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Abstract: Vitamin D has a complex role in the pathogenesis of inflammatory bowel disease (IBD),
which is still under investigation. We conducted a literature search using PubMed through December
2018 through the use of relevant search terms. We found an abundance of evidence to support the
role of vitamin D in regulating the innate and adaptive arms of the immune system. The pathogenesis
of IBD implicates the immune dysregulation of these immune system components. Proof of concept
of the vitamin’s role in the pathogenesis of IBD is the mapping of the vitamin D receptor in a
region of chromosome 12, where IBD is also mapped, and specific VDR polymorphisms’ link to IBD
phenotypes. Further research is needed to better delineate vitamin D’s role in preventing IBD and its
potential as a therapeutic target for this disease.
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1. Introduction

Vitamin D has important roles in the regulation of bone metabolism and homeostasis; nevertheless,
emerging evidence highlights its role in immune regulation. Vitamin D insufficiency (serum 25OHD
concentration ≤20 ng/mL) and deficiency (≤15 ng/mL) are frequently found in healthy adults
and adolescents, particularly in the northern hemisphere [1]. A higher prevalence of vitamin D
insufficiency and deficiency among adults and children with inflammatory bowel disease (IBD) has
been reported [2–5], despite the existence of controversies [6,7]. The evaluation of vitamin D status
and skeletal health in pediatric IBD has been recommended, and the promotion of physical activity
may be an important measure in enhancing bone mineral density [8–11]. Diminished exposure to
sunlight, decreased oral intake, nutrient malabsorption, intestinal inflammation, and gastrointestinal
losses could be responsible for hypovitaminosis D in patients with IBD [7,11–13]. However, there is
growing evidence that vitamin D may play a significant role in the pathogenesis of IBD.

Inflammatory bowel disease (IBD) comprises idiopathic, relapsing inflammatory diseases of the
gastrointestinal tract. The pathophysiology of IBD is not completely understood, but it includes a
complex interplay between gut microbiota, immune system, and environmental factors in genetically
predisposed individuals.

The purpose of this paper is to review the role of vitamin D in the pathogenesis of inflammatory
bowel disease.
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2. Results

2.1. Vitamin D Physiology and Metabolism

Vitamin D includes a group of liposoluble hormones, such as ergocalciferol (vitamin D2) and
cholecalciferol (vitamin D3). Sufficient skin exposure to ultraviolet B (UVB) radiation can satisfy the
human requirement for vitamin D. Adequate vitamin D requirements may differ depending on age
and morbidities: optimal vitamin D levels were associated with an intake of 400–800 IU/day in the
general population [14]; specific recommendations for some diseases/conditions exist or are being
evaluated, but the relative discussion is beyond the scope of this review.

In the skin, 7-dehydrocholesterol absorbs UVB radiation and it is converted to pre-vitamin
D3 (pre-D3). Pre-D3 is then thermally converted to vitamin D3. Factors that are associated with
cutaneous production of vitamin D3 include season, latitude, time of day, skin pigmentation, aging,
and sunscreen [4]. Newly produced vitamin D3 formed in the skin, and ingested vitamin D2 or D3
(i.e., oily fish, egg yolk, supplements) binds to the plasma transport protein, vitamin D-binding protein
(DBP), in the capillary bed of the dermis and the intestinal epithelium. DBP enters the circulation and
then delivers vitamin D2 or D3 first to the liver, where it undergoes 25-hydroxylation, and then to
the kidney, where it undergoes 1-hydroxylation [15]. 1,25-dihydroxy-vitamin D (1,25(OH)2D) is the
active metabolite of the vitamin, whose action affects several (>30) tissues [16]. 1,25(OH)2D binds to
the cellular vitamin D receptor (VDR), which then intracellularly migrates, producing an intracellular
signaling cascade with resulting effects on various cytokine pathways. VDR expression occurs in
several cells, including immune cells [17]. The most abundant metabolite in the human body, measured
to assess vitamin D status, is 25OHD [15].

2.2. Inflammatory Bowel Disease

IBD is characterized by variable degrees of inflammation of the small bowel and/or colon,
thereby presenting several clinical characteristics, including recurrent abdominal pain, gastrointestinal
bleeding, diarrhea, and extraintestinal manifestations. Subtypes of this heterogeneous group of
disorders are Crohn’s disease (CD) and ulcerative colitis (UC). While CD can affect the entire
gastrointestinal tract, from mouth to anus, the most frequently involved parts are the terminal ileum
and colon. Inflammation in CD is usually transmural and often discontinuous, resulting in patchy
inflammatory lesions in the gastrointestinal (GI) tract. Ulcerative colitis (UC) is mostly restricted to
the rectum, colon, and cecum. UC involves continuous mucosal inflammation that is confined to the
colon [17].

