to a reduction in NGF, GDNF, and p75NTR in newborn pups (52).

NGF is essential for the survival and differentiation of sensory and sympathetic neurons as well
as the cholinergic basal forebrain neurons (108), and GDNF is integral to the development of
dopaminergic (183) and noradrenergic systems (161). Although NT-3 stimulates the production
of neurons and has widespread effects on their function and survival (120), the p75NTR, along with
NGF, is essential for necessary programmed cell death in the brain (34).

Initial in vitro work in several cancer cell lines, including mouse myeloid leukemia cells and
melanoma cells, showed that the addition of vitamin D inhibited cell growth, led to a reduction
in proliferation, and increased differentiation (153). Vitamin D’s ability to induce differentiation
was shown to be extended to normal bone marrow progenitor cells in vitro (133), and its antipro-
liferative effects were confirmed in vivo against malignant cancers (48). Furthermore, the addition
of vitamin D to cultured embryonic hippocampal cells was shown not only to increase NGF but
also to increase neurite outgrowth and decrease mitosis (22).

Neuroprotection

Evidence indicates that vitamin D provides neuroprotection by regulating NGF and GDNF. In
vitro studies have shown that NGF protects against glutamate toxicity and Ca2+ ionophore and ni-
tric oxide (NO) donor toxicity (109). Animal studies have shown that NGF is able to protect against
excitotoxic injury (63), and in an animal model of Parkinson’s disease, GDNF is neuroprotective
against ischemia (194), 6-hydroxydopamine (6-OHDA) toxicity (96), and injury (69).

Vitamin D itself has also been shown to provide neuroprotection against excitotoxic injury from
6-OHDA, both in vitro and in vivo (192), which may occur by its downregulation of L-VGCCs
(19). Pretreatment with vitamin D ameliorated the locomotor deficits seen with 6-OHDA lesions
into the medial forebrain bundle. In addition, pretreatment protected against 6-OHDA-mediated
depletion of dopamine and metabolites within the substantia nigra (192). Injection of vitamin D
into adult rats leads to an increase in GDNF mRNA and protein expression within the striatum
(165), and pretreatment with vitamin D has also been shown to significantly increase GDNF pro-
tein expression and TH immunoreactivity in the substantia nigra after 6-OHDA lesioning (166).

It is well known that vitamin D has an effect on the immune system and directly affects immune
cells (134). Within the CNS, vitamin D exerts immunomodulatory effects directly on infiltrating
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macrophages and parenchymal microglia (141). Treatment of microglia in vitro with vitamin
D inhibits the production of tumor necrosis factor-α (TNFα), interleukin-6 (IL-6), and NO
by activated microglia, which suggests an anti-inflammatory role for vitamin D within the brain
(111). Vitamin D has been shown to downregulate the expression of inducible nitric oxide synthesis
(iNOS) (66) and to regulate the expression of gamma glutamyl transpeptidase (65), an enzyme
important in the glutathione pathway; these findings suggest that vitamin D has an important role
in antioxidant metabolism. Vitamin D–deficient animals have elevated inflammatory proteins in
the brain, including TNFα and IL-6, indicating that baseline brain inflammation may be increased
even without injury (11, 33).

A recent animal study showed elevated levels of vitamin D metabolism enzymes, VDR, and
25(OH)D in the hippocampus following a chronic unpredictable mild stress paradigm in rats
when compared to controls (90). Vitamin D is known to be neuroprotective, and therefore it
may be that upregulation of vitamin D can protect against the damaging effects of stress within
otherwise-healthy subjects.

Neurotransmission

Vitamin D has been shown to regulate a number of neurotransmitter systems. For example,
vitamin D treatment leads to increased choline acetyltransferase activity in specific brain regions,
which may impact on cholinergic neurotransmission (175). In rats, vitamin D has been shown
to protect against methamphetamine-induced reductions in dopamine and serotonin in both
the striatum and accumbens (32). Vitamin D treatment has also been shown to increase both
potassium- and amphetamine-evoked overflow of striatal dopamine as well as increase substantia
nigra tissue levels of dopamine and its main metabolites (31).

