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Abstract: Natural product compounds have recently attracted significant attention from the
scientific community for their potent effects against inflammation-driven diseases, including cancer.
A significant amount of research, including preclinical, clinical, and epidemiological studies,
has indicated that dietary consumption of polyphenols, found at high levels in cereals, pulses,
vegetables, and fruits, may prevent the evolution of an array of diseases, including cancer. Cancer
development is a carefully orchestrated progression where normal cells acquires mutations in
their genetic makeup, which cause the cells to continuously grow, colonize, and metastasize to
other organs such as the liver, lungs, colon, and brain. Compounds that modulate these oncogenic
processes can be considered as potential anti-cancer agents that may ultimately make it to clinical
application. Resveratrol, a natural stilbene and a non-flavonoid polyphenol, is a phytoestrogen
that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. It has
been reported that resveratrol can reverse multidrug resistance in cancer cells, and, when used in
combination with clinically used drugs, it can sensitize cancer cells to standard chemotherapeutic
agents. Several novel analogs of resveratrol have been developed with improved anti-cancer activity,
bioavailability, and pharmacokinetic profile. The current focus of this review is resveratrol’s in vivo
and in vitro effects in a variety of cancers, and intracellular molecular targets modulated by this
polyphenol. This is also accompanied by a comprehensive update of the various clinical trials that
have demonstrated it to be a promising therapeutic and chemopreventive agent.
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1. Introduction

Cancer is one of the most commonly diagnosed diseases, and its related morbidity and mortality
constitute a very significant health problem worldwide. Although great efforts have been made to
discover a cure, cancer remains a very prominent cause of mortality in humans, and effective treatment
remains a formidable challenge. An estimated 1.6 million new cancer diagnoses and approximately
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600,000 cancer-related deaths are expected in the United States in 2017 alone [1]. Despite several
novel improvements in diagnosis and surveillance, the overall cancer survival rate has not improved.
Several personalized care medicines, such as targeted therapies, have emerged, providing improved
clinical outcomes for cancer patients [2]. However, some of the recent advanced improvements in
treating cancer have resulted in development of acquired resistance to chemotherapeutic agents [3].
Carcinogenesis is a multistep and multifactorial process involving the occurrence of clear and discrete
molecular and cellular alterations; there are distinct but closely connected phases of initiation,
promotion, and progression [4–6]. Current cancer therapies, e.g., chemotherapy, targeted agents,
radiation, surgery, and immunosuppression, have limitations resulting from the development of
resistance to the therapy [7]. The identification of protective molecules without side effects remains
a primary objective in the fight against cancer. The other options aim at the early detection of cancer in
the benign stage, which can help with its proper management [8].

Since ancient times, natural products have been used to prevent several chronic diseases, including
cancer [9–18]. Revived interest in phytochemicals obtained from dietary or medicinal plant sources has
provided an alternative source of bioactive compounds that can be used as preventive or therapeutic
agents against a variety of diseases [19–23]. Phytochemicals such as phytoestrogens have been
reported to modulate multiple cellular-signaling pathways, with no or minimal toxicity to normal
cells [24,25]. The application of substances to prevent or delay the development of carcinogenesis has
been termed chemoprevention [4], and there is burgeoning interest in the use of natural compounds as
possible chemopreventive and therapeutic agents for human populations. Resveratrol is increasing
in prominence because it has cancer-preventive and anti-cancer properties [25–28]. A non-flavonoid
polyphenol, resveratrol (3,4′,5-trihydroxy-trans-stilbene) is a phytoalexin that naturally occurs in many
species of plants, including peanuts, grapes, pines, and berries, and assists in the response against
pathogen infections [29]. Interestingly, Chinese and Japanese traditional medicine also contain it,
in the form of extracts such as those obtained from Polygonum cuspidatum, which can be used to treat
inflammation, headaches, cancers, and amenorrhea.

The structure of resveratrol is stilbene-based and comprises two phenolic rings connected by
a styrene double bond to produce 3,4′,5-trihydroxystilbene, which occurs in both the trans- and
cis-isoforms (Figure 1). The trans-isoform is the major isoform, and represents the most extensively
studied chemical form. Exposure to heat and ultraviolet radiation can cause the trans-isoform to convert
into the cis-isoform, whose structure closely resembles that of the synthetic estrogen diethylstilbestrol.
Because of this, resveratrol has also been classified as a phytoestrogen. Its biosynthetic pathway
begins with a reaction between the malonyl CoA and coumaryl derivative, which is catalyzed by the
enzyme stilbene synthase [30]. Resveratrol is easily available in a regular diet and has numerous
health-augmenting properties, as well as some naturally occurring analogs, such as viniferins,
pterostilbene, and piceid [31]. Additionally, some semi-synthetic resveratrol analogs have also been
found to have certain pharmacological benefits, including chemoprevention actions, anti-oxidant
effects, and anti-aging properties [32–34]. It had also been shown that resveratrol can reverse
drug resistance in a variety of tumor cells by sensitizing them to chemotherapeutic agents [35,36].
In particular, it has been reported that trans-resveratrol and its glucoside have wide-ranging
effects, including cardioprotective, anti-oxidative, anti-inflammatory, estrogenic/anti-estrogenic,
and anti-tumor properties [37,38]. Moreover, the antimicrobial effects [39] of trans-resveratrol have
been found to be useful in the management of cognitive disorders such as dementia [40,41]. This review,
however, will concentrate primarily on resveratrol and discuss its diverse anti-cancer effects in various
preclinical and clinical studies.
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It has been shown that resveratrol possesses multifaceted salubrious properties, e.g., 
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publications followed. It has been shown that resveratrol has in vitro cytotoxic effects against a large 
range of human tumor cells, including myeloid and lymphoid cancer cells, and breast, skin, cervix, 
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metastasis, and angiogenesis. 

3. Anti-Tumor-Initiation Activity 
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or caused by exposure to a carcinogenic agent, which finally results in mutagenesis [50]. Oxidative 
stress plays a dominant part in the causation of carcinogenesis [51]. Reactive oxygen species (ROS) 
can react with DNA in addition to chromatin proteins, resulting in several types of DNA  
damage [52,53]. In fact, chemical carcinogens cannot damage DNA until they are metabolized by 
phase-I biotransformation enzymes, especially cytochrome P450, in cells and converted to reactive 
electrophiles. In addition, carcinogen-DNA adduct formation gives rise to chemical  
carcinogenesis [54]. This initiation stage is irreversible but can be prevented by inhibiting the activity 
and expression of certain cytochrome P450 enzymes and augmenting the activity of phase-II 
detoxification enzymes, which transform carcinogens into less toxic and soluble products [55,56]. 

It has been found that resveratrol can inhibit events linked to the initiation of tumors. For 
instance, resveratrol treatment suppressed free radical formation induced by 
12-O-tetradecanoylphorbol-13-acetate (TPA) in human leukemia HL-60 cells [57]. The diverse 
anti-oxidant properties of resveratrol have already been described previously [58,59]. Resveratrol is 
an excellent scavenger of hydroxyls and superoxides, as well as radicals induced by metals/enzymes 
and generated by cells [59]. It also protects against lipid peroxidation within cell membranes and 
damage to DNA resulting from ROS [59]. Furthermore, resveratrol functions as an anti-mutagen, as 
shown by its inhibition of the mutagenicity of N-methyl-N’-nitro-N-nitrosoguanidine in the 
Salmonella typhimurium strain TA100 [60]. It has been proposed that resveratrol can be a possible 
chemopreventive agent, and its anti-mutagenic and anti-carcinogenic properties have been 
demonstrated in several models [9,61,62]. 

In addition, resveratrol can inhibit 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)–induced 
expression of cytochrome P450 1A1 (CYP1A1) and 1B1 (CYP1B1), as well as their catalytic actions, in 
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2. In Vitro Pharmacological Properties and Anti-Cancer Effects of Resveratrol

It has been shown that resveratrol possesses multifaceted salubrious properties, e.g., anti-inflammatory,
anti-oxidative, and anti-aging qualities [42–44]. Resveratrol is a constituent of red wine, and therefore
it is often postulated that resveratrol is a significant element in the French Paradox, the reduced risk
of cardiovascular disease in French populations despite the high intake of saturated fats; that has
been associated with high red wine consumption [45]. After Jang et al. [46] found that resveratrol
inhibited carcinogenesis in a mouse-skin cancer model in 1997, a wealth of publications followed. It has
been shown that resveratrol has in vitro cytotoxic effects against a large range of human tumor cells,
including myeloid and lymphoid cancer cells, and breast, skin, cervix, ovary, stomach, prostate, colon,
liver, pancreas, and thyroid carcinoma cells [25,47–49]. Resveratrol affects a variety of cancer stages
from initiation and promotion to progression by affecting the diverse signal-transduction pathways
that control cell growth and division, inflammation, apoptosis, metastasis, and angiogenesis.

