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Low-Level Laser Therapy Improves Vision in Patients with
Age-Related Macular Degeneration
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Abstract

Objective: The objective of this study of a case series was to examine the effects of low-level laser therapy
(LLLT) in patients with age-related macular degeneration (AMD).
Background Data: AMD affects a large proportion of the elderly population; current therapeutic options for
AMD are limited, however.
Patients and Methods: In total, 203 patients (90 men and 113 women; mean age 63.4 � 5.3 y) with beginning
(“dry”) or advanced (“wet”) forms of AMD (n � 348 eyes) were included in the study. One hundred ninety-
three patients (mean age 64.6 � 4.3 y; n � 328 eyes) with cataracts (n � 182 eyes) or without cataracts (n � 146
eyes) were treated using LLLT four times (twice per week). A semiconductor laser diode (780 nm, 7.5 mW, 292
Hz, continuous emission) was used for transconjunctival irradiation of the macula for 40 sec (0.3 J/cm2) re-
sulting in a total dose of 1.2 J/cm2. Ten patients (n � 20 eyes) with AMD received mock treatment and served
as controls. Visual acuity was measured at each visit. Data were analyzed retrospectively using a t-test.
Results: LLLT significantly improved visual acuity (p � 0.00001 versus baseline) in 162/182 (95%) of eyes with
cataracts and 142/146 (97%) of eyes without cataracts. The prevalence of metamorphopsia, scotoma, and
dyschromatopsia was reduced. In patients with wet AMD, edema and bleeding improved. The improved vi-
sion was maintained for 3–36 mo after treatment. Visual acuity in the control group remained unchanged. No
adverse effects were observed in those undergoing therapy.
Conclusion: In patients with AMD, LLLT significantly improved visual acuity without adverse side effects and
may thus help to prevent loss of vision.
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Introduction

AGE-RELATED MACULAR DEGENERATION (AMD) is the pre-
dominant cause of irreversible loss of vision in the el-

derly. AMD affects 30–50% of individuals 60 years or
older.1,2 AMD-related disability and poor quality of life are
likely to increase the socio-economic burden in the elderly
living in industrialized countries.3

AMD results from defects in the choriocapillaris, Bruch’s
membrane, and the retinal pigmented epithelium (RPE)
underneath the macula. The epitheliopathy diminishes
lysosomal activity and phagocytosis of the outer photore-
ceptors and disrupts the transportation of cell debris
through the RPE to the choriocapillaris.4 The resulting ac-
cumulation of cell debris in Bruch’s membrane leads to
thickening and hydrophobic charging of the membrane.5

This suffocates the photoreceptors and promotes fibrovas-
cular proliferation and the formation of subretinal exu-

dates. Ultimately, the decay of the retina results in loss of
vision.6

Current therapeutic approaches aim to stabilize the re-
maining vision because photoreceptor function appears to
be irreversibly lost. Treatment options, such as photody-
namic therapy, laser photocoagulation, transpupillary ther-
motherapy, ionizing radiation, and surgery have been ap-
plied with limited success in cases of exudative, advanced
AMD.7,8 These treatments may also produce collateral dam-
age of the foveal neurosensory retina and impair visual func-
tion further. At present, antioxidant and mineral dietary sup-
plements as well as anti-angiogenetic drugs are being
discussed as alternative treatment options.9–12

LLLT represents a novel therapeutic method that, other
than surgical laser applications, does not damage tissues. In
this study of a case series we investigated the effects of LLLT
in patients with AMD of all forms and stages, and varying
degrees of vision impairment.

1University of Heidelberg, Otto-Meyerhof Centre, Heidelberg, and 2Medical Centre, Munich, Germany.



Patients and Methods

Study design

This study of a case series was conducted in accordance
with the Helsinki declaration. Informed consent was ob-
tained from all patients before entry into the study. Data
were collected at a single non-institutional center in Ger-
many during a 7-year period and were evaluated retrospec-
tively.

Patients

Patients with AMD of all stages (dry to wet exudative
forms with or without cataracts) were included if their vi-
sual acuity was �20/20. Patients were excluded if they had
concomitant diseases that would impair vision except for
new cataracts, or if they had received any prior treatment
that could have affected vision; patients with visual acuity
�20/20 were also excluded.

Laser

For LLLT, a semiconductor laser diode with continuous
emission at 780 nm (7.5 mW, 292 Hz) fitted with collimating
optics (spot diameter � 3 mm) in a handheld casing was
used. The laser diode was driven by an apparatus that al-
lowed low-frequency switching of the laser beam and pro-
vided automatic power control (Bimed, Munich, Germany).

In an initial experiment, the extinction of laser light (� �
780 nm) was examined in a freshly enucleated pig eye (22 �
24 mm) to determine the lowest penetrating laser power re-
quired for the laser energy to reach the RPE and retina.
Power output was measured using a LC-U-2E power meter
(Laser Components GmbH, Olching, Germany).

Treatment

As illustrated in Fig. 1, laser radiation was applied
transconjunctivally to the macula for 40 sec (0.3 J/cm2). Dur-
ing LLLT the eye was in adduction; if necessary, the lids were
fixed manually.