Not only can vitamin D act to transiently alter neurotransmitters upon exposure, but there
is also evidence to suggest that hormonal imprinting that occurs during the neonatal period
permanently alters biogenic amine levels in adulthood. For example, male rats treated with vitamin
D at birth showed altered brain stem dopamine and striatal and hypothalamus homovanillic acid
(HVA) levels three months later (179). In addition, hormonal imprinting with vitamin D that
occurred during the neonatal period in female rats was shown to alter biogenic amine levels in two-
month-old offspring. Alterations included increased norepinephrine, dopamine, and serotonin
levels in the brainstem; decreased serotonin levels in the hippocampus; and decreased serotonin
and HVA levels in the frontal cortex. These changes most likely occurred as a result of epigenetic
mechanisms (180).

Synaptic Plasticity

Long-term potentiation (LTP) is a long-lasting enhancement of signal transmission between neu-
rons. LTP is one of the mechanisms underlying synaptic plasticity and is important in learning and
memory. Prenatal vitamin D deficiency has been shown to alter many genes involved in synap-
tic plasticity (51), and evidence suggests that prenatal vitamin D deficiency induces an enhanced
LTP in adult rats. Treatment with haloperidol, a high-affinity dopamine D2 receptor antagonist,
reverses the enhanced LTP (74).

Optimal levels of vitamin D were shown to be required for the induction of LTP within
the adult rat brain (164). Vitamin D–deficient adult rats showed a reduction in serum calcium,
which may have led to the impaired LTP (164), as increased postsynaptic intracellular calcium is
necessary for the induction of LTP (23).
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RODENT MODELS OF VITAMIN D DEFICIENCY

In rodents, vitamin D deficiency from weaning, during adulthood, or throughout life has
produced a range of significant impairments, including reduced body weight, musculoskeletal
deficits, impaired prepulse inhibition of the acoustic startle response, and spatial learning deficits
(3, 27, 178). Neurochemical changes have also been noted, with significant increases in NE,
dopamine, dihydroxyphenylacetic acid (a breakdown product of dopamine), and γ-aminobutyric
acid (GABA) (10, 181). However, all of these studies (3, 10, 27, 178, 181) found a reduction
in serum calcium levels with vitamin D deficiency, which suggests that the impairments may
have been due to altered calcium metabolism. This demonstrates the importance of maintaining
normal serum calcium levels and appropriate musculoskeletal function.

Developmental Vitamin D Deficiency

A developmental vitamin D (DVD)-deficient model was first created in Sprague-Dawley rats, in
which vitamin D is removed from the diet for six weeks prior to and throughout conception.
Under these conditions, dams have a serum concentration of 25(OH)D at the lower limit of
detection (<5 nmol/L), which represents a frank vitamin D deficiency seen in less than 4% of
the Australian population (44). However, dams are placed back on normal rat chow at the birth
of the pups, and 25(OH)D concentrations return to control levels within two weeks (53). Use of
this model of transient prenatal vitamin D deficiency in rodents has provided compelling proof-
of-principle evidence for the association between DVD deficiency and a wide range of alterations
in neuroanatomical, neurochemical, and behavioral measures while normal serum calcium levels
are maintained. The DVD-deficient rodent model is reviewed in detail elsewhere (77, 99).

Neurogenesis. Vitamin D deficiency has been shown to alter the gene expression of many cell
cycle genes and apoptotic genes during fetal development, leading to changes in cell proliferation
and apoptosis (107). Cells dissociated from neonatal rat subventricular zone following vitamin
D deficiency during gestation showed increased neurosphere production, which suggests that the
absence of vitamin D leads to greater proliferation of neuroprogenitor cells (41). One study looked
at the effects of maternal vitamin D deficiency on adult hippocampal neurogenesis and found that
the prenatal vitamin D deficiency resulted in decreased neurogenesis in adult rats and that the
decrease in neurogenesis could be reversed by treatment with haloperidol, a dopamine inverse
agonist (97).

The 1α-hydroxylase knockout mouse lacks the ability to make 1,25(OH)2D, and this is asso-
ciated with increased cell proliferation in the hippocampal dentate gyrus and a reduction in the
survival of newborn neurons at 8 weeks of age (205). The 1,25(OH)2D deficiency also significantly
increased apoptosis in the hippocampal dentate gyrus, which suggests that this deficiency may be
responsible for the loss of the newborn neurons. These results were independent of extracellular
calcium (205).