3. Anti-Tumor-Initiation Activity

Neoplasia initiation concerns the alteration or mutation of genes resulting spontaneously from or
caused by exposure to a carcinogenic agent, which finally results in mutagenesis [50]. Oxidative stress
plays a dominant part in the causation of carcinogenesis [51]. Reactive oxygen species (ROS) can react
with DNA in addition to chromatin proteins, resulting in several types of DNA damage [52,53]. In fact,
chemical carcinogens cannot damage DNA until they are metabolized by phase-I biotransformation
enzymes, especially cytochrome P450, in cells and converted to reactive electrophiles. In addition,
carcinogen-DNA adduct formation gives rise to chemical carcinogenesis [54]. This initiation stage is
irreversible but can be prevented by inhibiting the activity and expression of certain cytochrome P450
enzymes and augmenting the activity of phase-II detoxification enzymes, which transform carcinogens
into less toxic and soluble products [55,56].

It has been found that resveratrol can inhibit events linked to the initiation of tumors. For instance,
resveratrol treatment suppressed free radical formation induced by 12-O-tetradecanoylphorbol-13-acetate
(TPA) in human leukemia HL-60 cells [57]. The diverse anti-oxidant properties of resveratrol have
already been described previously [58,59]. Resveratrol is an excellent scavenger of hydroxyls and
superoxides, as well as radicals induced by metals/enzymes and generated by cells [59]. It also protects
against lipid peroxidation within cell membranes and damage to DNA resulting from ROS [59].
Furthermore, resveratrol functions as an anti-mutagen, as shown by its inhibition of the mutagenicity
of N-methyl-N’-nitro-N-nitrosoguanidine in the Salmonella typhimurium strain TA100 [60]. It has
been proposed that resveratrol can be a possible chemopreventive agent, and its anti-mutagenic and
anti-carcinogenic properties have been demonstrated in several models [9,61,62].

In addition, resveratrol can inhibit 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)–induced expression
of cytochrome P450 1A1 (CYP1A1) and 1B1 (CYP1B1), as well as their catalytic actions, in human breast
epithelial Michigan cancer foundation (MCF)-10A cells [63]. Resveratrol can also abrogate the CYP1A
activity induced by environmental aryl hydrocarbon benzo[a]pyrene (B[a]P) and catalyzed by directly
suppressing the CYP1A1/1A2 enzyme activity and the signal-transduction pathway that up-regulates
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the expression of carcinogen-activating enzymes in human breast cancer MCF-7 and liver cancer HepG2
cells [64]. It has been reported that resveratrol also has inhibitory effects on aryl hydrocarbon receptor
(AhR)–mediated activation of phase-I enzymes. The canonical AhR-dependent signaling pathway
is thought to contribute to carcinogenic initiation by phase-I enzyme–activated polycyclic aromatic
hydrocarbons (PAH). Briefly, PAH can bind to the AhR and facilitate its translocation into the nucleus,
where the AhR develops into a heterodimer with AhR nuclear translocator (ARNT). The AhR/ARNT
heterodimer then attaches to and transactivates xenobiotic response element–driven phase-I/II
enzyme promoters, and initiates carcinogenesis. It has been postulated that resveratrol’s inhibition
of AhR signaling can suppresses this initiation process. For example, resveratrol caused inhibition of
TCDD-induced recruitment of AhR and ARNT to the CYP1A1/1A2 and CYP1A1/1B1 promoter in
HepG2 and MCF-7 cells, respectively, culminating in decreased expression [65]. Resveratrol also reduced
TCDD-induced, AhR-mediated CYP1A1 expression in gastric cancer AGS cells [66]. Resveratrol could
therefore modulate the activity and expression of some cytochrome P450 enzymes, and thereby help
prevent cancer by limiting the activation of pro-carcinogens.

It has also been found that resveratrol increases both the activity and expression of NAD(P)H:
quinone oxidoreductase-1 (NQO1), a carcinogen-detoxifying phase-II enzyme, in human leukemia
K562 cells [67]. In addition, resveratrol was also found to induce the activity of the phase-II
detoxifying metabolic enzyme quinone reductase (QR) within mouse liver-cancer Hepa 1c1c7 cells [68].
Within breast cancer cells, resveratrol induced QR expression via the estrogen receptor β (ER-β),
thereby protecting against oxidative damage to DNA [69]. Resveratrol also augments the activity
and expression of anti-oxidant and phase-II detoxifying enzymes through the activation of nuclear
factor E2–related factor 2 (Nrf2). Nrf2 generally remains sequestered in the cytoplasm by binding
Kelch-like ECH-associated protein 1 (Keap1). When Nrf2 is induced by dietary phytochemicals like
resveratrol, it dissociates itself from Keap1 and translocates into the nucleus. Nrf2 thereafter attaches to
the anti-oxidant response element (ARE) found in the promoters of several genes that encode phase-II
enzymes, and thus regulates their transcriptional activation [70,71]. Resveratrol has been also shown to
up-regulate the expression of heme oxygenase-1 (HO-1) via Nrf2 activation in PC12 cells. Resveratrol
induction of the expression of NQO1 in TCDD-treated normal human breast epithelial MCF10F cells
involved Nrf2, resulting in the formation of DNA adducts being suppressed [72].

Resveratrol also caused an increase in NQO1 after estradiol-3,4-quinone (E2-3,4-Q) or
4-hydroxyestradiol (4-OHE2) treatment in MCF10F cells [73]. In addition, resveratrol-induced Nrf2
signaling can lead to an increased expression of HO-1, NQO1, and the glutamate cysteine ligase
(GCL) catalytic subunit in human bronchial epithelial HBE1 cells treated with cigarette-smoke
extracts [74]. Resveratrol also restored glutathione levels in human lung cancer A549 cells treated with
cigarette-smoke extracts, by Nrf2-induced GCL expression [75]. In leukemia K562 cells resveratrol
increased NQO1 expression and induced Nrf2/Keap1/ARE binding to NQO1 promoter [67].

4. Anti-Tumor-Promotion Activity

Tumor promotion involves clonally enlarging initiated cells to create a continuously proliferating,
premalignant lesion. Tumor promoters generally alter gene expression, resulting in increased cell
proliferation and decreased death of cells [76]. Studies conducted in vitro have discovered that
resveratrol exerts an anti-proliferative activity by inducing apoptosis. Of these, resveratrol modifies
the balance of cyclins as well as cyclin-dependent kinases (CDKs), resulting in cell cycle inhibition
at G0/G1 phase. For example, a link has been found between the inhibition of cyclin D1/CDK4 by
resveratrol and cell cycle arrest in the G0/G1 phase within different cancer cells [77–80]. Resveratrol
was also shown to increase the levels of cyclin A and E, with cell cycle arrest in the G2/M and S
phases [81,82]. Similar findings have indicated that resveratrol causes the arrest of cell cycles and
activation of the p53-dependent pathway [83–85].

p53, a tumor-suppressor protein, is an element critically linked to transcription, and is closely
connected to the regulation of apoptosis and cell proliferation; and also acts as a key mediator in the
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prevention of carcinogenesis [86]. p53 that has been activated binds DNA and stimulates the expression
of certain genes, e.g., WAF1/CIP1 encoding for p21, which belongs to the group of CDK inhibitors
that are vital to the inhibition of cell growth [87]. Resveratrol reduced the development of human skin
cancer A431 cells by downregulating the expression of cyclin D1, cyclin D2, and cyclin E, inhibiting
the activities and/or expression of CDK2, CDK4, and CDK6, and upregulating the expression of
p21. Resveratrol also suppressed the proliferation of breast cancer MCF-7 and human prostate cancer
DU-145 cells [88] via modulating CDK4 and cyclin D1 expression, which have been linked to the
induction of p21 and p53. When used to treat A549 cells, resveratrol caused S phase arrest, reduced
retinoblastoma protein (Rb) phosphorylation, and induced p21 and p53 protein expression [89]. It has
also been demonstrated that resveratrol limits the expression of Rb, another tumor-suppressor protein
involved in the G1/S transition in normal conditions [79,82,85].

It has also been shown that resveratrol’s anti-proliferative activity involves the stimulation
of apoptosis within cancer cells [90–92]; it has been proposed that apoptosis activation could be
a probable mechanism for chemotherapeutic agents to destroy cancerous cells [93,94]. In many human
tumors, apoptosis has been found to be impaired, which suggests that the disruption of apoptotic
functions significantly contributes to a normal cell being transformed into a tumor cell. Apoptosis is cell
death that has been programmed, and a genetically regulated physiological mechanism to eliminate
damaged or abnormal cells. It is also significant as a physiological-growth-control regulator and
a tissue-homeostasis moderator in embryonic, fetal, and adult tissues. Apoptotic cells can be identified
by regular biochemical and morphological properties, including membrane blebbing, cell shrinkage,
nuclear DNA fragmentation, chromatin condensation, and formation of apoptotic bodies [95].

