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Abstract
Background/Objectives Optimal doses of vitamin D (VitD) supplement in different populations are unclear. We aim to
evaluate the relationship between VitD supplementation and post-intervention serum 25-hydroxyvitamin D [25(OH)D]
concentration, to provide a recommended dosage of VitD for achieving an optimal 25(OH)D concentration for different
populations.
Subjects/Methods Literature search was conducted in Embase, etc. Randomized controlled trials about VitD supplemental
intakes and their effect on 25(OH)D concentration were enrolled. The effect on 25(OH)D concentration between different
supplementation doses in each population group was compared by meta-analysis. Multivariate meta-regression model is
utilized to establish reference intake dosage of VitD.
Results A total of 136 articles were included about children (3–17 years), adults (18–64 years), postmenopausal women, the
elderly ( >64 years), pregnant, or lactating women. Overall, intervention groups obtained higher 25(OH)D concentration than
controls and there was obvious dose–response effect between intake dose and 25(OH)D concentration. Baseline 25(OH)D
concentration and age were significant indicators for 25(OH)D concentration. To reach sufficient 25(OH)D concentration
(75 nmol/L), the recommended VitD supplemental intakes was 1340 and 2250 IU/day for children and pregnant women,
2519 and 797 IU/day for European adults aged 18–64 and 65–85 years, 729, 2026, and 1229 IU/day for adults in North
America, Asia and Middle East and Africa, respectively.
Conclusions Regional- and age-specific recommended dosages of VitD supplements for population to achieve optimal 25
(OH)D concentrations have been suggested.

Introduction

Vitamin D (VitD) deficiency (25-hydroxyvitamin D [25
(OH)D] concentration < 50 nmol/L) is a widespread public

health problem in all populations [1] as currently defined
and the recommendations on VitD deficiency (25(OH)D
concentration < 50 nmol/L) and insufficiency (25(OH)D
concentration: 50–75 nmol/L) [2–4], VitD deficiency is
highly common even in regions with abundant sunshine [5].
It has been estimated that 34–86% of Asian, Indian, and
United Arab Emirates (UAE) adults and 40.4% of Eur-
opeans are VitD deficient and dark-skinned ethnic sub-
groups shared 3- to 71-fold prevalence than the White
populations [6–11]. Pregnant women and children are also
at risk of deficiency and insufficiency similarly. In a meta-
analysis consisted of 13 cohort studies in seven countries,
the prevalence of VitD deficiency during pregnancy varied
from 13.2 to 77.3% [12]. In China, 23.3% of children and
38.7% of preterm infants suffered from insufficient VitD
status [13, 14]. Due to reduced estrogen levels and other
hormonal changes, postmenopausal women are particularly
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prone to develop low serum 25(OH)D concentrations [15,
16]. The prevalence of VitD deficiency in postmenopausal
women has been reported to be between 31 and 70% [17].
Data from arid and semi-arid regions also serve to
strengthen the notion that, in postmenopausal women, the
abundance of sunlight does not prevent VitD deficiency
irrespective of age group [18]. Experimental data from
randomized controlled trials (RCTs) also showed that there
may be a gender difference of the effect of VitD supple-
mentation on bone loss [19–21].

The vast majority of VitD come from the cutaneous
synthesis by sun exposure [22], inadequacy of sunlight
exposure counts for the major cause of low VitD status.
Meanwhile, other factors are also significantly associated
with VitD deficiency, such as female gender, older age, low
economic class, non-white ethnicity, high latitude, obesity,
less outdoor activity, low income support, and dietary
intake [9, 23, 24]. Baseline 25(OH)D concentration and
geographical region are significantly associated with the
effects of VitD supplementation on achieved 25(OH)D
concentration [25]. A review focused on VitD status based
on serum concentrations of 25(OH)D including 117 studies
from 27 regions found large regional variations in young
adults and the elderly [26]. However, relationship between
25(OH)D concentration and northern latitude was con-
troversial [27]. In Thailand, subjects residing in the southern
parts of the country had lower 25(OH)D concentrations than
those residing in the northern region. The finding conflicts
with a European study that showed a positive relationship
between 25(OH)D concentration and latitude that subjects
residing in southern parts had higher 25(OH)D concentra-
tion [27, 28]. Insufficient 25(OH)D concentration (50–75
nmol/L) can cause rickets in children and osteomalacia in
adults. In addition, it also increased the risk of diabetes,
depression, preterm birth, asthma, schizophrenia, and
autoimmune disorders [29–34]. So far, VitD supplementa-
tion is an appropriate approach to prevent or correct VitD
deficiency [35]. However, in spite of the high prevalence of
VitD deficiency, an escalating trend for hypervitaminosis D
has been disclosed in both developed and developing
countries [6, 36, 37], which is adding to the difficulties of
solving, or at least minimizing this global health issue.
Hence, identification of optimal supplemental dosages of
VitD is a key point.