Proliferation, differentiation, and apoptosis. In the rat model of DVD deficiency, the vitamin
D–depleted pups had brains that were larger and longer, with larger ventricular volume and a
thinner neocortex, than brains from control pups. It was shown that the changes in brain mor-
phology were at least in part due to an increase in cell proliferation (52). Moreover, analysis of
genes involved in the regulation of apoptosis found that the DVD-deficient pups had a significant
reduction in apoptosis during gestation compared with control pups (107). Lack of vitamin D
during development also led to a multitude of changes in gene expression of proapoptotic and cell
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cycle genes, which corresponded to observed changes in apoptosis and increased cell proliferation
(107). These studies confirmed that loss of vitamin D leads to alterations in cell proliferation,
differentiation, and apoptosis during critical periods of brain development.

Vitamin D and dopaminergic pathways. A consistent finding from the DVD-deficient rat
model is altered dopamine signaling. In neonatal rats, DVD deficiency decreases dopaminergic
turnover by a reduction in the expression of catechol-O-methyl transferase enzyme, which is
responsible for the breakdown of a dopamine metabolite (100). DVD deficiency has also been
shown to significantly reduce factors crucial for specifying dopaminergic phenotype, such as Nurr1
and p57Kip2, during fetal development (42). Nurr1 knockout animals have complete agenesis of
dopamine neurons (204), and p57Kip2 knockouts have no tyrosine hydroxylase (TH)-positive
mesencephalic cells at E18.5 (93).

Adult female DVD-deficient rats have a significantly increased dopamine transporter density
in the caudate putamen and binding affinity in the nucleus accumbens compared with controls and
are more sensitive to amphetamine, a dopamine-releasing agent (101). It was recently confirmed
that the VDR is present in the nucleus of TH-positive neurons in both human and rat substantia
nigra (43).

DVD-deficient model and schizophrenia. A wide range of epidemiological findings have
pointed to developmental vitamin D deficiency as a risk factor for the development of schizophre-
nia (126); these findings are discussed in more detail below (see Schizophrenia section). In this
section we discuss findings in the DVD-deficient animal model that are relevant to schizophrenia.

The enlarged lateral ventricles and reduced cortical thickness seen in the DVD-deficient pups
are frequently reported in schizophrenia patients (79). Adult DVD-deficient C57BL/6 and 129svJ
mice (78) and adult DVD-deficient rats had greater spontaneous hyperlocomotion (26) compared
with control rats. DVD-deficient rats also show increased locomotion in response to MK-801,
a noncompetitive N-methyl-D-aspartate receptor antagonist, and a reduction in both MK-801-
induced and spontaneous hyperlocomotion with haloperidol, a dopamine receptor antagonist,
which was selective for DVD-deficient rats (98). DVD-deficient adult rats also show impaired
latent inhibition (14), another feature of schizophrenia (197).

DVD deficiency also led to cognitive impairments in mice (60) and impaired response inhi-
bition in the rodent version of the continuous performance task in rats (186), a key feature of
the cognitive deficits seen with schizophrenia. These impairments were reversed by acute treat-
ment with clozapine, an atypical antipsychotic (186). Although the DVD-deficient model does not
replicate all of the features of schizophrenia [sensorimotor gating is normal (98)], it is a plausible
model that can be used to explore the neurobiological mechanisms in schizophrenia.

Adult Vitamin D Deficiency in Rodents

Vitamin D deficiency has recently been investigated in adult Sprague-Dawley rats to determine
whether similar disruptions occur in both the developing and adult brain. In the adult vitamin
D (AVD)-deficient model, rats were placed on a vitamin D–deficient diet at 10 weeks of age and
at 16 weeks began behavioral testing. They were tested on a wide range of behavioral domains,
and overall, AVD deficiency was not associated with an altered phenotype. In a cognitive test of
attention and vigilance, the AVD-deficient rats had no learning or attentional deficits but showed
a mildly impulsive phenotype. The AVD-deficient rats had increased levels of GABA and an
increased dihydroxyphenylacetic acid:HVA ratio in the striatum. The AVD-deficient rats were
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shown to be vitamin D deficient and, importantly, had normal calcium levels after eight to ten
weeks on the diet (28).