Apoptosis can be activated via two major pathways: the mitochondria-apoptosome-mediated
intrinsic pathway and the death receptor–induced extrinsic pathway. [96,97]. The triggering of
death receptors in the tumor necrosis factor (TNF) receptor superfamily, e.g., Fas (CD95/APO-1),
or of TNF-related apoptosis-inducing ligand (TRAIL) receptors causes the initiator caspase-8 to
be activated, which can mediate the apoptosis signal via direct cleavage of downstream effector
caspases such as caspase-3 [98]. Caspases are an ubiquitous family of cysteine proteases, and have
critical functions in apoptosis as upstream initiators and downstream effectors [99]. The intrinsic
pathway is triggered by the dispensation of apoptogenic factors such as Omi/HtrA2, Smac/DIABLO,
cytochrome c, apoptosis-inducing factors (AIFs), endonuclease G, caspase-2, or caspase-9 from
the mitochondrial intermembrane space [100]. The dissemination of cytochrome c into the cytosol
activates caspase-3 via the creation of the cytochrome c/apoptotic protease-activating factor-1
(Apaf-1)/caspase-9-containing apoptosome complex; Omi/HtrA2 and Smac/DIABLO encourage
caspase activation by neutralizing the effects of inhibitors of apoptotic proteins (IAPs) [100,101].

Crosstalk also occurs between the two apoptotic pathways. For instance, Fas is connected to the
intrinsic pathway that is regulated via the activation of caspase-8 to cause cleavage of the BID protein,
causing cytochrome c to be released from the mitochondria [102,103]. Various apoptotic cell-death
mechanisms have been propounded [104,105]. One logical approach to reducing the incidence of
cancer appears to be the targeting of critical parts of apoptosis regulatory pathways, including the IAPs
(in particular XIAP, cIAP1, and cIAP2), the anti-apoptotic Bcl-2 family of proteins, nuclear factor-kappa
B (NF-κB), survivin, tyrosine kinases, caspases, and critical signaling pathways (phosphoinositide
3-kinase (PI3K)/AKT, STAT3/5, and MAPK pathways) [7,13,20,106–112]. Resveratrol prompts the
death of tumor cells by modulating diverse signal transduction pathways via regulation of the levels of
Fas and Fas-ligand (FasL) [113,114]. Resveratrol also enhances FasL expression in HL-60 cells, and the
resveratrol-induced apoptosis is Fas signaling-dependent [113].

Similar outcomes have also been observed in breast [113] and colon cancer cells [114].
Mechanisms of cell death that are independent of Fas and caused by cytotoxic agents have also
been propounded [115,116], and apoptosis induced by doxorubicin occurs through a Fas-independent
pathway [116]. Likewise, it has been shown that resveratrol exhibits Fas-independent apoptosis in
another leukemic THP-1 cell line [117]. It has also been observed that resveratrol induced the death of



Int. J. Mol. Sci. 2017, 18, 2589 6 of 36

leukemia CEM-C7H2 cells in a Fas-independent manner, as demonstrated by the absence of apoptotic
change in the presence of antibodies antagonistic to Fas or FasL [118]. Furthermore, resveratrol
effectively triggered apoptosis in Fas-resistant Jurkat human leukemia cells [118].

It has been shown that resveratrol induces cell death in some cancer cells by changing the
proteins of the Bcl-2 family [119]. The inhibition of anti-apoptotic proteins of the Bcl-2 family, and
activation of pro-apoptotic proteins such as Bad, Bak or Bax, by resveratrol has also been shown to
be a mechanism for caspase activation and cytochrome c release [120,121]. Interestingly, these effects
may be correlated with p53 activation [122–125]. For instance, resveratrol increased the cytoplasmic
concentration of calcium in human breast cancer MDA-MB-231 cells, which activated p53 and caused
different pro-apoptotic genes to be transcribed [126].

It has also been shown that resveratrol induces apoptosis via inhibiting the PI3K/Akt/mTOR
pathway [79,120,127–131], modulating the mitogen-activated protein kinase pathway (MAPK) [129,130,132],
and inhibiting NF-κB activation [133,134]. Resveratrol triggered apoptosis within human T-cell
acute lymphoblastic leukemia MOLT-4 cells by abrogating Akt phosphorylation, and subsequently
preventing GSK3β from being activated [135]. Similarly, resveratrol induced apoptosis in ovarian, [136]
breast, [137] uterine, [138] prostate, [120] and multiple myeloma cells [121], via inhibiting Akt
phosphorylation. Chen et al. [139] determined that resveratrol inhibited the phosphorylation of
PI3K/Akt (i.e., PI3K/Akt inactivation) in prostate cancer cells, resulting in decreased Forkhead
box protein (FOXO) activation. Resveratrol’s inhibition of the serine/threonine protein kinase Akt has
been identified in anti-cancer activity modulated by the activation of FOXO3a in human breast cancer
cells, because FOXO3a was not found to be activated by Akt [140].

It has been suggested that resveratrol interferes with the MAPK pathway. In cervical carcinoma
cells, resveratrol inhibited the activation of p38, JNK1, and ERK2 [141]. Resveratrol activates
ERK1/2 at low concentrations (1 pM–10 µM), but at higher concentrations (50–100 µM) can inhibit
MAPK in human neuroblastoma SH-SY5Y cells [142]. In contrast, resveratrol activates ERK1/2 in
prostate [143], breast [144,145], glial [146], head and neck [147], and ovarian cancer cells [148]. MAPKs
in a constitutively active state are necessary to maintain the malignant state; however, short-term
activation of MAPK may drive the cells to apoptosis [149]. It has also been reported that resveratrol
causes activation of other kinases, like JNK and p38 [150]. Notably, it has been shown that the
resveratrol’s anti-tumor effects require p53 activation that is MAPK-induced, as well as the subsequent
induction of apoptosis [151–153].

Resveratrol induces apoptosis in, and obstructs proliferation of, human multiple myeloma cells via
inhibiting the constitutive activation of NF-κB through abrogating the IκB-α kinase activation, and thus
down-regulating certain anti-apoptotic and pro-proliferation gene products, such as survivin, cIAP-2,
cyclin D1, XIAP, Bcl-xL, Bfl-1/A1, Bcl-2, and TNF-α receptor-associated factor 2 (TRAF2) [121,154].
The constitutive activation of NF-κB, defined as the persistence of NF-κB within the nucleus, is
apparent in a wide range of cancer cells [155–158]. Active NF-κB drives the expression of a plethora
of genes that guard against apoptotic cell death and maintain cell proliferation [158]. Deregulation
of the NF-κB signaling pathway can cause increased apoptosis as NF-κB modulates anti-apoptotic
genes, e.g., TRAF1 and TRAF2, and thus changes the activities of caspases critical to the majority of
apoptotic processes [159]. It has been determined that resveratrol can suppress NF-κB-regulated gene
products connected with inflammation matrix metalloproteinase (MMP)-3, MMP-9, cyclooxygenase-2
(COX-2), and vascular endothelial growth factor (VEGF), inhibit anti-apoptotic proteins (Bcl-xL, Bcl-2,
and TRAF1), and activate cleaved-caspase-3 [160].

Resveratrol also causes inhibition of signal transducers and activators of transcription 3 (STAT3),
which adds to its pro-apoptotic and anti-proliferative potential [121]. STAT3 is a critical element in
inflammation-related tumorigenesis as it promotes the proliferation, survival, invasion, angiogenesis,
and metastasis of tumor cells [112,161]. The activation of NF-κB also promotes inflammation,
proliferation, and tumorigenesis [162]. STAT3 and NF-κB are two central transcriptional factors linking
tumorigenesis and inflammation; both of them can be activated as a response to certain stimuli, such as
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cytokines, growth factors, and stress signals. Abnormal signaling of STAT3 or NF-κB in malignant
cells is therefore a promising target of therapy. STAT3 and NF-κB are activated via distinct pathways,
and move to the nucleus to effect transcriptional activity. STAT3 and NF-κB that are constitutively
activated by acetylation and/or phosphorylation in tumor cells, have been closely linked to both
cancer development and progression [163,164]. Kim et al. reported that resveratrol caused inhibition
of the nuclear translocation of STAT3 in renal cell carcinoma [165].

Interestingly, Wen et al. showed that inhibiting NF-κB nuclear translocation caused apoptosis in
resveratrol-treated medulloblastoma cells [166]. It has been suggested that cross-talk occurs between
the STAT3 and NF-κB pathways, because of the release of IL-6 and other cytokines, and because of
the activation of cytokine receptors. STAT3 and NF-κB actually co-regulate many inflammatory and
oncogenic genes, like IL-1β, Bcl-xL, Myc, COX-2, and cyclin D1 [161]. By their possible functional
interaction, STAT3 and NF-κB collaboratively promote the development of tumors via inducing
the expression of pro-tumorigenic genes [167]. The dysregulation of these genes because of the
constant activation of both STAT3 and NF-κB in tumors and the tumor microenvironment is critical to
tumor progression. Inflammation can regulate angiogenesis and cellular proliferation, and inhibits
apoptosis [168]. It has also been reported that resveratrol inhibits the processes of several inflammatory
enzymes in vitro, e.g., COXs and lipoxygenases (LOXs) [169,170]. It was shown in a recent study that
resveratrol could radiosensitize and block the STAT3 signaling pathway by inducing SOCS-1, thereby
reducing STAT3 phosphorylation and proliferation in head and neck tumor cells [171].