The guidelines of dietary reference intakes of VitD for
adequacy constructed by many organizations, such as
Institute of Medicine (IOM) [38] and the Endocrine Society
Clinical Practice Guidelines [39] developed for Americans
and Canadians, are based on the dose–response relation-
ships for VitD and bone health. However, one review
conducted by Seamans and Cashman [40] suggested that

whole-body or lumbar spine bone mineral density (BMD)
may be a useful biomarker in older people but not in ado-
lescents, which may suggest that bone health is not an ideal
biomarker of VitD status. Meanwhile, there are many
reviews that have evaluated the effect of supplementation
with different VitD doses on the change of 25(OH)D con-
centration in different population groups [38, 39, 41–47].
However, most of them focus on the population in a certain
region, age-bracket and latitude, and few of them have
provided the optimal VitD supplementation dose for dif-
ferent population. To our knowledge, there is no study that
has investigated optimal VitD supplementation doses for
different populations worldwide and existing guidelines for
VitD supplementation are based merely on single specific
health issue, for instance, bone health and cancer; also,
studies included in those reviews were not exclusively
RCTs, while reviews of RCTs are best able to generate the
information needed.

In this systematic review, we aimed to identify relevant
RCTs of VitD supplementation and analyze the association
between VitD dose and serum 25(OH)D concentration, to
estimate optimal supplemental doses of VitD3 for achieving
sufficient circulating 25(OH)D concentrations (75 nmol/L)
and prevent VitD deficiency for different populations at the
global and regional levels. Furthermore, the effect of lati-
tude, season, age, body mass index (BMI), the type of VitD
given (VitD2 or D3, with or without calcium supplementa-
tion) and frequency of VitD supplements, duration of
administration on serum 25(OH)D concentration were
investigated.

Methods

Search strategy

The protocol used was based on PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Ana-
lyses) guidelines [48]. The methodology implemented in
this systematic review and meta-regression study was in
accordance with the general methods in the Cochrane group
guidelines [49]. A comprehensive literature search was
conducted in databases including Embase, PubMed,
Cochrane library, Popline, and Global Index Medicus up to
October 2018 without language restriction (appendix 3).
MeSH terms and keywords related to VitD and RCT were
applied. Additional trials were identified by searching trial
registries, including the WHO International Clinical Trials
Registry (ICTRP) and the ClinicalTrials.gov, and the
references lists of recent systematic reviews on VitD trials
were also screened.

M. Mo et al.



Eligibility criteria

Inclusion criteria: RCTs conducted in apparently healthy,
community-dwelling individuals of both sexes, including
children, pregnant or lactating women and adults, or
patients with mild diseases with no known effects on VitD
metabolism; RCTs administering VitD2 or D3, of any dose,
with or without calcium supplementation, with intervals of
VitD intake of <1 month, and for a minimum duration of
8 weeks were included in our study. Exclusion criteria:
studies conducted in children with rickets or in adults with
osteomalacia, or in individuals with chronic diseases
(chronic kidney disease, liver disease and heart failure), or
with conditions or drug therapy that might affect VitD
metabolism, VitD binding proteins or VitD metabolism;
studies administering VitD supplementation intervals longer
than 1 month, in fortified foods, as activated metabolites, or
given intramuscularly were excluded.