The impact of AVD deficiency on brain function and behavior was also investigated in two
strains of inbred mice, C57BL/6J and BALB/c. The mice were placed on a vitamin D–deficient
diet at 10 weeks of age for a period of 10 weeks prior to behavioral testing. This procedure resulted
in serum calcium levels and body weight in AVD-deficient mice that were not different from those
of controls. AVD deficiency was found to result in spontaneous hyperlocomotion in both strains
(76). The C57BL/6J strain showed no other behavioral effects of AVD deficiency. However, the
BALB/c AVD-deficient mice showed altered behavior on the elevated plus maze, a test used to
measure anxiety levels, as well as altered responses to heat, shock, and sound (76).

Brain neurochemistry was also analyzed, and the effects of AVD deficiency in the two strains
differed markedly. In the C57BL/6J strain, dopamine and 5-hydroxytryptamine turnover was
increased by AVD deficiency, whereas the BALB/c strain showed decreases in levels of glutamate
and glutamine and increased levels of GABA and glycine. Of particular interest, both strains
showed a small but significant decrease in the level of an enzyme involved in GABA synthesis,
glutamate decarboxylase (GAD65/67) (76).

These studies show the importance of background strain, with BALB/c mice more suscep-
tible to AVD deficiency than C57BL/6J mice or Sprague-Dawley rats. These general bodies of
research also indicate that the timing of exposure to low vitamin D has different impacts on brain
outcomes. The absence of vitamin D during development alters the orderly cascade of brain de-
velopment, which results in a range of neurobiological outcomes as discussed above and reviewed
by Kesby and colleagues (99). In contrast, low vitamin D during adulthood is associated with only
subtle changes in some behavior and selective changes in neurochemistry that may be related to
excitatory/inhibitory systems.

Two-Hit Animal Models

Vitamin D and experimental autoimmune encephalomyelitis: An animal model of multiple
sclerosis. The experimental autoimmune encephalomyelitis (EAE) animal model is a model of
multiple sclerosis (MS). A range of studies have used this model to look at the effects of both
vitamin D treatment and a vitamin D–deficient diet on EAE outcomes (29, 114, 141).

Treatment with vitamin D before or during the induction of EAE is effective in preventing
EAE, and treatment with vitamin D after the induction of EAE is effective in decreasing the clinical
signs of EAE (29, 114, 141). In addition, vitamin D deficiency increases the susceptibility to EAE
and increases the clinical signs of EAE (29, 67). Recently, an animal model of MS pretreated with
high-dose vitamin D was shown to have a reduction in demyelination and attenuated microglia
activation and macrophage infiltration (196).

Vitamin D is known to be an immune modulator with immunosuppressant activity. Its actions in
the EAE animal model and in human MS are most likely to involve, in part, the regulation of inflam-
matory cytokines. For example, vitamin D decreases the production of proinflammatory cytokines
and increases the production of anti-inflammatory cytokines (30, 121). One study showed that vi-
tamin D treatment for MS patients significantly increased serum levels of transforming growth
factor-β1, which is an anti-inflammatory cytokine (119). Vitamin D also directly affects cellular
immunity. It has been shown to inhibit Th1 cell development in EAE as well as dendritic cell mat-
uration to suppress inflammatory activity (75, 113) and regulate the actions of other T cells (123).

Recently, studies have shown that vitamin D inhibits T-cell proliferation, inhibits the devel-
opment of IL-6- and IL-17-producing cells, and enhances IL-10 production and the number of
regulatory T cells, all mechanisms to promote anti-inflammatory actions (39). It seems clear that
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vitamin D can alter the immune response, which is vitally important in autoimmune disorders
such as MS.

Unexpectedly, adult offspring of a DVD mouse model showed milder and delayed EAE when
compared with control offspring (58). One hypothesis proposed was that mice deprived of vitamin
D in utero and subsequently placed on a vitamin D diet from birth actually grew up in an enriched-
like environment (58). This hypothesis is supported by epidemiological data showing that a reduced
risk of MS is associated with higher sun exposure in children (95, 188). In mice it was shown that
offspring born to either a DVD-deficient mother or father displayed early and more severe EAE
when compared with control mice (59). More studies are required to examine the molecular basis
for the discordant effects between first and second generations.

Vitamin D deficiency and stroke. Studies with animal models of ischemic stroke have also
looked at the effects of vitamin D on stroke severity and prognosis (11, 201). For example, a
study examined the impact of vitamin D deficiency on stroke severity in the adult rat and found
that vitamin D–deficient animals had greater infarct volumes compared with controls, and this
corresponded with greater impairments, post stroke, in sensorimotor behavioral testing. Inves-
tigations into the mechanism showed that vitamin D–deficient animals had significantly lower
plasma, brain, and liver levels of insulin-like growth factor 1 (IGF-1) compared to controls. IGF-
1, a neuroprotectant that is usually elevated after injury to protect the tissue, has been attenuated
with vitamin D deficiency, which indicates that lower IGF-1 levels may contribute to the greater
infarct volume seen with vitamin D deficiency (11).