Studies have shown a north-south gradient for IBD, as patients who live in northern regions,
with low sunlight exposure, have a higher incidence of IBD and possibly lower vitamin D levels.
However, vitamin D levels may just represent a marker of sunlight exposure and they may vary
according to inflammation (i.e. C reactive protein level) and albumin levels [17].

Immunological investigations showed that Crohn’s disease (CD) is a predominately Th1 and
Th17 mediated process, whereas ulcerative colitis (UC) is predominately mediated by Th2 and NK
T-cells [18]. Several cytokines, such as IFN-γ, IL-12, and TNF-α are increased in CD.

Immune cells express VDRs and the enzymes that are necessary to convert vitamin D3 (25(OH)D)
into 1,25(OH)2D; it has been reported that locally produced 1,25(OH)2D can exert specific autocrine
and paracrine effects without producing systemic effects [19]. 1,25(OH)2D can modulate the adaptive
immune response by altering the actions of activated T and B cells, and it can also modulate the innate
immune response by regulating macrophages and dendritic cells maturation and function [19]. Thus,
the role of vitamin D and its receptor appears to be of paramount importance for the pathogenesis
of immune mediated conditions, such as IBD; we will review and present available evidence in
this regard.
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2.3. Vitamin D and Immune Function

Vitamin D3 has important immunoregulatory roles in the inflammatory and inhibitory markers
of inflammatory bowel diseases.

When an antigen binds to the receptor site of antigen presenting cells (APCs: dendritic cell, macrophages,
monocyte), the APCs stimulate naïve T-cells. Upon stimulation, the naïve T-cells differentiate into
effector T-cells and regulatory T-cells (T-reg). The effector T-cells, under the influence of cytokines,
such as IL-12, IL-4, and IL-23, further differentiate into Th1, Th2, and Th17. Th1 and Th17 cells have
pro-inflammatory activities, whereas the Th2 subsets produce inhibitory cytokines. Uncontrolled
production of pro-inflammatory cytokines from Th1 and Th17 subsets of T-cells is crucial for the
development of various autoimmune conditions, such as inflammatory bowel diseases [18].

Group 3 innate lymphoid cells (ILC3) are tissue resident innate lymphocytes, which functionally
act as Th17/22 cells in an adaptive immune system. In the healthy intestine, the most prevalent ILC3
type is IL-22-expressing natural killer cells, while IL-17- and IFN-γ-producing cells (in addition to
ILC1) accumulate in the inflamed gut [20]. Konya et al. reported that IL-23 plus IL-1β render human
ILC3 responsive to vitamin D by upregulating VDR [21]. They found that vitamin D reprograms
ILC3 by downregulating the IL-23R pathway while also promoting the production of IL-1β-inducible
cytokines. Thus, 1,25D may serve as a therapeutic agent that inhibits the IL-23R pathway in IBD [21].

Binding of Lipopolysaccharide (LPS) to Toll-like receptor 4 (TLR4) on monocytes leads
to the activation of mitogen-activated protein kinase (MAPK). MAPK are critical regulators of
pro-inflammatory cytokine production, including IL-6 and TNF-α. The finding (among others) that
treatment of LPS-stimulated human blood monocyte with 1,25(OH)2D was found to inhibit the release
of IL-1α, IL-6, and TNF-α through the up-regulation of MAPK phosphatase-1 highlights the potential
therapeutic effect of vitamin D [22].

Antigen presenting cells, such as dendritic cells (DCs), are also important in inducing CD4+ T
cell responses. Vitamin D3 may inhibit monocyte differentiation into DCs, and also maturation and
immunostimulatory activity of DCs in vitro by inhibiting IL-12 production from DCs and upregulating
IL-10 production [23,24]. Therefore, the stimulation of T-cell proliferation by DCs is inhibited. In vitro
studies showed that vitamin D3 is one of the most powerful blockers of DC differentiation and IL-12
secretion, with resulting inhibition of T cell activation [25,26].