Data extraction and quality assessment

A data extraction record form was prepared and used to
document the key information, including first author, jour-
nal name, year of publication, setting, location (country,
city, and latitude), intervention details (type of VitD use,
dose, frequency, start time/season, and end time/season,
duration), concomitant calcium supplementation or not,
number of participants per arm, age, BMI, baseline and
post-intervention 25(OH)D concentration and assay
method. For pregnant women, gestational week was iden-
tified. Corresponding means and standard deviations (SDs)
of each arm were also extracted. Other statistical variable
data like median and interquartile range (IQR) were con-
verted to means and SDs [49]. For studies with large sample
and data of symmetric distribution, the median is very
similar to the mean and the width of the quartile spacing is
about 1.35 times of SD. For studies with small sample size
or data of asymmetric distribution, several formulas were
used to estimate the mean and SD for different sample size
from median, range, and IQR [50]. The Jadad scale was
used to assess the quality of included studies in three
domains (randomization, blinding and withdrawals and
dropouts) [51].

Covariates assessment

Covariates were assessed by the following methods: season
was divided into five categories according to changes in
sunshine intensity from abundance to scarcity, and from
scarcity to abundance for of both the season of starting and
ending the supplementation. If the study started and ended
in seasons with abundant sunshine (summer and autumn),
they were assigned a value of “1”; for studies carried out

from abundant to inadequate sunshine, “2”, from inadequate
to abundant sunshine, “3”, and from inadequate to inade-
quate, “4”. With missing data, either for season of starting,
stopping or both, they assigned a “5”. For supplementation
frequency, the assigned value for “daily” was “1” and
others, “0”. Concomitant Ca supplementation was assigned
“1”, whereas no Ca supplementation was “0”. Latitude
was classified into three classes of low (≤23.5°), medium
(23.5°–40°) and high (≥40°). For pregnant women, the
gestational stage at which supplementation began and ended
were noted using the relevant trimester. Producing five
categories [first trimester to delivery, second to third tri-
mester, second trimester to delivery, second trimester
to postpartum and third trimester to delivery], numbered “1”
to “5”, respectively. 25(OH)D concentrations that were
reported in ng/mL were transformed into nmol/L [1 ng/mL
= 4 nmol/L] and VitD dose was recorded as IU according to
IOM usage. Full-text references for inclusion, data extrac-
tion, and quality assessment were screened by a team of
three reviewers (Minjia Mo, Shijie Wang, Zun Chen) in
duplicate and independently. Discrepancies were resolved
by discussion or in consultation with an independent expert
(Yunxian Yu).

Statistical analysis

We conducted a random meta-analysis with at least two
studies included in each population for the outcome of post-
intervention 25(OH)D concentration. Weighted mean dif-
ference (WMD) and 95% confidence interval (CI) were
calculated and presented as forest plots. The heterogeneity
between studies was assessed using I2. The degree of het-
erogeneity was classified as low (I2 < 25%), moderate (I2

25–75%), or high (I2 > 75%), respectively. For comparison
purposes, we calculated the weighted mean (WM) of the
VitD dose and 25(OH)D concentrations for different dosage
groups.

The baseline VitD status was classified as sufficiency (25
(OH)D concentration ≥ 75 nmol/L), insufficiency (25(OH)D
concentration: 50–75 nmol/L), and deficiency (25(OH)D
concentration < 50 nmol/L) according to recent definitions
and guidance [2–4]. Subgroup meta-analysis was conducted
within each baseline VitD status of potential sources of
heterogeneity: intervention dose, defined as low vs. mod-
erate, moderate vs. high and low vs. high. As the supple-
mentary dose varied in different studies, as well as dosing
frequency, it was calculated in days and divided into three
categories. With low (<800 IU), moderate (800–1600 IU),
or high (>1600 IU) daily dose of VitD for children and low
(<1500 IU), moderate (1500–3000 IU), or high (>3000 IU)
for adults (including pregnant and lactating women, post-
menopausal women, adults and elderly). Additional cov-
ariates included different population groups (children and
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pregnant and lactating women, postmenopausal women,
adults and elderly) and geographical region (Asia, Europe,
Middle East and Africa, Latin America, North America,
Oceania, and Polar).