The inflammatory response was also altered in the vitamin D–deficient rats compared with
controls with a reduction in the levels of a variety of cytokines/chemokines including IL-1β,
IL-10, and IFN-γ and with an increase in IL-6. These changes could also contribute to the
greater infarct volume seen. The same study (11) also looked at the effects of an acute treatment
with vitamin D immediately following stroke injury and found no effects on infarct volume or
functional capabilities.

Vitamin D deficiency and traumatic brain injury. Vitamin D–deficient rats with traumatic
brain injury show increased inflammation and greater open field test behavioral deficits in com-
parison with controls (33). Although progesterone, a neurosteroid that has been beneficial as a
treatment in traumatic brain injury in recent clinical trials (199, 200), was beneficial in injured
control animals, there was no improvement with treatment in vitamin D–deficient animals. This
suggests that vitamin D deficiency exacerbates traumatic brain injury and diminishes the benefits
of progesterone treatment (33).

A combination treatment of progesterone and low-dose vitamin D after brain injury in vitamin
D–sufficient animals was found to preserve spatial and reference memory in comparison with
controls, and the combination treatment was more effective than progesterone treatment alone
(89). The combination treatment also stimulated astrocytic activity around the injury site, which
suggests that the neuroprotective effects are mediated through activated astrocytes (89).

Vitamin D deficiency, aging, and cognition. Aged rats (20 months old) were analyzed for the
effects of vitamin D treatment on a spatial memory task and on a spontaneous object recognition
task, inflammatory state, and amyloid-β (Aβ) load and clearance. Aged controls demonstrated
significant learning and memory impairment compared to young control animals. However,
vitamin D treatment significantly improved this age-related decline (20). Age-related changes
in inflammatory state were also mitigated by vitamin D treatment, with increased expression
of the anti-inflammatory IL-10 and decreased expression of the inflammatory mediator IL-1β
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after treatment with vitamin D. The aged control animals showed an increase in amyloid burden
compared to young controls. However, this was reduced by vitamin D treatment (20).

Vitamin D deficiency and amyloid-β toxicity. The introduction of Aβ into cortical neuron cul-
ture leads to neurodegeneration via upregulation of L-VGCCs and suppression of VDR, whereas
additional treatment of vitamin D protected the neurons from cytotoxicity by downregulating
L-VGCCs and upregulating VDR (46). Alzheimer’s disease (AD) is believed to progress in part
from inflammatory processes, including oxidative damage and elevated levels of NO, that occur
via iNOS induction. In vitro studies using cortical neurons show that iNOS is elevated following
Aβ treatment, whereas vitamin D treatment prevents Aβ-induced cytotoxicity and iNOS upreg-
ulation via VDR (47). Previous studies have shown that vitamin D regulates the expression of
iNOS (66). Therefore, vitamin D supplementation could lead to a reduction in NO-mediated
inflammation in AD, a possibility that should be further investigated.

Furthermore, treatment with a PDIA3 receptor agonist has been shown to significantly improve
performance of object recognition memory, reduce amyloid plaques and neurofibrillary tangles,
and reduce degenerated axons and presynaptic terminals in a mouse model of AD (182). Vitamin
D, a known endogenous agonist of PDIA3, may therefore be important for anti-AD therapy (182).

Polymorphisms in the VDR gene have been shown to be associated with the risk of AD (15,
70). A recent genetic and functional study found that an AD risk allele was associated with lower
VDR promoter activity and that overexpression of VDR or vitamin D treatment suppressed
amyloid precursor protein transcription in vitro (193). An analysis of mRNA expression following
vitamin D treatment of mixed neuron-glia cell culture showed upregulation of genes related to
neurodegenerative disorders, including 10 genes that encode proteins that could possibly limit
AD development (147). Growing evidence supports a protective role of vitamin D against the
progression of AD, which is highly relevant owing to endemic vitamin D deficiency, particularly
in the elderly. Randomized controlled trials that examine the benefits of vitamin D supplements
in AD subjects are needed.