Macrophages are important APCs that clear apoptotic or senescent cells, and they are involved
in repairing and remodeling tissue during wound healing. Impaired macrophage tolerance against
dietary antigens and commensal microbiota is an important factor in the pathogenesis of IBD [27].
The two major subtypes are M1 and M2. M1 activity inhibits cell proliferation and it is associated
with tissue damage, whereas M2 activity may enhance cell proliferation and facilitate tissue repair.
Dionne et al. investigated the role of vitamin D on macrophage function and found that the M1 and M2
markers were not differentially modulated by 1,25D [28]. In their study, macrophages from CD patients
were compared to those from controls, and no differences at the functional or phenotypical level were
demonstrated. 1,25D administration decreased the production of pro-inflammatory cytokines by M1
cells, but it did not facilitate polarization to the anti-inflammatory M2 phenotype [28]. In contrast,
Zhu et al. reported that the administration of 1,25(OH)2D reduces miR-125b expression and M2
macrophage [29]. Furthermore, 1,25(OH)2D pretreatment ameliorated colitis by restoring the lamina
propria macrophage subtype balance [29].

Vitamin D may control TLR4-mediated inflammation in autoimmune diseases through the
regulation of microRNAs (miRNAs). MicroRNAs are small noncoding RNAs that control gene
expression. In particular, miRNA-155 has been shown to regulate the innate immune responses
and TLR signaling through the regulation of several factors, including proteins that are involved in
LPS signaling, such as the Fas-associated death domain protein (FADD) and IkappaB kinase epsilon
(IKKepsilon) [30].

In IBD, the increased production of IFN-γ and TNF-α suppresses the epithelial barrier function,
resulting in intestinal mucosal permeability [31]. TNF-α is a central cytokine in the pathogenesis of
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inflammatory bowel disease and vitamin D3 has been shown to target these inflammatory pathways
in vitro, indicating a potential therapeutic role of vitamin D in IBD [32].

Another mechanism of action that is shown by vitamin D3 in Crohn’s disease is the enhanced
ability of T cells to upregulate programmed death-1 receptor (PD-1) and the reduction of CD69
expression—a marker of T cell activation [33]. Activated T cells, B cells, and Natural Killer cells express
PD-1 receptor, and it promotes immune tolerance through different mechanisms, such as the inhibition
of T cell function, survival, and activation.

Alterations of the fecal microbiome may be another mechanism through which vitamin D
influences the risk of developing IBD, as shown by preliminary studies in rat models [34]. In a
small interventional study, Schäffler et al. found that, in contrast to healthy controls, the administration
of vitamin D to patients with CD was associated with changes in bacterial intestinal flora, which
are particularly evident after one week: the typical bacteria shifted from Betaproteobacteria to
Bacteroidetes [35]. However, a further increase of the vitamin D level over three weeks was associated
with a reversal of this effect and with a decreased bacterial diversity in the CD microbiome [35]. The
authors could not explain the mechanisms for the observed shift in bacterial communities and change
in microbiota diversity; they hypothesized that there could be an optimal vitamin D “window” of
administration and dose that may be beneficial for CD patients.

2.4. VDR Gene and IBD

The VDR gene is located in a chromosome 12 region that has been linked to IBD by genome
screening techniques. Genetic variation might alter the binding affinity of the vitamin D VDR and it
was associated with immune and inflammatory disease, including IBD [36].

Vitamin D and VDR are thought to protect the intestine from damage by several mechanisms,
which can be grouped into two main chapters: maintenance of epithelial barrier function and decreased
mucosal inflammation [37]. Du et al. showed that 1,25(OH)2D3-VDR signaling preserves the mucosal
barrier integrity by halting tight junction dysregulation due to myosin light chain kinase (MLCK) in
a cell model of active ulcerative colitis [38]. Increases in tight junction permeability occur in early
disease stage and promote disease initiation, whereas disease progression may depend on tight
junction-independent barrier loss (i.e., due to epithelial cell apoptosis). Other studies showed that,
in intestinal biopsies from IBD patients, the mucosal VDR levels are reduced, which is probably due
to TNF-α-induced increase of miR-346 (a factor influencing VDR translation in epithelial cells) [39–41].
In another experimental study, gut epithelial VDR deletion resulted in impaired epithelial cell apoptosis
and increased mucosal barrier permeability; eventually, invading luminal bacteria activated mucosal
TH1 and TH17 responses [42]. Furthermore, Stio et al. reported that claudin-1 and claudin-2
proteins (tight junction proteins that are involved in the regulation of paracellular permeability)
were up-regulated in active UC [43]. The administration of 1,25(OH)2D3 decreased claudin-1 and
claudin-2 protein levels either in inflamed and non-inflamed biopsies, suggesting a potential role of
vitamin D for the treatment of active UC [43]. Zhang et al. showed that Claudin-2 gene is a direct
target of transcription factor VDR (Claudin-2 was up-regulated by over-expressed VDR), and that,
in biopsies from active UC patients, VDR expression was low and Claudin-2 was increased [44,45].
Increased Claudin-2 was associated with more severe intestinal leakage, enhanced permeability, and
inflammation in vitamin D receptor knockout mice.