5. Anti-Tumor-Progression Activity

Tumor progression involves several processes such as that lead to tumor metastasis. Several genes
are mutated or deleted that sustain the development of aggressive tumors. The invasion and metastasis
of cancer cells involve the destruction of the extracellular matrix (ECM) and basement membrane,
by proteolytic enzymes, such as matrix metalloproteinases (MMPs). Of these enzymes, MMP-2
and MMP-9 are overexpressed within a variety of malignant tumors modulating cell invasion and
metastasis [172]. Tissue inhibitor metalloproteinase proteins (TIMPs), on the other hand, are a protein
group comprising TIMP-1, -2, -3, and -4 acting as natural MMP inhibitors [173]. To sustain their
swift growth, invasive tumors also need to grow new blood vessels via a process called angiogenesis.
During angiogenesis, endothelial cells can be stimulated by various growth factors, including fibroblast
growth factor (FGF) and VEGF, and travel to where the new blood vessels are required. Blocking
the development of new blood vessels causes the supply of nutrients and oxygen to be reduced and,
as a result, the size of the tumor and metastasis may also be reduced.

It has been suggested that resveratrol plays a role in inhibiting the expression of MMP
(mainly MMP-9) [174–177] and angiogenesis markers such as VEGF, EGFR or FGF-2 [79,178].
Resveratrol reduced the phorbo-12-myristate 13-acetate (PMA)-induced migration and invasion ability
of liver cancer HepG2 and Hep3B cells. In HepG2 cells, resveratrol up-regulated TIMP-1 protein
expression and down-regulated MMP-9 activity, while the activities of MMP-2 and MMP-9 were
decreased, along with a rise in the protein-expression level of TIMP-2 in Hep3B cells [175]. HepG2
cells treated with TNF-α expressed a high level of MMP-9, which resveratrol suppressed considerably
via down-regulating the expression of NF-κB, resulting in the expression of MMP-9 protein being
suppressed and the invasive capability of HepG2 cells being diminished [174]. Resveratrol treatment
of breast cancer MDA-MB231 cells caused inhibition of the epidermal growth factor (EGF)-induced
elevation of cell migration, and of the expression of MMP-9. Resveratrol also reduced a subunit of
the mammalian mediator complex for transcription (called MED28, and whose over-expression can
increase migration), via the EGFR/PI3K signaling pathways [176]. Both VEGF and hypoxia-inducible
factor-1α (HIF-1α) are over-expressed in several human tumors and their metastases, and are closely
linked to a more aggressive tumor phenotype. It has been reported that resveratrol suppresses the
expression of VEGF and HIF-1α in human ovarian cancer cells via abrogating the activation of the
PI3K/Akt and MAPK signaling pathways [179]. Resveratrol caused inhibition of the expression of these



Int. J. Mol. Sci. 2017, 18, 2589 8 of 36

molecules, which suggests that it could be part of an efficacious anti-cancer therapy for preventing
cancer and its metastasis [180–182].

Malignant transformation may be linked to signaling pathways during tumorigenesis, thereby
promoting epithelial-to-mesenchymal transition (EMT), which may in turn increase the invasiveness
and motility of cancer cells, and trigger cancer metastasis [183,184]. Many studies have shown that
resveratrol suppresses the development of tumor invasion and metastasis through inhibiting signaling
pathways associated with EMT [185]. Transforming growth factor-beta (TGF-β) is a widely known
cytokine that encourages invasion, proliferation, EMT, and angiogenesis of cancer cells, and the
TGF-β/Smad signaling pathway can activate EMT during cancer metastasis [186,187]. Resveratrol
(20 µM) inhibited TGF-β-induced EMT in A549 lung cancer cells by augmenting the expression of
E-cadherin and attenuating the expression of vimentin and fibronectin, as well as the EMT-inducing
transcription factors Slug and Snail [188]. Qing Ji et al. showed that resveratrol inhibited EMT
induced by TGF-β, as well as the invasion and metastasis of colorectal cancer, via reducing Smad2/3
expression [189]. NF-κB can also promote EMT, in addition to cancer migration and invasion [190–192].

Several studies have shown that NF-κB is a significant EMT regulator for different types of
cells [190–194]. The roles for NF-κB have been found to be linked to the expression of various genes
related to EMT, such as ZEB1, Snail, E-cadherin, MMP-7, MMP-9, and MMP-13 [192,193,195,196]. NF-κB
can also be activated through PI3K/Akt signaling pathway to drive EMT and cancer-cell metastasis.
Resveratrol suppressed the metastatic potential of pancreatic cancer PANC-1 cells in vitro by regulating
factors related to EMT (vimentin, E-cadherin, N-cadherin, MMP-2, and MMP-9) and modulating the
activation of PI3K/Akt/NF-κB pathways [197].

6. Pre-Clinical Studies

Resveratrol has also been reported to possess a significant anti-cancer property in various
preclinical animal models (Table 1).

Table 1. In vivo anti-cancer effects of resveratrol.

Cancer Model Animal Model Dose Outcome References

Skin

DMBA/TPA model in
female CD-1 mice

1, 5, 10, 25 µmol topically
twice/week for 18 weeks

Incidence↓
Number of tumors per mouse↓ [46]

Mouse xenograft models
of A431 cells 10, 20, 40 µg i.p. for 14 days

Xenograft volume↓
Free radical scavenging Incidence↓

Number of tumors per mouse↓
[198]

DMBA-initiated
and TPA-promoted

papillomas in female
ICR mice

85 nmol/L for 21 days; topical
application Prevent onset of skin tumor [199]

DMBA/TPA model in
CD-1 mice

1, 5, 10, 25 µmol Twice/week,
for 18 Wk; topical application

Skin tumor incidence↓
Apoptosis↑; p53↑; Bax↑;

cytochrome C↑; APAF↑; Bcl2↓
[200]

DMBA-TPA–model in
male Swiss albino mice

50 µmol/mouse for 3–24 week;
topical application

Inhibits photocarcinogenesis;
Cox2↓; lipid peroxidation↓; ODC↓ [201]

UVB-mediated
photocarcinogenesis in

female SKH-1 mice

25 µmol/mouse; topical
application

Decrease hyperplasia; p53↑;
Cox2↓; ODC↓; survivin↓mRNA

and protein
[202]

UVB-induced skin
hyperplasia in female

SKH-1 mice

10 µmol/mouse; 7 times,
on alternate days;

topical application

Skin tumor incidence↓
↑Survivin mRNA and protein;

↑ phospho-survivin;
↓Smac/DIABLO

[203,204].

UVB-induced skin
tumorigenesis in female

SKH-1 mice

25, 50 µmol/mouse;
twice/week for 28 weeks;

topical application

Suppresses melanoma
tumor growth [205]

C57Bl/6N mice
transplanted with

B16-BL6 melanoma cells
50 mg/kg b.w.; i.p. for 19 days [206]
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Table 1. Cont.

Cancer Model Animal Model Dose Outcome References

Breast

Spontaneous mammary
tumor in female FVB/N

HER-2/neu mice

4 µg/mouse/day
in drinking water for

2 months

Onset of tumorigenesis↓
Tumor volume↓

Multiplicity↓
Apoptosis↑

[207]

Female athymic mice
xenograft models of
MDA-MB-231 cells

25 mg/kg/day
i.p. daily for 3 weeks

Tumor volume↓
TUNEL staining↓

Microvessel density↓
[208]

Female Balb/c mice xenograft
with cigarette smoke

condensate-transformed,
MCF-10A-Tr cells

in mammary fat pad

40 mg/kg/day
orally for 30 days Tumor volume↓ [209]

DMBA-induced
mammary carcinogenesis

in female
Sprague-Dawley rats

10 ppm mixed in diet;
for 127 days

Suppressed tumor growth
NF-κB↓;Cox2↓; MMP9↓ [210]

DMBA-induced
mammary carcinogenesis

in female
Sprague-Dawley rats

100 mg/kg b.w. mixed in
diet; for 25 weeks

Suppressed tumor growth
Cell proliferation↓

Apoptosis↑
[211]

MNU-induced
mammary tumorigenesis

in female
Sprague-Dawley rats

100 mg/kg b.w. by oral
gavage for 127 days

Estrogen modulation Reduces
tumor growth [212]

MDA-MB-231 breast
tumor xenograft model

25 mg/kg b.w,
by i.p., for 3 weeks

Inhibits tumor growth
Apoptosis↑

Angiogenesis↓
[208]

Female HER-2/neu
transgenic mice model

0.2 mg/kg b.w in
drinking water for

2 months

Delays the development and
reduces the metastatic growth of
spontaneous mammary tumors

Apoptosis↑
↓HER-2/neu mRNA and protein

[207]

MDA-MB-231 breast tumor
xenograft model in female

athymic nu/nu mice

5 and 25 mg/kg b.w.,
thrice a week by oral
gavage for 117 days,

In combination with quercetin
and catechin retards
the growth of tumor

[213]

Prostate

Athymic nude mice
xenograft models of

PC-3 cells

30 mg/kg/day
Thrice/week,
total 6 weeks

Tumor volume↓
Cell proliferation↓

Apoptosis↑
Number of blood vessels↓

[214]