When more than one intervention arm from the same trial
and same dosage group appeared in the meta-analysis, we
aggregated them and used them as one intervention–control
comparison according to the Cochrane Collaboration’s tool.
To compare the effect of VitD supplementation on 25(OH)
D concentration in different dosages among the same
population group, we calculated the increment of achieved
25(OH)D concentration (nmol/L) per 100 IU/day VitD in
the low-, moderate-, and high-dose groups based on the
WM of both VitD dose and baseline 25(OH)D
concentration.

To recommend optimum supplementary doses of VitD to
achieve sufficient VitD status [25(OH)D concentrations of
75 nmol/L], we fitted meta-regression models with adjust-
ment for multiple covariates for the prediction of linear
change in 25(OH)D concentration from at least 10 studies
(study or study arms) in analysis [52]. Summary estimates
using supplementation doses and other significant covari-
ates were estimated and linear relationships of supplemental
VitD dose and other predictive indicators (such as age,
baseline 25(OH)D concentration) to achieved 25(OH)D
concentration were produced. The influence of various
covariates such as mean age, supplementation duration and
baseline 25(OH)D concentration on heterogeneity and
summary results were also tested through meta-regression
[53]. Selection of the better models for these estimates were
based on both statistical and clinical factors; statistical
selection was based on changes in residual between-study
variance [53], with the lowest Akaike information criterion
indicating greatest explanation of the total variability in data
[54]. On the clinical side, a predictive model had to include
the baseline 25(OH)D concentration because changes in
concentrations are usually smaller in subjects with higher
baseline concentrations [55]. Standard error (SE) was used
to gauge within-study variability based on SD data for each
study arm. With the meta-regression model, we evaluated
the relationship between VitD dose and achieved 25(OH)D
concentration, as well as comparing the effect of latitude,
season, age, BMI, concomitant Ca supplementation, VitD
given (D3 OR D2), frequency, and duration of supplemented
VitD on achieved 25(OH)D concentration. Through meta-
regression, equations based on the linear relationship
between achieved 25(OH)D concentration and other cov-
ariates such as mean age, supplementation dosage and
baseline 25(OH)D concentration were produced for differ-
ent populations and geographical regions. Recommended
dietary intakes or daily doses of VitD for different popu-
lations or regional groups were estimated from the equa-
tions resulting from the use of inverse regression.

Sensitivity analysis was conducted according to age,
location, latitude, VitD supplementation dose, and baseline
25(OH)D concentration. In addition, for each analysis with
at least 10 studies, publication bias was assessed by visual
inspection of funnel plots (Figure S1–S4; appendix 1). All
statistical analyses were processed with Stata 12.0 and the
results were considered significant at a p-value < 0.05

Results

In total, 102,781 articles were identified through the stated
search strategy, and 84,178 remained after removal of
duplicates. After screening, the titles and abstracts of 1209
references were selected, using the stated inclusion and
exclusion criteria, as potentially eligible studies. Finally,
136 RCTs including 20,884 participants were enrolled in
this study (Fig. 1). The basic characteristics of the 136
RCTs are listed in Supplementary Table 1 (Table S1). There
were 19 studies in children (mean age 3–17 years), 68 in
adults (mean age 18–64 years), 16 in postmenopausal
women, 14 in the elderly (mean age >64 years), 5 in lac-
tating women, 12 in pregnant women, 1 in both children
and adults, and 1 in both adults and the elderly. Based on
the latitude and sun exposure, the studies were from seven
regions, including Asia (n= 17), Europe (n= 52), Middle
East and Africa (n= 14), Latin America (n= 5), North
America (n= 32), Oceania (n= 15), and Polar (n= 1).

The effect on post-intervention serum 25(OH)D
concentration among children (3–17 years)

Eight trials [56–63] had been performed in Europe, five
[64–68] in North America, three [69–71] in Middle East
and Africa, one [72] in Australia, and three [73–75] in Asia.
The number of participants was 880 and 2958 in the control
and intervention groups, respectively. The WM doses of
low, moderate, and high-dose groups were 403.5, 938.9,
and 2235.6 IU/day (Table 1). The WM baseline 25(OH)D
concentrations and WM increments in 25(OH)D con-
centration per 100 IU/day VitD were 60.6, 46.7, 69.1 nmol/
L, and 1.6, 2.1, 1.4 nmol/L in the low, moderate, and high-
dose groups, respectively (Table 1). There were obvious
dose–response effects for intake doses of VitD on blood 25
(OH)D concentration. In sub-analyses, similar results were
observed (Figure S1–S8; appendix 2).