LINKS WITH NEUROPSYCHIATRIC AND
NEURODEGENERATIVE DISORDERS

Recent convergent evidence indicates that vitamin D deficiency has an impact during brain de-
velopment and on the adult brain, and that it is biologically plausible that vitamin D deficiency
would affect human health in terms of neuropsychiatric and neurodegenerative disorders. These
disorders tend to have a complex etiology, with both gene and environmental influences. How-
ever, vitamin D deficiency seems to be a common risk factor. In this section, we provide the
evidence from epidemiology, prospective studies, and clinical trials that links vitamin D to a range
of disorders involving the central nervous system. A brief summary of various vitamin D–related
pathologies and the strength of evidence that connects vitamin D to a range of disorders is shown
in Figure 1.

Cognitive Impairment

Many epidemiological studies have found an association between serum 25(OH)D and cognitive
function, including memory and orientation (117) and executive function (24, 110). In older
adults living independently, low serum 25(OH)D concentrations were significantly associated
with cognitive impairment (151). In a recently published systematic review and meta-analysis,
lower vitamin D concentrations were significantly associated with poorer cognitive function (12).
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Figure 1
Strength of evidence based on animal studies, clinical trials, and epidemiological studies that show evidence
of an association between vitamin D and various disorders. Numbers in boxes correspond to reference
numbers.

However, an association is not always found (127, 174), and moreover, from epidemiological
studies it is not clear if low vitamin D levels precede the development of cognitive impairments
or are a result of poor diet and disability.

A prospective study found that patients identified as vitamin D deficient at initial assessment
had greater impairment of cognitive function at baseline and during follow-up three and six
years later (116). Cognition was measured using the Mini-Mental State Examination (MMSE), a
widely used neuropsychological test of cognitive function, and Trail-Making Tests A and B. At
initial assessment, scores on all three tests were significantly worse in subjects who were vitamin
D deficient or severely deficient compared to those who were vitamin D sufficient. At the six-
year follow-up, subjects who were severely 25(OH)D deficient at baseline were more likely to
experience substantial later cognitive decline as assessed by the MMSE and the Trail B, which
measures executive functioning, but not on the Trail A, which measures attention (116).

Alzheimer’s Disease

AD is a neurodegenerative disorder characterized by progressive and irreversible cognitive deficits
and behavioral alterations. The most common symptom is that of memory impairment and loss of
spatial memory. A recent meta-analysis (7) looked at the association between low serum 25(OH)D
and AD and found that serum 25(OH)D concentrations were overall significantly lower in AD cases
than in controls. The meta-analysis revealed a large association of low 25(OH)D concentration
with AD. A recent prospective study on the risk of AD in the general population showed an
increasing risk of AD with decreasing levels of vitamin D (2).
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One study showed an association between higher dietary vitamin D intake and a lower risk
of developing AD among older women (8). A small pilot study found that patients who took
memantine, an N-methyl-D-aspartate receptor antagonist, plus vitamin D for six months had a
statistically and clinically relevant gain in cognition, whereas those who took memantine or vitamin
D alone showed no effect. This suggests that there may be a synergistic effect in combining the
treatments (6).

Depression

Clinical depression is characterized by an all-encompassing low mood and loss of interest in
normally enjoyable activities (118). It is generally associated with significant disability, due to an
inability to function normally, and with a decreased health status (137). Epidemiological studies
have shown a number of risk factors for depression, including gender (higher incidence in females),
prior depression, low socioeconomic status, psychiatric comorbidity, medical illness, major adverse
life events (94), and, more recently, low vitamin D levels (5).

Many observational and prospective studies suggest an association between low vitamin D
levels and depression, particularly in the elderly (83, 87, 131, 132). A recent large systematic
review and meta-analysis found that low vitamin D was significantly associated with an increased
risk of depression (5); however, from these types of studies, it is not clear whether low vitamin D
levels precede depressive symptoms or are a result of having depression.

A randomized, double-blind trial examined the effects of vitamin D supplementation on depres-
sive symptoms in overweight and obese subjects. At the start of the trial there was an association
between low serum 25(OH)D and symptoms of depression. Treatment with 20,000 or 40,000 IU
vitamin D per week for one year, but not placebo, resulted in significant improvement in depres-
sive symptoms. This study suggests a possible causal link between low vitamin D and depression,
at least in the overweight and obese (91).