Male nude mice
xenograft models with

Du145-EV-Luc
or Du145-MTA1

shRNA-Luc
in anterior prostate

50 mg/kg/day
i.p. daily 14 days

after implantation,
total 6 weeks

Tumor growth↓
Progression, local invasion↓

Spontaneous metastasis↓
Angiogenesis↓

Apoptosis↑

[215]

Transgenic adenocarcinoma
of mouse prostate
(TRAMP) model

625 mg/kg mixed in diet
for 7–23 weeks

ER-β ↑; IGF-I ↑;
↓phospho-ERK-1;↓ERK-2 [216]

Transgenic rat
adenocarcinoma of

prostate (TRAP) model

50, 100 or 200 µg/ml in
drinking water for

7 weeks

Apoptosis ↑;
↓AR; ↓GK11 mRNA [217]

Lung

Female C57BL/6 mice
xenograft models of

LLC tumors

0.6, 2.5 or 10 mg/kg/day
i.p. daily for 21 days

Tumor volume/weight↓
Metastasis to lung↓ [218]

Nude mice xenograft
models of A549

15, 30 or 60 mg/kg i.v.
daily for 15 days Tumor volume↓ [219]

C57BL/6 mice implanted
with Lewis lung
carcinoma lung

tumor model

5 and 25 mg/kg,
i.p. for 15 days

Metastasis↓
Angiogenesis↓ [220]

C57BL/6 mice implanted
with Lewis lung
carcinoma lung

tumor model

20 mg/kg,
i.p. for 17 days

Angiogenesis↓
Apoptosis ↑ [221]
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Table 1. Cont.

Cancer Model Animal Model Dose Outcome References

Colon

DMH models in male
Wistar rats

8 mg/kg/day orally
daily for 30 weeks

Incidence↓,
Tumor volume↓,

Tumor burden/rat↓
Histopathological lesions DMH↓

[222]

BP models in male
ApcMin mice

45 µg/kg/day orally,
for 60 days

Number of colon adenomas↓
Dysplasia occurrence↓ [223]

AOM induced colon
cancer in male F344 rats

200 µg/kg b.w.
in drinking water Bax↑; p21↑ [224]

ApcMin/+ mice model 0.01% in drinking water
for 7 weeks

Reduce formation of tumor in
small intestine cyclin D1 and D2↓ [225]

ApcMin/+ mice model 240 mg/kg b.w. mixed in
diet for 10–14 weeks

Suppress intestinal
adenoma formation
Cox1 and 2↓; PGE2↓

[226]

Liver

Male Donryu rats
xenograft models of

AH109A cells

10, 50 ppm in diet
for 20 days

Tumor weight↓
Metastasis↓ [227]

Male Wistar rats
implanted with AH-
130 hepatoma cells

1 mg/kg;
7 days; i.p.

Tumor weight↓
Apoptosis↑
↑cells at G2/M

[228]

BALB/c mice implanted
with H22 hepatoma cells

500, 1000, 1500 mg/kg;
10 days;

abdominal injection
Immunomodulatory activity↑ [229]

BALB/c mice implanted
with H22 hepatoma cells

5, 10, 15 mg/kg; 10 days;
abdominal injection

Tumor volume↓
Apoptosis↑

cyclin B1↓; p34cdc2↓
[230]

BALB/c mice implanted
with H22 hepatoma cells

5, 10, 15 mg/kg; 10 days;
abdominal injection

Synergistic anti-tumor effect in
combination with 5-FU;

S-phase arrest
[231]

Female BALB/c mice
implanted with

HepG2 cells

15 mg/kg; every
alternate day for 21 days;

i.p.

Tumor growth↓
Apoptosis↑
Caspase 3↑

[232]

DENA-initiated
GST-P-positive hepatic
pre-neoplastic foci in

male
Sprague–Dawley rats

15% (w/w) grape extract
in diet; 11 weeks

Tumor growth↓
Lipid peroxidation↓

Fas ↓
[233]

DENA-initiated and
PB-promoted hepatocyte

nodule formation
in female

Sprague–Dawley rats

50, 100, 300 mg/kg;
20 weeks; diet

Tumor growth↓
Apoptosis↑

Cell proliferation↓
Bcl2↓; Bax↑

[234]

↓: downregulated; ↑: upregulated; UVB: ultraviolet B; DMBA: 7,12-Dimethylbenz[a]anthracene; MNU: methyl-N-
nitrosourea; AOM: azoxymethane; DENA: diethylnitrosamine; GST-P: glutathione S-transferase; PB: phenobarbital ;
p53: tumor protein p53; Bax: Bcl-2-associated-X-protein; APAF: Apoptotic protease activating factor 1; Bcl2: B-cell
lymphoma 2; Cox: cyclooxygenase; ODC: ornithine decarboxylase; Smac/DIABLO: Second mitochondriaderived
activator of caspases /Diablo homolog; TUNEL: Terminal deoxynucleotidyl transferase dUTP nick end labeling;
NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; MMP9: matrix metalloproteinase nine; HER-2:
human epidermal growth factor receptor 2; ER-β: estrogen receptor beta; IGF-I: insulin-like growth factor 1ERK:
extracellular regulated kinase; AR: androgen receptor; GK11: glandular kallikrein 11; DMH: 1,2-dimethylhydrazine ;
PGE2: prostaglandin E2; 5-FU: 5-fluorouracil.

7. Skin Cancer

The first preclinical study of the anti-cancer or chemopreventive effect of resveratrol was reported
in a two-stage, 7,12-Dimethylbenz[a]anthracene (DMBA)-initiated and 12-O-tetradecanoyl-13-acetate
(TPA)-promoted mouse-skin carcinogenesis model [46]. Thereafter, several in vivo skin cancer studies have
been performed with DMBA/TPA [46,199–201,235,236], DMBA alone, [237–239], TPA alone [240–242],
ultraviolet B radiation (UVB) exposure [202–204,243], benzo[a]pyrene (BP) [237], and xenograft
models [198]. In the DMBA/TPA models, resveratrol treatment reduced the incidence [46,199–201,235],
multiplicity [46,199,201,235], and tumor volume [201,235,236], and delayed the onset of tumorigenesis [201].



Int. J. Mol. Sci. 2017, 18, 2589 11 of 36

Resveratrol prevented DMBA/TPA-induced skin cancer from developing in mice, and was effective at all
stages of carcinogenesis.

Soleas et al. discovered that resveratrol was somewhat efficacious in reducing the rate of tumor
formation and the number of animals that developed skin tumors induced by DMBA [200]. Resveratrol
inhibited tumor promotion in the DMBA–TPA mouse-skin carcinogenesis model, possibly because
(at least in part) of its anti-oxidant properties [199]. Resveratrol administration restored glutathione
(GSH) levels, superoxide dismutase (SOD), GSH peroxidase, and catalase activities to control values
(mice without UVB irradiation) [244]. Furthermore, resveratrol exerted an anti-oxidant effect with a
reduction in H2O2 and lipid peroxidation in the skin [202]. It has been shown that the anti-proliferative
effects of this stilbene can be regulated by cell-cycle regulatory proteins such as the expression of
CDK2, 4, and 6, cyclin D1 and D2, and proliferating cell nuclear antigen (PCNA), while the expression
of p21 was increased [203].

Resveratrol effectively hindered the development of DMBA/TPA-induced mouse-skin tumors
by inducing apoptosis, which was indicated by the induction of cytochrome c release, the expression
of Bax, p53, and Apaf-1, and the inhibition of Bcl-2 [201]. Afaq et al. determined that resveratrol had
the ability to reduce edema and inflammation resulting from short-term UVB exposure in the skin
of SKH-1 hairless mice, possibly because of the inhibition of ornithine decarboxylase (ODC) [202].
Treatment with resveratrol both before and after exposure to UVB suppressed development of skin
tumor [204]. Resveratrol’s anti-tumor properties have also been linked to lower expression levels of
TGF-β1 and augmented expression levels of E-cadherin [243]. Oral gavage of resveratrol hindered
the development of a mouse melanoma (B16BL6 cell line) xenograft carried in mice, with decreased
expression of Akt [245]. In a murine model of the human cutaneous skin squamous carcinoma A431
cell-line xenograft, resveratrol treatment reduced the volume of the tumor, raised the expression levels
of ERK and p53, and lowered the expression level of survivin [198]. Nevertheless, resveratrol did not
reduce the tumor growth of other melanoma cell lines, including A375, B16M, and DM738 xenografts
in mice [246,247].

8. Breast Cancer

Resveratrol has exhibited anti-cancer and chemopreventive properties in various animal breast
cancer models. Models of chemically induced mammary-gland carcinogenesis using N-methyl-
nitrosourea (MNU) [212], estradiol [248], or DMBA [46], in addition to models of spontaneous mammary
tumors with HER-2/neu-overexpressed [207] or Brca1-mutated (K14cre; Brca1F/F; p53F/F) mice [249],
have been employed to determine resveratrol’s preventive or curative effects. Oral administration
of resveratrol was also found to reduce tumorigenesis induced by N-nitoso-N-methylurea (NMU) in
rats [212,250].