The effect on post-intervention serum 25(OH)D
concentration among adults (18–64 years)

Totally 68 studies were eligible including 8 [76–83] in
China, India, Japan, and Malaysia; 29 [61, 84–111] in
Europe; 7 [112–118] in Iran and UAE; 15 [119–133] in the
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United States (US) and Canada; 8 [134–141] in Australia
and New Zealand, and 1 [142] in Antarctica. Total number
of participants in the control, low-, moderate-, and high-
dose groups were 2734, 1571, 1482, and 1240, respectively.
A dose–response effect was also observed between intake
doses of VitD and serum 25(OH)D concentration (Figure
S9–S21; appendix 2). The WM baseline 25(OH)D con-
centration and dose were 51.9, 47.9, and 39.9 nmol/L and
737.2, 2213.9, and 4332.7 IU/day for the low-, moderate-
and high-dose groups, respectively (Table 1). The WM
increments in serum 25(OH)D concentration per 100 IU/day
VitD were 2.1, 1.8, and 1.3 nmol/L in these three groups,
respectively (Table 1).

A comparison between low dose vs. placebo in subjects
with 25(OH)D concentration defining deficiency at baseline
was performed and the effect at different latitudes were
evaluated by subgroup meta-analysis. The WM difference
of achieved 25(OH)D concentration between low dose vs.
placebo was 30.4 (95% CI: 25.7, 35) nmol/L (I2= 96.7%,
p < 0.001). And for subjects in moderate and high latitude
regions, the WM difference was, respectively, 24.9 (95%
CI: 16.4, 33.4) nmol/L (I2= 81.4%, p= 0.005) and 31.6

(95% CI: 24.1, 39.1) nmol/L (I2= 97.5%, p < 0.001)
(Figs. 2, 3).

The effect on post-intervention serum 25(OH)D
concentration among postmenopausal women

Sixteen eligible studies with 1920 participants in the control
and 2935 in intervention groups were identified with two
in Asia [143, 144], three in Latin America [145–147],
six in Europe [148–153], and five in North America (US)
[154–158]. In general, the results for increases in serum 25
(OH)D concentration were similar to those of children, as
well as adults (Figure S22 and S23; appendix 2). Significant
heterogeneity was found in the comparison of low dose vs.
placebo with deficient baseline 25(OH)D concentration.
The WM dose of low, moderate and high groups were
902.74, 1852, and 4310.87 IU/day, respectively (Table 1).
The WM dose was 878.9, 1968.5, and 5917.1 IU/day in
low, moderate and high groups, respectively. The WM
baseline 25(OH)D concentration and the WM increment in
25(OH)D concentration per 100 IU/day VitD were,
respectively, 58.3, 79.2, and 60.2 nmol/L, and 2.8, 1.3, and
1.5 nmol/L for the three groups (Table 1).
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Fig. 1 The review flow diagram
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The effect on post-intervention serum 25(OH)D
concentration among the elderly ( >64 years)

Seventeen eligible studies performed in the elderly were
identified. Eight trials were performed in Europe [102, 159–
165]; one in Japan [166]; two in Australia [167, 168]; and
two in New Zealand [169, 170]; three in US [171–173] and
one in Chile [174]. Overall, the results were similar to those
in adults (Figure S24–S26; appendix 2). The WM doses and
baseline 25(OH)D concentration were 606.1, 1952.1, and
3900.3 IU/day and 52.4, 54.6, and 51.1 nmol/L, respec-
tively (Table 1). The WM increments in serum 25(OH)D
concentrations per 100 IU/day of supplemental VitD intake
were 3.3, 2.2, and 1.7 nmol/L, respectively, in the low-,
moderate- and high-dose groups (Table 1).