Four treatments were administered (two treatments per
week) resulting in a total dose of 1.2 J/cm2. Ten patients with
AMD (n � 20 eyes) were randomly selected to receive mock
treatment (control group); the laser beam was directed above
the nose without contacting the eye. An audible signal heard
every 10 sec was interpreted by the patients as treatment.
During the treatment period, no other therapy was applied.

Measurements

Eyes were examined before inclusion, prior to each treat-
ment session, and at the end of the study. Visual acuity was
assessed by projection of American Optical optotypes
(Snellen) at a distance of 20 feet after optimal correction of
refraction with blinding. In order to avoid patient memo-
rization of the letters, only unknown optotypes were pre-
sented each time. Color vision was examined by use of a de-
saturated color test (Farnsworth D-15 series). The Amsler test
was used to screen central scotomas.

To assess treatment safety, the investigator examined the
patients’ eyes before and after each treatment session and
asked patients about their general well-being by asking non-
leading questions.

Data analysis

Data on visual acuity were analyzed by calculating the
changes in visual acuity (end of study versus baseline); data
were transformed logarithmically to allow presentation of
results as logarithmic minimal angle resolution (log MAR).
For statistical analysis, a t-test for paired observations was
used.
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FIG. 1. Diagram showing how low-level laser therapy was
given. For the right eye the laser beam was placed at a dis-
tance of 1 cm and pointed towards the macular area.

TABLE 1. EXTINCTION OF LASER LIGHT (� � 780 NM) THROUGH THE OCULAR LAYERS IN PIG’S EYE

Input laser Output laser Extinction
power, I0 (mW) Tissue(s) power, I (mW) (E � log I0/I)

10.5 Cornea 10.5 0
Lens 11.0 �0.20
Sclera 4.2 0.397
Choroidea 2.9 0.558
RPE 1.5 0.845
Retina 8.8 0.076
Conjunctiva-sclera- 0.2 1.720

choroidea-RPE-retina

RPE, retinal pigmented epithelium.
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Results

Determination of laser power

Initial experimentation on a freshly enucleated pig eye
aimed to determine the optimum power level of laser energy
to be used in this study. By using a low sub-thermal dose of
radiation (10.5 mW), only a small proportion of the energy
reached the retina (Table 1). The largest proportion was ab-
sorbed by the sclera, choroidea, and RPE. The data indicated
that a power output of 10.3 mW was required for the laser
light to pass through all layers of the eye.

Demographic characteristics

In total, 203 patients (90 men and 113 women) with AMD
of various stages (n � 348 eyes) and a mean age of 63.4 � 5.3
y were included in the study. All patients received treatment
as planned; none of the patients withdrew from the study.

One hundred ninety-three patients (mean age 64.6 � 4.3
y) were treated using LLLT; of 328 treated eyes, 146 (45%)

eyes were without cataracts, and 182 (55%) eyes were with
cataracts. Eye examination revealed that 230 eyes had drusen
or were depigmented; geographic atrophy was noted in 12
eyes. Progressive, exudative AMD was diagnosed in 86 eyes
with no other disorders. Examples of early-stage and ad-
vanced AMD are shown in Figs. 2 and 3, respectively.

The control group receiving mock treatment comprised 10
patients (20 eyes) with all stages of AMD (4 men and 6
women) with a mean age of 62.3 � 6.4 years.

Changes in visual acuity

There was a statistically significant increase in visual acu-
ity (p � 0.00001, end of study versus baseline) for both pa-
tients with and those without cataracts. The improvement in
visual acuity was maintained for 3–36 mo. By contrast, vi-
sual acuity remained unchanged in all patients in the con-
trol group.

In patients without cataracts (Table 2), visual acuity im-
proved in 142/146 eyes (97.3%; p � 0.00001): by one row of

LLLT IMPROVES VISION IN PATIENTS WITH AMD 243

FIG. 2. Right eye of a 64-year-old patient with early-stage
AMD.

FIG. 3. Fluorescein angiogram of exudative advanced
AMD in the left eye of a 62-year-old patient.

TABLE 2. VISUAL ACUITY BEFORE AND AFTER LLLT IN PATIENTS WITH AMD WITHOUT CATARACTS (N � 146 EYES)

Before therapy

Visual 20/ 20/ 20/ 20/ 20/ 20/ 20/ 20/ 20/ 20/ 20/ Log
acuity 400 200 100 80 70 60 50 40 30 25 20 MAR Sums

After 20/400 1
therapy 20/200 	1.00 2

20/100 	0.70
20/80 1 	0.60 1
20/70 	0.55 1
20/60 	0.50
20/50 2 1 	0.40 3
20/40 1 1 	0.30 2
20/30 2 3 4 1 2 1 	0.20 13
20/25 4 5 3 6 9 7 	0.10 34
20/20 1 1 4 12 31 4 	0.50 53
20/16 9 11 16 �0.10 36

Sums 1 5 4 8 10 5 13 22 47 15 16 146

Number of eyes are in bold type.
log MAR, logarithmic minimal angle resolution.