Resveratrol, in a xenograft animal model, inhibited the development of ER-β–positive
MDA-MB-231 and estrogen receptor (ER)-α–negative tumor explants, raised apoptosis, and lowered
angiogenesis in nude mice [208]. However, resveratrol did not affect the in vivo development and
metastasis of transplanted ER-α–negative 4T1 murine mammary cancer cells in nude mice [251].
Bove et al. studied resveratrol’s in vivo effect with doses of 1–5 mg/kg per day administered
intraperitoneally, and proposed that this ineffectiveness may have been the result of an insufficient
dose of resveratrol. In another study, oral resveratrol at 100 or 200 mg/kg inhibited the development of
4T1 cells and metastasis in mouse lungs [252]. These findings were linked to both the reduced activity
and expression of MMP-9. These data suggest that resveratrol’s effects on breast cancer hinge on the
dose and route of administration.

With breast cancer cell–implanted fat-pad models employing cigarette smoke condensate–transformed
MCF-10ATr cells [209] or SUM159 cells [253], resveratrol caused down-regulation of the expression of
various proteins linked to survival and cell proliferation (cyclin D1, PI3K, PCNA, and β-catenin), proteins
related to DNA repair (Fen-1, DNA-ligase-I, Pol-δ, and Pol-ε), and an anti-apoptotic protein (Bcl-xL).
It also caused an up-regulation of the pro-apoptotic protein Bax and tumor-suppressor gene p21 in mouse
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mammary tissue [209,253]. When used to supplement drinking water, resveratrol delayed the growth of
spontaneous mammary tumors in HER-2/neu transgenic mice, and lowered the mean size and number of
mammary tumors by causing down-regulation of the HER-2/neu gene expression and raising apoptosis
in the mammary glands of these mice [207].

9. Prostate Cancer

Dietary resveratrol considerably lowered the incidence of prostatic adenocarcinoma in the
transgenic adenocarcinoma mouse prostate (TRAMP) model [216]. Resveratrol suppressed prostate
cancer growth via down-regulating the androgen receptor (AR) expression in the TRAMP model of
prostate cancer. Additionally, besides down-regulating the AR expression, resveratrol also suppressed
the mRNA level of androgen-responsive glandular kallikrein 11, which has been determined to be an
ortholog of the human prostate specific antigen (PSA) [217]. In a xenograft model, resveratrol delayed
the development of AR-positive LNCaP tumors and inhibited the expression of steroid hormone
response markers [254].

With the use of AR-negative PC-3 human prostate cancer–cell xenografts in the flank
regions of mice, post-treatment with oral resveratrol (30 mg/kg/day) decreased the volume of
tumors, with lowered tumor-cell proliferation and neovascularization, and induced apoptosis [214].
Intraperitoneal post-treatment with resveratrol (25 mg/kg/day) also decreased the tumor volume
of PC-3 cell xenografts in mouse prostates [255]. Additionally, intraperitoneal post-treatment of
resveratrol (50 mg/kg/day) in the orthotopic DU-145 prostate cancer model decreased the growth,
progression, local invasion, and spontaneous metastasis of tumors [215].

10. Colorectal Cancer

Colorectal cancers arise due to several factors such as diet rich in red meat and processed
meat and other lifestyle factors such as smoking and drinking alcohol [256],. Resveratrol’s
in vivo effectiveness has been tested with colorectal cancer models employing genetically modified
animals such as ApcPirc/+ rats and ApcMin/+ mice. Colon cancer can be induced by chemical
carcinogens, which include azoxymethane (AOM), AOM plus dextran sulfate sodium (DSS),
2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, 2-amino-3-methylimidazo[4,5-f]quinoline, and
1,2-dimethylhydrazine (DMH) [257,258]. The pathophysiological and histopathological features/
manifestations of colon cancer include aberrant crypt foci (ACF), hyperplasia, adenocarcinoma,
and adenoma [258]. In models induced with AOM or AOM plus DSS, the oral administration
(in the gavage or diet) of resveratrol decreased the incidence [259,260], individual size [224], and
multiplicity [224,259,261] of ACF in rodent models, and triggered biomarker alterations.

Resveratrol augmented the expression of Bax [224], p53, and p-p53 at Ser15 [259], HO-1 [261],
glutathione reductase (GR) [261], and Nrf2 [261], and reduced the expression of COX-2 [259,261],
inducible nitric oxide synthase (iNOS) [259,261], TNF-α [259], aldose reductase [261], NF-κB [261],
and p-protein kinase C-β2 (PKC-β2) [261]. It has been propounded that resveratrol down-regulates
the aldose reductase–dependent activation of NF-κB and PKC-β2, with an ensuing lowering of the
expression levels of COX-2 and iNOS [261]. In models induced with DMH, resveratrol decreased the
incidence, [222] size [222,262], and multiplicity of ACF [222,262,263], as well as histopathological
lesions [222] and DNA damage in leukocytes [264]. When used against colon carcinogenesis,
the anti-tumor effects of resveratrol were found to be accompanied by alterations in the activities of
enzymes. In rat models, the processes of anti-oxidant enzymes, including catalase (CAT) and SOD in
the intestine/colon [262], liver [265], and erythrocytes [264], were augmented, and the processes of
biotransforming enzymes, including β-glucosidase, β-glucuronidase, β-galactosidase, nitroreductase,
and mucinase, in fresh fecal and colonic mucosal samples were reduced [222]. Resveratrol lowered
the expression levels of ODC, COX-2, Mucin 1, cell surface associated (MUC1), heat-shock protein
(Hsp)27, and Hsp70 in colonic mucosa [266], and increased the expression levels of caspase-3 in the
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colonic mucosa [266], and increased glutathione in the reduced state (GSH) in the liver, intestine/colon,
plasma, and erythrocytes [262,264,265].

In models with genetically modified mice (e.g., ApcMin/+ mice [223,225,226]), and in mice with the
APC locus knockout and activated KRAS [267], resveratrol supplementation inhibited the development
of colon tumors [223,225,226,267,268] and occurrence of dysplasia [223].

11. Liver Cancer

The anti-cancer potential of resveratrol in liver carcinogenesis was exemplified by a decreased
incidence and smaller numbers of nodules in models of animals employing chemical carcinogens
[e.g., diethylnitrosamine (DENA) [269], DENA plus phenobarbital [234,270], and DENA plus
2-acetylaminofluorene (2-AAF) [271] or transgenic mice (e.g., hepatitis B virus X protein (HBx)-expressing
transgenic mice) [272]. Additionally, resveratrol’s anti-tumor effects have been reported in xenograft
models using hepatoma cell lines (e.g., H22, AH-130, HepG2, and AH109A) [227–229,232]. Dietary
resveratrol completely prevented DENA-induced lipid peroxidation and enhanced protein carbonyl
formation, which indicates that it may also attenuate oxidative stress in the liver. Resveratrol also
elevated the expression of hepatic Nrf2 and reduced the expression of iNOS. That study reported that
the attenuation of oxidative and nitrosative stress and the alleviation of the inflammatory response
could be mediated through the transcriptional and translational regulation of Nrf2 signaling [273].
Recent studies with Nrf2-deficient mice have shown that Nrf2 plays a role in protecting the liver from
xenobiotic-initiated hepatocarcinogenesis [274].

Rajasekaran et al. have studied resveratrol’s ability to prevent or treat hepatocellular carcinoma by
administering resveratrol, starting at the time of DENA injection or for 15 days after the development
of hepatocellular carcinoma [269]. Resveratrol treatment at both time points also reduced cell crowding
and alteration in the cellular architecture, and decreased the liver size compared with control rats
treated with DENA [269]. In the DENA-induced hepatocellular carcinoma model, administration of
resveratrol inhibited the formation of hepatocyte nodules via down-regulating Hsp70 and COX-2
expression, through lowering the translocation of NF-κB from the cytoplasm to the nucleus [275].
Another study using the same administered dose of resveratrol also determined that the levels and
expressions of hepatic TNF-α, IL-1β, and IL-6 induced by DENA can be reversed [276]. Resveratrol also
exhibited a remarkable anti-angiogenic effect during the development of DENA-induced hepatocellular
carcinogenesis, perhaps by blocking VEGF expression via the down-regulation of HIF-1α [277].

Resveratrol considerably lowered the cell count of a swiftly growing tumor (Yoshida AH-130
ascites hepatoma) injected into rats, thereby triggering apoptosis and cell accumulation in the
G2/M phase [228]. It was further demonstrated that the inhibition of cell cycle progression involved
reductions in the expression of p34cdc2 and cyclin B1 in murine transplantable liver tumors after
resveratrol administration [230]. It has also been reported that resveratrol had anti-tumor-growth and
anti-metastasis effects in Donryu rats that had an ascites AH109A hepatoma cell line subcutaneously
implanted [227].