Treatment with fluoxetine, a serotonin selective reuptake inhibitor, is known to improve de-
pressive symptoms; however, a recent study showed that combining vitamin D treatment with
fluoxetine improved depressive symptoms significantly more than fluoxetine alone did (103). An-
other recent clinical trial (138) was undertaken in adults who were vitamin D deficient and suffering
from depression. Participants were given either a single dose of 150,000 IU or 300,000 IU vitamin
D or no treatment and were tested again for depression three months later. The single dose of
300,000 IU vitamin D not only proved safe but also was effective at significantly improving depres-
sion. This study shows that correcting vitamin D deficiency can improve the depression state (138).

However, in subjects who were not vitamin D deficient, high-dose vitamin D treatment did
not have the same benefits (92), nor did all studies find improvement of depression with vitamin
D treatment (105). Randomized controlled studies based on general population samples also
have not found an association between vitamin D supplementation and scores on measures of
depression (167).

Schizophrenia

Schizophrenia is a group of disorders with symptoms including hallucinations, delusions, thought
disorder, blunted affect, social withdrawal, and cognitive impairments (64, 149). It is most likely a
neurodevelopmental disorder and is characterized by alterations in brain morphology and abnor-
mal laminar organization as well as altered expression of proteins related to the early migration of
neurons and glia, cell proliferation, formation of neural circuitry, and apoptosis (56). Risk factors
for the development of schizophrenia include both genetic factors and environmental influences.
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Some environmental risk factors include pregnancy and birth complications, maternal infection,
immigration, adverse life events, and substance abuse (125).

Developmental vitamin D deficiency was first suggested as a risk factor for schizophrenia in
1978 because people with schizophrenia tend to be born in winter (135). Additional epidemio-
logical findings, including increased schizophrenia in dark-skinned migrants to cold climates and
in the urban versus rural setting and an increased risk of schizophrenia with prenatal famine, led
McGrath (126) to propose that vitamin D deficiency during development could adversely affect
the developing brain and lead to an increased risk of adult-onset schizophrenia (126).

Recently, a case-controlled study analyzed neonatal vitamin D status and risk of schizophrenia.
It was found that low neonatal vitamin D is significantly associated with an increased risk of
schizophrenia (128). A recent genome-wide analysis comparing genes involved in schizophrenia
and genes related to vitamin D found a significant overlap of 70 genes (4).

Autism

Autism is a neurodevelopmental disorder characterized by impaired social interaction, commu-
nication, and stereotypical behavior. Although it is well known that autism has a strong genetic
component, research has also shown that environmental factors are likely to contribute to the de-
velopment of autism (1). Epidemiological data have shown a number of factors that are associated
with autism, including prenatal exposure to mutagens and advanced paternal age. A number of the
other exposures can be linked to vitamin D deficiency. These include regions at higher latitudes
(especially for dark-skinned individuals), urban residence, and regions with high precipitation rates
(104).

Studies have shown that autistic children have lower serum 25(OH)D levels compared to
healthy controls (129, 136). For example, a cross-sectional study in Egypt showed that children
with autism have significantly lower serum 25(OH)D, 1,25(OH)2D, and calcium levels compared
to controls (129). Other studies have found no significant association between serum 25(OH)D
and autism (61). Recently, autism prevalence was shown to be inversely correlated with solar
UVB doses in an ecological study, which suggests that vitamin D deficiency during fetal brain
development or early life could be relevant to the development of autism (73).

Parkinson’s Disease

Parkinson’s disease (PD) is a progressive neurodegenerative disease. It is characterized by slow,
selective dopaminergic neuronal loss. Symptoms include dyskinesia, rigidity, and tremor as well
as postural instability and gait disorders (17).

Epidemiological evidence from cross-sectional studies provides some support for a link be-
tween vitamin D deficiency and PD incidence (50, 168). Furthermore, the first longitudinal study
investigating the association between vitamin D status and subsequent occurrence of PD showed
that low serum vitamin D levels predicted an elevated risk of PD (106). Subsequent studies have
shown that vitamin D deficiency is also associated with more advanced severity of disease (45).