The effect on post-intervention serum 25(OH)D
concentration among pregnant women

Twelve eligible studies were identified with one in Ban-
gladesh [175], two in the United Kingdom (UK) [176, 177],
three in Iran [178–180], one in Canada [181], one in Brazil
[182], one in Australia [183], one in Turkey [184], one in
India [185] and one in the US [186]. Totally 608 and
1581 subjects in control and intervention groups were
included. Overall, results were similar to those in adults
(Figure S27–S32; appendix 2). The WM dose for the low-,
moderate-, and high-dose groups were, respectively, 752.4,
2000, and 4974.6 IU/day (Table 1). The WM baseline 25
(OH)D concentrations and increments in 25(OH)D con-
centration per 100 IU/day VitD were 48.2, 52.9, and 49.8

Table 1 Summary of results
from different populations

Age category Dose
category

N arms Dose,
IU/daya

Number of
subjects

Baseline 25
(OH)D,
nmol/Lb

WMD Increment,
nmol/Lc

Children (6–17 years) Low 13 404 1210 61 7 1.6

Moderate 12 939 636 47 20 2.1

High 6 2236 752 69 31 1.4

Adults (18–64 years) Low 41 737 1571 52 16 2.1

Moderate 31 2214 1482 48 41 1.8

High 32 4333 1240 40 56 1.3

Postmenopausal women Low 16 879 1374 58 24 2.8

Moderate 5 1969 1174 79 25 1.3

High 5 5917 387 60 88 1.5

Elderly ( >64 years) Low 18 606 911 52 20 3.3

Moderate 5 1952 349 55 44 2.2

High 4 3900 331 51 67 1.7

Pregnant women Low 13 752 1033 48 16 2.1

Moderate 4 2000 233 53 34 1.7

High 5 4975 315 50 57 1.2

Lactating women Low 2 1000 125 43 44 4.4

Moderate 5 2000 143 47 31 1.6

High 2 4000 22 76 33 0.8

All adults (including
postmenopausal
women, adults, and
elderly)

Low 75 757 3856 54 20 2.6

Moderate 41 2088 3005 61 35 1.7

High 41 4573 1958 46 64 1.4

25(OH)D 25-hydroxyvitamin D, WMD weighted mean difference
aSupplemented dose of participants if one study arm identified or weighted mean dose of studies included in
the meta-analysis
bBaseline concentration of participants if one study arm identified or weighted mean baseline concentration
of studies included in the meta-analysis
cIncrement in 25(OH)D concentration per 100 IU/day vitamin D (nmol/L): calculated as follows: [(WM 25
(OH)D concentration achieved–WM 25(OH)D concentration at baseline)/vitamin D dose IU/day)] × 100
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nmol/L and 2.1, 1.7, and 1.2 nmol/L in the three groups,
respectively (Table 1).

The effect on post-intervention serum 25(OH)D
concentration among lactating women

In total, five trials were included with one in India [187],
two in the US [188, 189], one in New Zealand [190], and
one in the UAE [191]. The total number of lactating women
were 125, 143, and 22 in the low-, moderate- and high-dose
groups, respectively. The WM dose and baseline 25(OH)D
concentrations were 1000, 2000, and 4000 IU/day and
43.02, 46.97, and 75.75 nmol/L (Table 1). The WM incre-
ments in 25(OH)D concentration per 100 IU/day VitD were
4.43, 1.55, and 0.83 nmol/L in the three groups (Table 1).
Overall, these results are similar to those found in pregnant
women. Two trials conducted in the US were included in
the comparison of high vs. moderate doses, and the WM
difference was 21.25 (95% CI: 14.39, 28.10) nmol/L (I2=
0.0%, p= 0.862) (Figure S33; appendix 2).

The effect of covariates on post-intervention serum
25(OH)D concentration

Multivariate meta-regression analysis was performed only
when there were at least 10 studies in each sub-population,
so we could only make these assessments in children (3–17
years), pregnant women and all adults (including post-
menopausal women, the elderly ( >64 years), and adults
(18–64 years)). Multivariate meta-regression was conducted
in the final model including variables significantly asso-
ciated with 25(OH)D concentration after removing insig-
nificant variables, such as intervention duration, latitude,
gestation period (in pregnant women), the type of VitD
given (D3 OR D2), Ca supplementation, BMI (in adults),
and season. VitD dose and baseline 25(OH)D concentration
were consistently and significantly associated with achieved
25(OH)D concentration in three of these populations. In the
final model, the increment in 25(OH)D concentration was
1.6, 1.1, and 1.3 nmol/L per 100 IU/day VitD and 0.7, 0.9,
and 0.6 nmol/L per 1 nmol/L increase in baseline 25(OH)D

NOTE: P-value refers to weighted mean difference. 
             Weights are from random effects analysis.