In another study, resveratrol inhibited tumor growth and angiogenesis in a hepatoma xenograft
mouse model [278]. Salado et al. used B16 melanoma (B16M) cells to study the effects of resveratrol
treatment on hepatic metastasis caused mainly by the production of pro-inflammatory cytokines [279].
Lin et al. investigated the effects of treatment with resveratrol on the precancerous stage of liver
carcinogenesis in spontaneously induced hepatocellular carcinoma in HBx transgenic mice [272].
Resveratrol supplementation significantly reduced the incidence of hepatocellular carcinoma and
increased the latency of tumor formation. Resveratrol inhibited hepatic lipogenesis and intracellular
ROS, and the results from liver cancer models have been consistently positive, indicating the potential
benefit of resveratrol in hepatocellular carcinoma prevention and/or therapy.
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12. Pancreatic Cancer

Several lines of evidence suggests that age, being overweight, pancreatitis and family history of
pancreatic cancer are the major risk factor for the development of pancreatic cancer. Within a xenograft
mouse model, resveratrol delayed or suppressed the promotion of pancreatic cancer via inhibiting the
activity of leukotriene A4 hydrolase (LTA4H), which stimulates the generation of pro-inflammatory
cytokines and mediators [280], and also stimulates cancer cell proliferation [281,282]. Resveratrol blocked
the tumor development of PANC-1 cells orthotopically implanted in nude mice, with augmented
expression of apoptosis/cell cycle arrest proteins including Bim, p27, and cleaved caspase-3, and reduced
cell survival/proliferation markers including PCNA expression and the phosphorylation of PI3K, ERK,
Akt, FOXO3a (Ser253), and p-FOXO1 (Ser256) in tumor tissues [283]. Resveratrol treatment inhibited
the formation and development of pancreatic cancer in KrasG12D transgenic mice that spontaneously
develop pancreatic tumors [284]. However, dietary resveratrol had no anti-carcinogenic effect on
BOP (N-nitrosobis(2-oxopropyl)amine)-induced pancreatic carcinogenesis in hamsters [285]. Further
studies are necessary for additional preclinical evaluation of the efficacy of resveratrol in treating
pancreatic cancer.

13. Lung Cancer

In preclinical models, lung carcinogenesis is known to be induced by a variety of agents, including
diethylnitrosamine (DEN), nitrosamine 4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK), uracil
mustard, vinyl carbamate, urethane, MNU, and BP [11]. In the BP-induced mouse lung carcinogenesis
model, resveratrol treatment lowered the level of BP diolepoxide (BPDE)-DNA adducts [286], improved
the ultrahistoarchitecture [287], and reduced the size of tumor nodules by increasing pulmonary
caspase-3 and -9 activity. It also abrogated glucose uptake/turnover, reduced the serum lactate
dehydrogenase (LDH) activity (which is heightened in cancer cells), and lowered the p-p53 levels at
Ser15 (the hyperphosphorylation of which can result in the inactivation of p53) [288]. In Lewis lung
carcinoma cell xenograft models, treatment with resveratrol reduced the growth of tumors [218,221].
It has been also discovered that treatment with resveratrol reduced the development of A549 and
MSTO-211H xenografts in mice [219,289,290].

Resveratrol’s anti-tumor effects in A549 xenografts were reduced in Forkhead box protein C2
(FOXC2)-overexpressing A549 xenografts, which suggests that resveratrol possibly induces anti-tumor
activity through FOXC2 [289]. Another study discovered that resveratrol did not affect the development
of Lewis lung carcinoma implanted in mice, but demonstrated an evident anti-metastatic effect,
decreasing both the weight and number of lung metastases [220]. However, resveratrol used to
supplement the diet did not affect lung tumor multiplicity in BP plus NNK-induced lung carcinogenesis
in A/J mice [291]. Similarly, in BP-induced lung carcinogenesis, resveratrol did not cause a change
in the expression levels of BP-metabolizing genes (such as CYP1A1 and CYP1B1) and the number of
B[a]P-protein adducts in lung tissues [292]. Another study found that both the natural Egr-1 promoter
and the synthetic promoter triggered the expression of GADD45αwhen used with resveratrol, and
then suppressed the proliferation of A549 lung cancer cells and induced apoptosis [293].

14. Other Cancers

Resveratrol provides considerable protection against the induction of cancer within the oral
cavity [294] and the esophagus [295], among other tissues. Its cancer chemopreventive activity
aside, resveratrol can also inhibit the development and/or induce the regression of established
tumors in xenograft models for cancers of the ovaries [296], urinary bladder [79], stomach [297],
and head and neck [298,299]. Resveratrol treatment effectively suppressed the growth rate of and
augmented apoptosis in neuroblastoma; this was accompanied by the up-regulation of cyclin E and
the down-regulation of p21 [300]. It has recently been demonstrated that resveratrol considerably
reduced tumor growth via inducing apoptosis, which involved direct activation of the mitochondrial
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intrinsic apoptotic pathway in the NGP and SK-N-AS xenograft models of human neuroblastoma [301].
Resveratrol caused significant inhibition of cerebral tumors through inducing apoptosis and inhibiting
angiogenesis induced by glioma [302]. Rats that had undergone resveratrol treatment had lower
growth rates of glioma, which correlated with the blood flow of tumors (signified by the color Doppler
vascularity index) and density of microvessels.

Resveratrol’s anti-angiogenic effect has caused researchers to investigate if it could inhibit the
development of a murine fibrosarcoma; water supplemented with resveratrol indeed significantly
inhibited the development of T241fibrosarcoma in mice via suppressing angiogenesis [303].
Resveratrol’s in vivo anti-cancer effects were studied in N-nitrosomethyl-benzylamine (NMBA)-
induced esophageal tumorigenesis in rats. Resveratrol suppressed both the size and number of
NMBA-induced esophageal tumors per rat through targeting prostaglandin E2 and COXs [304].
In a gastric cancer xenograft nude mouse model, resveratrol inhibited the growth of tumors,
with reductions in the expression of cyclin D1, Ki67, CDK4, and CDK6, and increases in the expression
of p16, p21, and β-Gal [305]. Resveratrol considerably inhibited carcinoma development when it
was injected in close proximity to the carcinoma in a tumor model created by transplanting human
primary gastric cancer cells into the subcutaneous tissue of nude mice [297]. Resveratrol induced
apoptosis in implanted tumor cells via down-regulation of the apoptosis-regulated gene Bcl-2 and
up-regulation of the apoptosis-regulated gene Bax. For the anti-tumor effects in head and neck
cancer, resveratrol suppressed tumor stemness via lowering the expression of mesenchymal-like
protein (Vimentin) and stemness markers (Oct4 and Nestin), inducing epithelial protein expression
(E-cadherin) [299], and increasing γ-histone 2AX (a DNA damage marker) and cleaved caspase-3
expression [298]. In an ovarian cancer model, resveratrol abrogated the development of NuTu-19
ovarian cancer cells in vitro. However, in vivo, when NuTu-19 cells were injected into the ovarian
bursa of rats and the rats were fed with resveratrol (100 mg/kg) mixed in their diet for 28 days,
the growth of the ovarian tumors was not significantly inhibited [306].

15. Clinical Trials with Resveratrol

Although it is clear that resveratrol has shown excellent anti-cancer properties, most of the studies
were performed in cell-culture and pre-clinical models. These physiological effects of resveratrol were
also investigated in humans because it cannot be assumed that the results of tests in animal models will
hold true for humans, because of differences in genetics and metabolism profile. The pharmacokinetics,
metabolism, and toxicity of resveratrol have been assessed in healthy volunteers and cancer
patients [307–309]. Resveratrol is metabolized swiftly, mainly into glucuronide and sulfate conjugates
that are excreted via the urine. Because of the poor bioavailability of resveratrol due to its extensive
metabolism, large doses (up to a maximum of 5 g/day) have been utilized by researchers. These studies
have shown that resveratrol seems to be well tolerated and safe. However, adverse effects including
diarrhea, nausea, and abdominal pain were observed in subjects taking more than 1 g of resveratrol
daily [307]. Subsequent clinical trials are currently investigating this dose limit [307,310]. Resveratrol’s
poor bioavailability is a significant issue with regard to extrapolating its effects to humans, and various
approaches have been created to enhance its bioavailability [311], including consuming it with various
foods [312], using it in combination with an additional phytochemical piperine [313], and using
a prodrug approach [314], micronized powders [315,316], or nanotechnological formulations [317–319].

The effect of resveratrol in cancer patients has been investigated in a few clinical trials (Table 2).
The first clinical trial dealing with resveratrol and cancer was performed by Nguyen et al. [320]. They
examined the effects of freeze-dried grape powder (GP) (containing resveratrol and resveratrol derived
from plants) on the Wnt signaling pathway, which is known to be involved in colon carcinogenesis [321],
in regular colon cancer and colonic mucosa. GP administration (80 g/day containing 0.07 mg of
resveratrol) for two weeks resulted in decreased Wnt target gene expression within regular mucosa,
but had no effect on cancerous mucosa. This indicates that GP or resveratrol may play a beneficial part
in the prevention of colon cancer, rather than in the treatment of established colon cancer. Patel et al.
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studied the effects of the administration of resveratrol at 0.5 or 1 g/day for eight days on proliferation
marker Ki-67 expression in colorectal tissue, and reported a 5% decrease in the proliferation of tumor
cells [322]. In colorectal cancer patients with hepatic metastasis, SRT501 (a micronized resveratrol
formulation manufactured by Sirtris Pharmaceuticals, a GSK Company, Cambridge, MA, USA)
supplementation at 5 g/day for two weeks increased the amount of cleaved caspase-3 within hepatic
tissue, which suggests that there was increased apoptosis of cancerous tissue compared with subjects
treated with a placebo [315].

