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ABSTRACT Functionally naked skin which comes in a range of  colours is unique 
to the human species. This review summarises current evidence pertaining to the 
evolution of these attributes. The biggest changes in the integument occurred 
during the course of human evolution in equatorial Africa, under regimes of high 
daytime temperatures and high ultraviolet radiation (UVR). Loss of most 
functional body hair was accompanied by the evolution of an epidermis with a 
specialised stratum corneum and permanent, protective, eumelanin pigmentation. 
The main reason for the evolution of dark pigmentation was to protect against 
folate deficiency caused by elevated demands for folate in cell division, DNA 
repair, and melanogenesis stimulated by UVR. Dispersal out of tropical Africa 
created new challenges for human physiology especially because of lower and 
more seasonal levels of UVR and ultraviolet B (UVB) outside of the tropics. In 
these environments, the challenge of producing a vitamin D precursor in the skin 
from available UVB was met by natural selection acting on mutations capable of 
producing varying degrees of depigmentation. The range of pigmentation 
observed in modern humans today is, thus, the product of two opposing clines, 
one favoring photoprotection near the equator, the other favoring vitamin D 
photosynthesis nearer the poles. Recent migrations and changes in lifestyle in the 
last 500 years have brought many humans into UVR regimes different from those 
experienced by their ancestors and, accordingly, exposed them to new disease 
risks, including skin cancer and vitamin D deficiency.
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Human skin is functionally naked, sweaty, resistant to 
abrasion, colourful, and often deliberately decorated. 
This constellation of attributes makes human skin 
unique1 and of great interest to comparative biologists 
and anthropologists. The range of colour exhibited by 
human skin is its most singular biological characteristic 
and the one of greatest social import because skin  
colour has been the primary trait used to classify people 
into races. Skin colour has been observed and studied by 
philosophers and scientists for over two millennia and 
yet there is still much about it that is not known. 
Research into the evolution and importance of skin 
pigmentation languished during much of the twentieth 
century because of legitimate concerns that study of the 
causes and ramifications of skin  colour variation would 
be socially divisive. This situation has changed in the last 
20 years partly because of the development of new 
genetic tools, which have allowed for rapid and wide-
scale exploration of human variation. Study of variation in 
pigmentation also gained impetus because of the recog-
nition that understanding and dispassionate discussion of 

the causes of visible human variation is important to 
human health and the future of societies. Here I review 
recent advances in knowledge of the evolution of skin 
pigmentation variation and the diverse effects that skin 
pigmentation has on health and wellbeing in the 
modern world. 

The evolution of functional nakedness 
and its relationship to skin 
pigmentation

The evolution of skin pigmentation in humans is related 
to the evolution of hairlessness and enhanced sweating 
abilities.2 The common ancestor of chimpanzees and 
humans lived about six million years ago in equatorial 
Africa, under conditions of high daytime temperatures 
and high ultraviolet radiation (UVR). This common 
ancestor probably had dark hair covering pale skin on 
most of its body, the condition common to catarrhine 
primates. The exposed skin on the face and on the dorsal 
surfaces of the hands and feet had active melanocytes 
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capable of producing melanin in response to sun exposure, 
but unexposed skin remained unpigmented.3 Loss of 
functional body hair occurred early in the evolution of the 
genus Homo and was associated with the evolution of an 
efficient whole-body cooling system based on eccrine 
sweating.3–6 Because sweating is most effective in cooling 
the body when there is less hair on the surface to slow 
evaporation, the evolution of increased density of 
eccrine sweat glands occurred pari passu with functional 
nakedness. Naked skin is more vulnerable to environ-
mental influences, and that of humans differs from that 
of close but hairier primate relatives in its greater water 
resistance and resistance to abrasion.1 These differences 
are due in part to genes related to the epidermal 
proteins that contribute to the barrier functions of the 
skin, the integrity of sweat glands and the delicate and 
friable nature of body hair.7,8 Naked skin is also more 
vulnerable to damage from solar radiation, including 
UVR,9,10 and compensation for this came from evolution 
of increased thickness of the epidermis, especially the 
stratum corneum1,11 and of permanent protective eumelanin 
pigmentation to prevent the most energetic and damaging 
wavelengths of UVR from penetrating the body.3 