Overall  (I−squared = 96.7%, p < 0.001)

Michael F. Holick (2008)

MS Barnes (2006)

Mirjam M Oosterwerff (2014)

Paulette D. Chandler (2015)

Xiaomin Sun (2016)

Scott M Smith (2009)

Rikke Andersen−women (2008)

Eric Seibert et al. (2017)

Rikke Andersen−men (2008)
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Fig. 2 Low dose ( < 1500 IU) vs. placebo in adult subjects with baseline 25(OH)D concentration < 50 nmol/L
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concentration for children, pregnant women, and all adults,
respectively (Table 2). In addition, age was significantly
associated with 25(OH)D concentration at+ 0.3 nmol/L per
year of age. In contrast to VitD3 administration, the asso-
ciation between VitD2 and achieved 25(OH)D concentra-
tion was negative with −16.4 nmol/L in 25(OH)D
concentration per 100 IU/day dosage, and this effect was
persistently significant in the daily dosing arms (Tables 3a,
b). The effect of VitD3 on 25(OH)D concentration was 1.3
nmol/L per 100 IU/day VitD3 in adults and in that model it
predicted, 81.2% of the variability in 25(OH)D concentra-
tion (Table 4).

Regional meta-regressions were performed separately in
adults from Europe, North America, Asia and Middle East
and Africa. VitD dose and baseline 25(OH)D concentration
were persistently significantly associated with the achieved
25(OH)D concentration in each regional population. The
increments in 25(OH)D concentration were 1.4, 1.3, 1.6,
and 1.2 nmol/L per 100 IU/day of VitD3; and 0.6, 0.7, 0.8,
and 1.1 nmol/L per 1 nmol/L increase in baseline 25(OH)D
concentration of Europeans, North Americans, Asians and
Middle eastern and Africans (Table 5). Furthermore, age

NOTE: P-values refer to weighted mean difference.
             Weights are from random effects analysis.
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Fig. 3 Low dose ( < 1500 IU) vs. placebo in adult subjects with baseline 25(OH)D concentration < 50 nmol/L from different latitudes

Table 2 Association between independent variables and achieved 25
(OH)D concentration (in nmol/l) in pregnant women, children, and all
adults

Independent variable β (SE) 95% CI
of β

Model
characteristics

N a I2 R2

Pregnant women

Vitamin D dose (100 IU/day) 1.1 (0.2) 0.8 1.4 27 0 0.98

Baseline 25(OH)D (nmol/l) 0.9 (0.1) 0.6 1.2

Children

Vitamin D dose (100 IU/day) 1.6 (0.2) 1.2 2.1 48 0.6 0.93

Baseline 25(OH)D (nmol/l) 0.9 (0.1) 0.7 1.1

All adults

Vitamin D dose (100 IU/day) 1.3 (0.7) 1.1 1.4 236 0.6 0.8

Baseline 25(OH)D (nmol/l) 0.6 (0.1) 0.5 0.7

Age 0.3 (0.1) 0.2 0.4

Multivariate random-effect meta-regression model

25(OH)D 25-hydroxyvitamin D, I2, I-squared_res, R2 adjusted R-
squared, N number of observations, CI confidence interval
aStudy arms
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was also associated with achieved 25(OH)D concentration,
which increased by 0.4 nmol/L with each year of increases
in age in Europeans.