In a muscadine grape skin extract phase 1 study with biochemically recurrent prostate cancer
patients who were assigned to a high dose (4000 mg/patient) of pulverized muscadine grape
(Vitis rotundifolia) skin that contains ellagic acid, quercetin, and resveratrol was found to be safe
and warrants further investigation in dose-evaluating phase II trial [323]. In another randomized
placebo controlled clinical study using two doses of resveratrol (150 mg or 1000 mg resveratrol daily) for
4 months was found to significantly lowered serum levels of androstenedione, dehydroepiandrosterone
and dehydroepiandrosterone-sulphate, whereas prostate size was unaffected in benign prostate
hyperplasia patients [324].

Table 2. Selected clinical trials evaluating the effect of resveratrol in cancer patients.

Participants Resveratrol Formulation and
Dosages Outcome References

Colorectal cancer patients
(n = 8)

Grape powder (80 or 120 g/day) or
Resveratrol (20 or 80 mg/day) for

2 weeks

Inhibition of Wnt target gene
expression in normal colonic mucosa. [320]

Colorectal cancer patients
(n = 20) Resveratrol (0.5 or 1g) for 8 days

Reduction of Ki-67 levels by 5 and 7%
in cancerous and normal tissue,

respectively.
[322]

Colorectal cancer patients
with hepatic metastasis

(n = 6)

Micronized resveratrol
(SRT5001, 5 g) for 14 days

Detection of resveratrol in hepatic
tissue and increased (39%) content
of cleaved caspase-3 in malignant

hepatic tissue.

[315]

Multiple myeloma
patients (n = 24)

Micronized resveratrol
(SRT5001, 5 g) for 20 days in
a 21 day cycle up to 12 cycles

Unacceptable safety profile and
minimal efficacy in patients with

relapsed/refractory multiple myeloma
highlighting the risks of novel drug
development in such populations.

[316]

Biochemically recurrent
prostate cancer patients

(n = 14)

Pulverized muscadine grape skin
extract (MPX) 4000 mg/patient

MPX was found to be safe and
warrants further investigation in

dose-evaluating phase II trial
[323]

Benign prostate
hyperplasis patients

(n = 66)

Two doses of resveratrol (150 mg or
1000 mg resveratrol daily)

for 4 months

Significantly lowered the serum levels
of androgens with no changes in

prostate tumor growth.
[324]

Primary protein carbonylation has been found to be increased several folds in presence of
high levels of reactive oxygen species (ROS) such as superoxide anion free radical (O2

−) and
nitric oxide free radical (NO) and other reactive free radicals, such as hydrogen peroxide (H2O2),
hydroxyl radical (HO), and peroxynitrite anion (ONOO−). There are several sources of ROS in
the digestive tract and several microbes present in the colon produce a large amount of ROS
inside the cells are by products of mitochondrial respiration in aerobic metabolism, and in chronic
inflammation, a large amount of ROS is produced by neutrophil phagocytosis of bacteria, granular
materials, or soluble irritants [325,326]. The oxidative decomposition of polyunsaturated fatty acids
can initiate chain reactions that lead to the formation of a variety of carbonyl species (three to
nine carbons in length), the most reactive and cytotoxic being α,β-unsaturated aldehydes also
referred to as electrophilic carbonyls. These include acrolein, glyoxal, methylglyoxal, crotonaldehyde,
malondialdehyde, and 4-hydroxynonenal. Reactive ketones or aldehydes that can be reacted by
2,4-dinitrophenylhydrazine (DNPH) to form 2,4-dinitrophenylhydrazone (DNP). Ulcerative colitis
(UC) is a type of chronic inflammatory bowel disease (IBD) in which oxidative stress plays a critical role
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in its pathogenesis and malignant progression to colorectal cancer (CRC) [327,328]. Oxidative activation
of transcription factors NF-κB stimulates expression of a variety of pro-inflammatory cytokines in
the intestinal epithelial cells, such as TNF-α, IL-1, IL-8, and COX-2, and promotes inflammation and
carcinogenesis. Oxidative stress also activates mitogen-activated protein (MAP) kinase (MAPK)
signaling pathways. The human gastrointestinal tract is exposed to carbonyl threats such as
consumption red meat, alcoholic beverages and smoking increases protein carbonylation, inflammation
and initiation of tumor development. However, dietary intake of green leafy vegetables, fruits, fish
and wine has shown to decrease protein carbonylation [329]. It has also been reported that resveratrol
supplementation at 5 mg/day for six days increased the degree of protein carbonyl concentrations
and cytoprotective enzyme NQO1 in colorectal mucosa tissues from patients with colorectal cancer,
compared with their control subjects [330]. However, contrary to these positive findings, some evidence
that resveratrol supplementation may have adverse effects in certain cancer patients also exist. In a
phase II clinical trial involving multiple myeloma patients, SRT501 supplementation at 5 g/day caused
several unexpected adverse effects, including nephrotoxicity, which may have led to the death of one
patient [316]. However, this high dose of SRT501 was determined to be safe in other clinical trials
involving several healthy and diseased populations [315,316]. There are very low amounts of human
data regarding the efficacy of resveratrol in cancer treatment. Since most of these clinical trials have
had a small patient sample size and used different doses and different routes of resveratrol, the data
from human clinical studies have shown inconsistent outcomes of resveratrol administration.

In addition to the effects in subjects with cancer, the effect of resveratrol in subjects with a
higher cancer risk has also been demonstrated. For instance, resveratrol supplementation at 50 mg
two times per day for 12 weeks reduced the DNA methylation of the tumor-suppressor gene Ras
association domain-containing protein 1 (RASSF1A) in the breasts of women with higher risk of
breast cancer [331]. It has also been shown that resveratrol supplementation at 1 g/day for 12 weeks
increases the concentrations of sex steroid hormone binding globulin (SHBG), which has been linked
to a reduction in the risk of breast cancer [332], and has favorable effects on estrogen metabolism;
thus, it can lower risk factors for breast cancer in obese and overweight postmenopausal women [333].
Another clinical study concentrated on resveratrol’s effects on potential biomarkers for cancer risk
reduction. Circulating concentrations of insulin-like growth factor (IGF-1) and IGF-binding protein 3
(IGFBP-3) are linked to a higher risk of common cancers [334]. Brown et al. showed that resveratrol
administration at 2.5 g/day for 29 days resulted in a reduction of the circulating levels of IGF-1 and
IGFBP-3 in healthy volunteers [335]. Their research suggests that resveratrol’s ability to decrease
circulating IGF-1 and IGFBP-3 in humans may constitute an anti-carcinogenic mechanism. In another
study, Chow et al. found that resveratrol administration at 1 g/day for four weeks modulated
phase I isoenzymes (cytochrome P450) and phase II detoxification enzymes involved in carcinogen
activation and detoxification [310]. However, these beneficial effects are mostly minimal and sometimes
controversial. Nevertheless, it seems that resveratrol has had some beneficial effects with regard to
the prevention and treatment of cancer. Therefore, the efficacy and safety of resveratrol in human
trials must be further investigated to better understand and develop its therapeutic potential for
cancer patients.

16. Conclusions and Future Perspectives

Using a variety of in vivo and in vitro models, it has been proven that resveratrol is capable of
attenuating the various stages of carcinogenesis, some of which are briefly described in Figure 2. A vast
body of experimental in vivo and in vitro studies and a few clinical trials has presented evidence of
resveratrol’s great potential as an anti-cancer agent, both for the prevention and therapy of a large
range of cancers. Resveratrol has a very low toxicity, and, although it has multiple molecular targets,
it acts on different protective and common pathways that are usually altered in a great number of
tumors. This suggests that resveratrol may be more suitable for use as an anti-carcinogen and it can also
effectively exert it antineoplastic effects in conjunction with diverse chemotherapeutics and targeted
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therapies. The ability to prevent carcinogenesis includes the inhibition of oxidative stress, inflammation,
and cancer-cell proliferation, and the activation of tightly regulated cell-death mechanisms. Due to the
complexity and number of cellular processes involved, however, more studies must be performed to
completely understand how resveratrol could be used to prevent the development of cancer. Moreover,
resveratrol’s poor bioavailability in humans has been a critical concern with regard to the translation
of basic research findings to the development of therapeutic agents. Although human clinical trials
have produced positive findings, many conflicting results remain, which may be partly because of
the dosing protocols employed. To augment resveratrol’s bioavailability and as a potential adjuvant,
active research should be focused on resveratrol delivery systems, formulations, and modulation of
resveratrol metabolism, and resveratrol’s possible interactions with other compounds, as well as the
development of more bioavailable analogs of the compound.
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