A recently published study related to PD has lent support for the neuroprotective properties of
vitamin D. Using a placebo-controlled, randomized trial, Suzuki and colleagues (177) examined
the impact of vitamin D supplementation (1,200 IU per day, for one year) on various PD-related
outcomes. Those on placebo had a steady worsening of PD outcomes. In contrast, those on vitamin
D supplements had no change in PD outcomes over the year. The results strongly suggest that
low vitamin D status exacerbates progression of PD (40).
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Stroke

Studies in humans have revealed that low levels of serum vitamin D are independently predictive
for the occurrence of strokes (122, 152), and a large population-based prospective study showed
stepwise increases in the risk of ischemic stroke with decreasing serum 25(OH)D (21). A further
study in China not only showed that patients with acute ischemic stroke had significantly lower
vitamin D levels compared to controls, but also that vitamin D levels were a prognostic marker of
short-term functional outcome and death in stroke patients (185).

Epilepsy

Epilepsy is a brain disorder characterized by recurrent and unpredictable interruptions in normal
brain function (epileptic seizures) (62). Epidemiological studies indicate that epilepsy is another
brain disorder that shows seasonal variation of birth, with an excess of those with epilepsy born in
winter compared to summer (155–157). Additionally, epileptic seizures themselves show seasonal
variation, with a reduction in seizures during summer (38). A very early small controlled pilot study
showed a reduction in the number of seizures following treatment with vitamin D compared to
placebo (37). Nearly 40 years later this study was followed up with another pilot study showing a
median reduction in seizures of 40% following vitamin D supplementation (86).

Multiple Sclerosis

Multiple sclerosis (MS) is a slow progressive disorder of the central nervous system that is charac-
terized by demyelination of the brain and spinal cord. Although its etiology is unclear, it seems to
be multidimensional, with environmental factors, genetic factors, and dysregulation of the immune
response all playing a part (189). Environmental risk factors include infection, cigarette smoking,
and low vitamin D (148, 160). A significant positive association exists between MS prevalence and
latitude globally, which supports the role of UV radiation and vitamin D in its development (173).
Additionally, studies show that vitamin D intake is inversely associated with the risk of MS (139,
140), and serum 25(OH)D levels are significantly lower in patients with MS compared to healthy
subjects (124). Furthermore, vitamin D concentrations correlate with the severity of MS (172).
Genetic studies have shown links between MS susceptibility and both CYP27B1 and CYP24A1,
vitamin D metabolism enzymes (162, 169). However, not all studies show a significant effect of
vitamin D on MS, and more work is required (154).

FUTURE DIRECTIONS

Accumulating evidence supports the need for optimal vitamin D levels both during development
and throughout adulthood for proper brain function. However, it is still unknown what the optimal
vitamin D level is for the brain or how the timing or length of vitamin D deficiency can alter the
risk of disease. Recommendations for optimal vitamin D concentrations are usually based on bone
outcomes (e.g., parathyroid concentrations) (85). More research is required to determine if vitamin
D treatment of brain diseases is an effective tool or if prevention of vitamin D deficiency is the
only method to lower risk.

The results from recent animal and human studies suggest that vitamin D deficiency during
adulthood may exacerbate underlying brain disorders and/or worsen recovery from brain
stressors. Therefore, research is required to determine the molecular mechanism behind this
possible vulnerability. For example, the direct regulation of calcium by vitamin D within the brain
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may be a key molecular mechanism to protect against the neurotoxicity that can occur in disease
and aging, or it may be vitamin D’s immunomodulatory and neurotrophic effects providing
neuroprotection to maintain a healthy brain. Therefore, both animal experiments and in vitro
research are required to explicate these mechanisms within the brain, such as electrophysiology of
calcium transport. Research in animals that combines vitamin D deficiency with relevant animal
models of neuropsychiatric and neurodegenerative disorders is also required.

Additionally, with the extensive links between vitamin D deficiency and a wide range of neu-
ropsychiatric, neurodegenerative, and other brain disorders now evident, there is a need for large,
well-controlled clinical trials.

CONCLUSION

This review has shown that vitamin D is a neurosteroid that exerts a multitude of effects that
are important in both the correct development of the brain and the proper functioning of the
adult brain. In addition, mounting evidence suggests that maintaining optimal vitamin D levels
may lower the risk of developing a wide range of brain disorders. With vitamin D deficiency
widespread throughout the world, it is no wonder that research is focusing on elucidating the
mechanisms of vitamin D’s actions within the brain. In light of the advantage that vitamin D
supplementation is readily available and affordable, this review highlights the need for further
research.
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