In colonic mucosal samples from IBD patients as compared to controls, VDR expression was
down-regulated, whereas vitamin D1-α hydroxylase (CYP27B1) expression was increased [46].
Experimental studies showed that inactivation of the VDR in macrophages and granulocytes resulted
in increased pro-inflammatory cytokine production, although marginally affecting colitis-associated
symptoms [47].

In a small case-control study, Abreu-Delgado et al. studied the relationship between serum
vitamin D levels, mucosal vitamin D receptor (VDR) expression, and histologic disease activity [48].
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They reported that vitamin D levels were positively associated with mucosal VDR expression in
non-inflamed mucosa and that colonic VDR expression was decreased in inflamed mucosa.

With regard to VDR polymorphisms, several studies have highlighted associations between
specific polymorphisms and IBD. Xue et al. (2013) performed meta-analyses and examined VDR
polymorphisms (Taql, Bsml, Fokl, and Apal) in different populations [49]. The authors found that: in
Asians, the Fokl ff genotype was associated with an increased risk of UC (OR = 1.65; 95% CI, 1.11–2.45)
and that the “a” allele of the Apal polymorphism was protective against CD (OR = 0.81; 95% CI,
0.67–0.97); in Europeans, the Taql tt genotype was associated with increased risk of CD (OR = 1.23;
95% CI, 1.02–1.49) and (in males) with increased risk of UC (OR = 1.56; 95% CI, 1.02–2.39) and CD
(OR = 1.84; 95% CI, 1.19–2.83) [49].

Simmons et al. (2000) compared Taql polymorphism between 158 UC patients, 245 CD patients,
and 164 cadaveric renal allograft donor controls and found a higher frequency of the tt genotype in
CD patients (frequency 0.22) when compared to UC patients (0.12) or controls (0.12) (odds ratio 1.99;
95% confidence interval [CI] 1.14–3.47; p = 0.017) [50].

In another study that was conducted in an Ashkenazi Jewish population in which the Bsml VDR
polymorphism was assessed, the frequency of the BB genotype was higher in UC patients than the
controls (0.21 vs. 0.11 p = 0.042, odds ratio 2.27, (95% confidence interval [CI] 1.06–4.9) [51]. Other
authors found a probable association with the ff genotype of the Fokl polymorphism (p < 0.001 in
Iranian CD patients) [52].

In a Korean case-control study and meta-analysis that aimed at evaluating the association between
VDR FokI polymorphisms and colorectal diseases, Cho et al. reported increased risk of IBD among
individuals carrying the FokI f allele when compared to those carrying the F allele [53].

Other studies reported a correlation between VDR polymorphisms and clinical characteristics
of IBD. For example, Gisbert-Ferrándiz et al. found that CD patients who were homozygous for
a single nucleotide polymorphism (SNP)—rs731236—presented with lower VDR protein levels in
circulating mononuclear cells, increased IL1β mRNA levels, and enhanced expression of lymphocytic
adhesion molecules [54]. These patients had a higher risk of developing the peculiar penetrating CD
phenotype and a higher risk of IBD-related surgery. Zheng et al. examined the association between
VDR polymorphisms and the serum level of 25-hydroxyvitamin D in a Chinese Han population
of UC and controls; they found a significant correlation between FokI polymorphism and vitamin
D deficiency (<20 ng/mL) in UC patients, and between such polymorphism and UC severity of
disease [55]. In contrast, BsmI polymorphism and the frequency of the AAC haplotype formed by
BsmI, ApaI and TaqI were significantly lower in UC compared with controls.

VDR is also a transcription factor. The target genes of VDR include anti-microbial peptide (AMPs)
cathelicidin antimicrobial peptide, β-defensin, and the 1,25(OH)2D3-regulated VDR-specific, Cyp24
hydroxylase gene. VDR deletions exacerbate colitis through activation of the NF-κB pathway. Wu et al.
showed that VDR is an important regulator of intestinal homeostasis and it is involved in several
functions, such as autophagy, intestinal microbiome composition and variations, and innate immunity
(particularly Paneth cells)—all of the factors that have been implicated in the pathogenesis of IBD [56].
There are important interactions between vitamin D, VDR, and intestinal microbiome that still have to
be fully elucidated.