Melanin pigments are complex polymers that have a 
great capacity to absorb visible light, UVR, and ionising 
radiation, and to neutralise the reactive oxygen species 
(ROS) created when these agents interact with skin 
cells.12,13 Eumelanin is the dominant form of melanin 
found in human skin. It is intensely dark in its concentrated 
form because it absorbs broadly in the spectrum of 
visible light. Eumelanin polymers are intractably stable 
even when they are bombarded by high-energy radiation 
or ROS.14,15 Ultraviolet radiation damages DNA and the 
constituents of cell membranes, causing a toxic cascade 
of events that produces ROS and disrupts normal 
chemical reactions in cells.16,17 These processes are greatly 
attenuated by eumelanin, especially when it is present 
close to the surface of the skin.18 

Evolution of protective eumelanin 
pigmentation under high UVR conditions

Human skin pigmentation is highly correlated with 
latitude,19–21 but is even more highly correlated (r2=-0.93) 
with UVR, specifically the UV minimal erythemal dose or 
UVMED.3,19,22,23 Skin pigmentation as measured by skin 
reflectance is more strongly correlated with UVMED than 
with any other single environmental factor.22 

Many hypotheses have been advanced to account for the 
evolution of dark pigmentation under high UVR regimes, 
and these are reviewed at length elsewhere.2 In brief, 
four major hypotheses proposed have described 
advantages under natural selection accruing from: 1) 
lowered mortality due to protection from sunburn and 
skin cancer; 2) enhancing survival through camouflage in 
poorly lit forested environments; 3) the antimicrobial 

properties of eumelanin in pathogen-rich environments; 
and 4) protection of folate metabolism against deficiencies 
caused by high UVR. Our research has focused on the last 
of these hypotheses. 

The mostly deleterious effects of UVR on biological 
systems are well known.16,24 Darkly pigmented, eumelanin-
rich skin protects against much of the damage to DNA 
caused by UVR,25 and is associated with much lower 
rates of skin cancer than lightly pigmented skin.26–29 
Heavily pigmented melanocytes are able to resume 
proliferation after ultraviolet B (UVB) irradiation faster 
than lightly pigmented ones, and DNA from lightly 
pigmented melanocytes is more badly damaged after 
irradiation with increasing doses of UVB than is DNA 
from heavily pigmented ones.17,27 By contrast, pheomelanin 
in lightly pigmented skin appears to increase the risk of 
oxidation stress in melanocytes. This, combined with the 
limited ability of pheomelanin to absorb UVR, leads to 
elevated skin cancer risk among light-skinned 
individuals.26,30,31 The damaging effects of UVR on DNA 
structure are widely recognised and are associated with 
the initiation of skin cancers that mostly affect people 
toward the end or after their reproductive careers.3,32 
Cutaneous malignant melanoma is the only type with a 
high incidence rate among people of reproductive age, 
and overall incidence and mortality rates for melanoma 
prior to the mid-twentieth century were very low (<5 
per 100,000).33 Increases in the incidence of melanoma 
in the last 50 years are the result of lightly pigmented 
people being exposed to more intense or longer 
periods of sunlight and UVR34 and experiencing more 
painful sunburns35 because of migration to sunny places 
or recreational sun-tanning, the so-called ‘vacation 
effect’.36–38 These conditions were not typical of our 
species prior to the twentieth century, when most 
people moved very little during their lifetimes because 
they lacked the means of transportation to do so. It is 
difficult to quantify the relative importance of sunburns 
and skin cancer, specifically melanoma, as selective 
factors in the evolution of skin pigmentation, but 
available epidemiological evidence indicates that 
mortality of individuals of young reproductive age would 
have been extremely low. Thus, reduction of sunburn 
and melanoma risk probably contributed only to a 
minor extent in the evolution of darkly pigmented skin. 

The deleterious effects of UVR are not limited to DNA, 
and it is probably the effects of UVR on folate 
metabolism that have been of greatest importance in the 
evolution of dark pigmentation in humans. The 
importance of folate in human development and health 
has been highlighted by studies demonstrating that 
interdiction of cell proliferation because of folate 
deficiency interferes with normal development, and 
causes birth defects. The role of folate deficiency in 
causing neural tube defects is now firmly established.39–42 
Folate sufficiency is also necessary for maintenance of 
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active spermatogenesis43,44 and in the formation of myelin 
and the production of many neurotransmitters including 
serotonin.45 Folate can only be obtained from foods such as 
green leafy vegetables, citrus fruits and whole grains, or 
from supplements of the synthetic form of the vitamin, folic 
acid. Healthy levels of folate are difficult to maintain in the 
body because natural food folates are unstable, suffer from 
low bioavailability, and tend to break down when foods are 
boiled or stored.46,47 Folate deficiencies can be caused by 
insufficient intake of folate, improper absorption of the 
vitamin from the gut, or the breakdown of folate or its main 
serum form, 5-methylhydrofolate (5-MTHF) by alcohol or 
UVR, in particular ultraviolet A (UVA).48–50