1
2

1
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optotypes in 29/146 (19.8%), by two rows in 54/146 (37.0%),
by three rows in 28/146 (19.2%), by four or five rows in
12/146 (8.2%), by six rows in 6/146 (4.1%) and by seven rows
in 1/146 (0.7%). Visual acuity remained unchanged in 4/146
eyes (2.7%).

In patients with cataracts (Table 3), visual acuity improved
in 172/182 eyes (94.5%; p � 0.00001) eyes: by one row of op-
totypes in 45/182 (24.7%), by two rows in 75/182 (41.2%),
by three rows in 25/182 (13.7%), by four rows in 16/182
(8.8%), by five rows in 7/182 (3.8%), by six rows in 3/182
(1.6%), and by seven rows in 1/182 (0.5%). Visual acuity re-
mained unchanged in 10/182 eyes (5.5%).

Changes in concomitant eye disorders

In patients treated with LLLT the improvement in visual
acuity was in most cases accompanied by a decrease in meta-

morphopsias, scotomas, and acquired dyschromatopsia (Fig.
4). In patients with wet AMD, edema and bleeding were re-
duced.

Safety and tolerability

The treatment was well tolerated. No adverse local or sys-
temic side effects were observed.

Discussion

LLLT given over 2 wk led to an improvement in visual
acuity in most patients with AMD (�90%). An increase of
three to seven rows of optotypes was observed in 52/182
(28.6%) of eyes with cataracts, and in 59/146 (40.4%) of eyes
without cataracts. Unlike other therapeutic approaches,
LLLT improved visual acuity in patients with AMD of every
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TABLE 3. VISUAL ACUITY BEFORE AND AFTER LLLT IN PATIENTS WITH AMD WITH CATARACTS (N � 182 EYES)

Before therapy

Visual 20/ 20/ 20/ 20/ 20/ 20/ 20/ 20/ 20/ 20/ 20/ Log
acuity 400 200 100 80 70 60 50 40 30 25 20 MAR Sums

After 20/400 2
therapy 20/200 3 	1.00 5

20/100 1 	0.70 1
20/80 2 1 	0.60 3
20/70 1 2 3 	0.55 7
20/60 2 3 	0.50 5
20/50 1 3 4 2 	0.40 10
20/40 1 2 2 1 2 1 	0.30 9
20/30 2 2 4 1 16 15 3 	0.20 43
20/25 1 1 2 13 7 14 	0.10 38
20/20 1 4 5 32 4 	0.50 46
20/16 10 3 �0.10 13

Sums 6 8 11 15 8 5 35 28 49 14 3 182

Number of eyes are in bold type.
log MAR, logarithmic minimal angle resolution.

2
2

1

FIG. 4. Normalization of impaired color vision in a 49-year-old patient. Farnsworth color test results (Series D-15) before
(left) and after (right) four treatments with LLLT. Visual acuity increased from 20/30 to 20/16.
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stage. The improvement in visual function was maintained
for up to 36 mo.

The results of this retrospective analysis of a case series
are encouraging, especially in light of the fact that if un-
treated, AMD inevitably leads to irreversible loss of vision.
Thus LLLT may, when initiated during the early stages of
AMD, help prevent loss of vision. LLLT may also be com-
bined with other therapeutic approaches. Although not in-
vestigated in this study, it is likely that synergistic effects
may be seen (e.g., improved outcome or shorter treatment
duration).

In addition to the improvement in visual acuity, other pos-
itive effects of LLLT were noted. Eye examinations revealed
that LLLT diminished pigment accumulations and cystic
drusen. Metamorphopsia, acquired impairments of color vi-
sion, and relative scotomas improved as well. Moreover, in
patients with wet AMD, edema and bleeding were reduced.

Treatment with laser energy at a wavelength of 780 nm
was not perceived as unpleasant and was well accepted by
the patients. No adverse effects were observed.

In general, the photochemical effects of light are mediated
through the interaction of photons and various cellular ac-
ceptor molecules. Thus, photon energy is transformed into
biochemical energy, which stimulates metabolic reactions.

LLLT may increase cellular metabolism in choroidea, RPE,
and in photoreceptors, where the energy is absorbed by pig-
ments. Regular metabolic processes may be enhanced and
repair processes may be triggered or accelerated. Recently,
an increase in the expression of heat shock proteins was
found in the retinal and choroidal layers after sub-thermal
transpupillary application of laser energy.13 Heat shock pro-
teins (or chaperones) are known to stimulate cellular me-
tabolism and may help prevent premature cell death. In in
vitro experiments, application of laser light was shown to in-
crease cellular metabolic activity, the generation of adeno-
sine triphosphate, and phagocytosis.14,15 Enhanced lysoso-
mal activity and phagocytosis of cell debris and pigments
may help to revitalize the retina.16 The detailed cellular and
molecular mechanisms underlying the biomedical effects of
laser energy in the treatment of patients with AMD have yet
to be further elucidated.

Conclusion

In conclusion, this study of a case series shows that LLLT
may be a novel therapeutic option for both early and ad-
vanced forms of AMD. This simple and highly effective treat-
ment improves visual acuity and may help to prevent loss
of vision without adverse side effects.
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