Importantly, a reduced level of VDR expression in colonic mucosa in UC has been associated with
an increased risk of carcinogenesis [57]. Thus, it is likely that VDR may represent a marker of mucosa
dysplasia and cancer in UC patients, and that it could potentially be useful in patients surveillance
and tumor prevention.

2.5. Vitamin D binding Protein

Free 25OHD is transported in the blood that is mainly linked to the vitamin D Binding Protein
(VDBP) (85% to 90%). The VDBP gene is subject to polymorphism, leading to variants with differing
affinity for both 25(OH)D and 1,25(OH)2D [58]. The VDBP variants have been consistently correlated
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with circulating 25(OH)D and VDBP concentrations. Furthermore, VDBP has unique roles in actin
scavenging and in neutrophil chemotaxis, and it is less subject to seasonal variation when compared
with total 25(OH)D. Thus, investigating VDBP is important when considering the effect of vitamin D
metabolism in health and disease.

Some authors found that VDBP levels were inversely correlated with inflammation in pediatric
IBD, and it is speculated that the underlying reasons were reduced liver production and/or intestinal
losses [5].

Ghaly et al. found that higher VDBP concentrations were significantly associated with IBD flare,
independent of season, sex, age, ethnicity, treatment type, smoking status, and mode of remission
induction [59].

In a Swiss population, Eloranta et al. compared the frequency of two single nucleotide polymorphisms
(SNp) of Vitamin D Binding protein (DBP) between IBD patients and controls, and they found that the
DBP 420 variant Lys was less frequent in IBD cases. Moreover, the DBP 416 polymorphism was not
associated with IBD, and the haplotype that consisted of 416 Asp and 420 Lys was more frequent in
the controls than in UC patients [60].

3. Discussion

Vitamin D is a pleotropic hormone with a pivotal role in the regulation of the immune system. Its
role in the pathogenesis of IBD is probably complex and involves several aspects of the immune system:

• the innate immune system, where vitamin D promotes balance of macrophage subtypes,
inhibits excessive stimulation of T-cells by dendritic cells, and promotes epithelial barrier
integrity [23–31,38–45]; and,

• the adaptive immune system, where vitamin D downregulates proinflammatory pathways,
such as the IL-23R pathway and the TNF-α and IFN-γ pathways [21–23,26–28,33].

It is known that the disruption in the balance between regulatory and proinflammatory pathways
of the immune system, as well as a compromise in the epithelial barrier integrity, is the basis for
the pathogenesis of IBD, thus underlying the importance and the potential role of vitamin D in this
disorder. Vitamin D exerts other important effects on intestinal microbiome [34,35], and further
research is needed to better elucidate this issue.

As proof of concept for the role of vitamin D in the pathogenesis of IBD, the vitamin D receptor
gene maps to a region of chromosome 12, which is also linked to IBD [36]. Moreover, polymorphisms
of the vitamin D receptor have been linked to IBD phenotypes, pointing toward a relationship between
altered affinity of vitamin D to its receptor and IBD [49–55].

Further research is warranted to examine whether deficiency of the circulating vitamin D
metabolites, a disruption of any of the steps in vitamin D homeostasis, or a defect in its interaction with
its receptor could play a role in immune dysregulation, leading to the pathogenesis of IBD. Furthermore,
additional research may uncover actions of Vitamin D, thereby leading to novel therapeutic targets
and therapies (less toxic than current).

4. Materials and Methods

We conducted a literature search using PubMed through December 2018. We used the following
search terms: “inflammatory bowel disease”, “ulcerative colitis” and “Crohn’s disease”, “Vitamin
D”, “Vitamin D receptor”, “Vitamin D binding protein”, “Vitamin D receptor polymorphism”,
“inflammatory cytokines”, and “immune response”. The search terms included both MeSH terms
and text words. To identify any additional studies, we also screened the references of the retrieved
publications. This search was limited to human studies and publications written in English. We did
not consider abstracts or unpublished reports. The search was conducted using these terms in the
keywords, abstracts, and titles.
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The aims of this review were to assess the role of vitamin D on immune cells, intestinal epithelium
and cytokine profile in patients with IBD, and to describe VDR associations, polymorphisms, and
mechanism of action in this population.
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