Ultraviolet radiation and the ROS generated by UVA 
lower levels of folate 5-MTHF in the body because 
competition for folate is intense when high UVR 
simultaneously stimulates multiple folate-requiring 
processes, including cell division, DNA repair, and 
melanogenesis. Reduction of levels of folate and 5-MTHF 
is particularly serious if the body’s demand for folate is 
high – as in pregnancy – or if folate levels are already low 
because of low intake. The essential connections between 
folate metabolism and the evolution of dark skin 
pigmentation are, firstly, the relationship between UVR 
exposure and folate deficiency and, secondly, the 
relationship between UVR-induced folate deficiency and 
reduced fitness due to failures of normal embryogenesis 
and spermatogenesis.3,51 High concentrations of melanin 
significantly reduce folate destruction in vitro through 
absorption and scattering of UVA.18 Research into the 
UVR-mediated dynamics of folate metabolism is active 
and continuing, especially in the laboratory of Johan 
Moan of the University of Oslo.52

This evidence supports the theory that the major factor 
contributing to the evolution of dark skin pigmentation 
was the reduction of fitness brought about by UVR-
induced folate deficiency. Supporting evidence also 
comes from epidemiological studies, which indicate 
trends associating dark pigmentation with lower rates of 
neural tube defects.53–55 Much research remains to be 
done in this area, including further in vivo studies of folate 
metabolism in humans subjected to UVR, and prospective 
epidemiological studies which can further probe the 
relationship that skin pigmentation and dietary intake of 
folate have on rates of birth defects. 

The importance of the maintenance of dark pigment-
ation under high UVR conditions has been underlined by 
studies of the MC1R (melanocortin 1 receptor) locus, 
one of several genes that contributes to skin, hair and 
eye pigmentation. In modern Africans, this gene exhibits 
no variation, but outside of Africa it is highly variable. The 
absence of variation in African forms of the gene provides 
evidence of strong positive selection or selective sweep 
occurring around 1.2 million years ago56 and the maintenance 
of a functional constraint on variation (purifying selection) 

in Africa thereafter.57–59 The ancestral form of MC1R, along 
with probable contributions from other pigmentation 
genes (Shriver et al. 2003,60 Norton et al. 200761), makes 
possible the production of large amounts of eumelanin in 
the melanocytes of the skin and appears to have been so 
effective in improving health and reproductive success 
that people carrying it quickly outnumbered and replaced 
those who did not. 

Evolution of depigmentation under 
low UVR conditions

The evidence that permanent dark skin pigmentation 
evolved as protection against the deleterious effects of 
UVR is overwhelming, but it does not explain the clinal 
distribution of increasingly lightly pigmented skin outside of 
the tropics. The strength of UVR, and of UVB in particular, 
declines greatly north of the Tropic of Cancer and south of 
the Tropic of Capricorn.22,62–64 Low levels of UVR are not 
beneficial despite the fact that most UVR radiation is 
harmful. This is because UVR has one overwhelmingly 
positive action, photosynthesis of vitamin D3 (cholecalciferol) 
in the skin by UVB.65–67 Vitamin D3 is made in the skin when 
UVR penetrates the skin and is absorbed by 
7-dehydrocholesterol (7-DHC) in the epidermis and 
dermis to form pre-vitamin D3. This reaction only occurs in 
the presence of wavelengths of 290–315 nm in the UVB 
range, with peak conversion occurring at 295–297 nm, and 
is dependent upon season and latitude, time of day, and on 
the amount of pigment and thickness of the skin.68,69 The 
reaction becomes less efficient with advancing adult age 
because of age-dependent decline in 7-DHC in the skin.70,71 
Circulating levels of pre-vitamin D3 are tightly controlled 
because continued sunlight exposure causes the 
photoisomerisation of pre-vitamin D3 to lumisterol and 
tachysterol.72 Biologically active vitamin D3 is produced by 
two successive hydroxylation steps in the liver and then in 
the kidney to form the active metabolite 1,25(OH)2D3 
(calcitriol). This is the form that acts as a steroid hormone 
through binding to its specific intranuclear receptor, the 
vitamin D-receptor (VDR), and subsequently modulates 
the transcription of responsive genes such as that of 
calcium binding protein, which regulates mineral ion 
homeostasis.68,73 Vitamin D is also available in low quantities 
in some foods, but vitamin D3 is found in physiologically 
significant quantities in oily fish and liver.74 Dietary sources 
of vitamin D must be converted into the biologically active 
form via the same hydroxylation steps undergone by 
cutaneously produced vitamin D3. 

The most obvious function of vitamin D in humans is in 
the building and maintenance of the bony skeleton. The 
essential connection between vitamin D status and bone 
health was established because vitamin D in the form of 
cod liver oil was found to cure nutritional rickets.75 
Vitamin D exerts its effects on bone indirectly through 
regulation of absorption of calcium and phosphorus from 
the gut, and directly modifies the activity of osteoblasts 
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and chondrocytes, and many other non-classical target 
tissues.65,73 The presence of VDRs in tissues of the brain, 
heart, stomach, pancreas, skin, gonads, in the activated T 
and B lymphocytes of the immune system, and many sites 
elsewhere in the body has heightened awareness of the 
varied and important roles vitamin D plays in the body. 
Chronic deficiencies in vitamin D have been associated 
recently with breast, prostate, colon, ovarian and possibly 
other cancers,76,77 and research in this area is extremely 
active. Low vitamin D status is also linked to impaired 
immune system activity, specifically Th1-mediated 
autoimmunity and infectious immunity76 and to abnormal 
development and function of the brain.77,78 

The theory that light skin pigmentation evolved in order 
to permit cutaneous vitamin D production under 
conditions of reduced sunlight at high latitudes is an old 
one that has considerable new, positive support from 
clinical, nutritional, epidemiological, genetic and other 
observational studies.3,81,82 The extent of vitamin D’s 
importance to health is evidenced by the seriousness 
and diversity of problems related to hypovitamosis D83–85 
afflicting people throughout the life cycle. In the 
musculoskeletal system, nutritional rickets in children is 
now probably overshadowed by sarcopaenia and 
osteomalacia in adults, the latter being silent afflictions 
that can lead to increased morbidity from accidental 
falls.86 And, as mentioned earlier, vitamin D deficiency 
and insufficiency, especially beginning in infancy or 
childhood, are associated with increased, but still not 
rigorously quantified, risk of certain cancers, autoimmune 
and infectious diseases. The global disease burden linked 
to the vitamin D deficiencies caused by low UVR exposure 
now exceeds that connected with high UVR exposure.87

 
The clinical and observational evidence discussed above 
provides the setting for the probable action of natural 
selection. Genetic evidence now strongly supports this. 

Depigmentation is the result of positive selection in 
humans inhabiting low UVR environments, and this has 
been demonstrated in molecular genetic studies that 
indicate that lightly pigmented skin phenotypes in 
humans evolved multiple times and has been maintained 
by purifying selection.88,89,61

Eumelanin competes with 7-DHC for UVB photons to 
greatly slow production of pre-vitamin D3 to the extent 
that people with lightly pigmented skin produce pre-
vitamin D3 in their skin at a rate 5–10 times faster than 
those with darkly pigmented skin.3,74,90–96 This poses strict 
geographic limits on the distribution of darkly pigmented 
people outside of high UVB areas unless vitamin-D-rich 
foods or vitamin D supplements are consumed.63 Thus, 
skin pigmentation in modern humans is the result of the 
action of two reciprocal clines working to promote the 
UVB-induced photosynthesis of pre-vitamin D3 in the 
skin on the one hand and prevent the damage caused by 
UVB and UVA on the other.3,63

Members of the human lineage dispersed many times 
independently into non-tropical latitudes, and evolved 
depigmented phenotypes by numerous and different 
genetically based means, some of which remain to be 
illuminated. Habitation of middle latitudes between 
approximately 23° and 46° with seasonally high loads of 
UVB favored the evolution of partially depigmented 
phenotypes capable of tanning.63 Among people of 
European ancestry, genes related to tanning ability are 
similar to those related to hair colour.97 The genetic 
basis of skin pigmentation now is becoming better 
understood, but considerable research remains to be 
done on the relationships between skin, hair and eye 
pigmentation genes,12,98 on the convergent evolution of 
skin pigmentation phenotypes including those in the New 
World,99 and on rates of skin pigmentation evolution.
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