Recommended dietary allowance (RDA) (IU/day) for
achieving a serum 25(OH)D value of at least 75
nmol/L

With meta-regression models, linear relationships of total
VitD supplemental dose, baseline 25(OH)D concentration,
and age (for specific continents) vs. achieved 25(OH)D
concentration in different populations (adults, children, and
pregnant women) and geographical region (Middle East and
Africa, Asia, Europe and North America) were produced
(mean (95% lower CI) serum 25(OH)D (nmol/L)= β0
(VitD dose (100 IU/day))+ β1 (baseline 25(OH)D con-
centration (nmol/L))+ β2 (age (1-year-old))+ increment).
As the baseline, 25(OH)D concentration of adults varied
significantly across three different continents, which was an
important factor in prediction of achieved 25(OH)D con-
centration. Based on the calculations made using multi-
variate meta-regression modeling, RDA, (the recommended
VitD supplement dose needed to reach sufficient 25(OH)D
concentrations (of 75 nmol/L)), were established for dif-
ferent populations across different continents for adults. The
WM of baseline 25(OH)D concentration was 54.8 nmol/L
for children and the estimated achieved 25(OH)D con-
centration was 63.2 nmol/L with 600 IU/day VitD supple-
mentation. We also estimated intakes of VitD3 at a
recommended 1340 (95% CI: 1044, 1887) IU/day to
achieve adequate 25(OH)D concentrations in children. For
pregnant women with a WM baseline of 25(OH)D of 48.2
nmol/L, 2250 (95% CI: 1765, 3100) IU/day VitD were
recommended for achieving sufficiency. Because the
increased 25(OH)D concentrations after supplemental VitD
varied markedly with ages in European adults, RDAs were
provided for each age group. While the WM for a baseline
25(OH)D concentration of 50.9 nmol/L, the RDAs were
2519 (95% CI: 2202, 2943) and 797 (95% CI: 697, 931) U/
day for adults aged 18–64 years and 65–85 years, respec-
tively. For adults in North America and the Middle East and
Africa with the WM baseline 25(OH)D concentrations of
65.6 and 45.5 nmol/L, the RDAs were 729 (95% CI: 582,
984) and 1229 (95%CI: 739, 3656) IU/day. With WM
baseline of 25(OH)D concentration in Asian adults of 36.5
nmol/L, the RDA was 2026 (95% CI: 1522, 3030) IU/day.

Discussion

In this systematic review, data from 136 VitD supple-
mentation RCTs with 20,884 participants from different
populations worldwide was examined. There were obvious

dose–response effects between intake doses of VitD and
achieved serum 25(OH)D concentrations in each sub-
population. Meanwhile, the highest supplemental doses
(at >4000 IU/day) resulted in hypervitaminosis D, as
defined by 25(OH)D concentrations >125 nmol/L [38] in
adults, though there was no reported evidence of toxicity.
The effect of VitD3 supplementation on serum 25(OH)D
concentration was higher than that of VitD2. Baseline 25
(OH)D concentration and age were significant predictors of
achieved 25(OH)D concentration. In addition, based on
meta-regression modeling, RDAs for VitD3 were provided
for children, pregnant women, adults from Middle East and
Africa, Asia, North America, and age-specific Europeans in
the present study.

In the analysis of dose-dependent increases in 25(OH)D
concentration per 100 IU/day VitD of three different sup-
plemental doses, the increases in serum 25(OH)D con-
centration decreased from lower to higher supplemental
doses. A meta-analysis by Chakhtoura et al. [42] in the
Middle East and North Africa demonstrated a similar dose-
dependent relationship. Furthermore, previous meta-
regression analyses performed in Europe and by the IOM
showed that the intake–status data from the RCTs accoun-
ted for the more blunted response of serum 25(OH)D con-
centration to higher intakes of VitD by applying curvilinear
Ln model [38, 46, 192]. These results demonstrably sup-
ported the expectation that a plateau of the increments in 25
(OH)D concentration will be reached with increasingly high
doses. The biphasic relationship between VitD supple-
mentation dose and 25(OH)D concentration maybe due to
the fact that hepatic 25-hydroxylase becomes saturated and
the reaction switches from first to zero order, which is
consistent with standard enzyme kinetics [193]. Our find-
ings demonstrate that long-term low-dose VitD supplements
are more effective than short-term high-dose supplements,
which should be taken into consideration when policies or
specifications for guidelines for RDAs are being
formulated.

In the present meta-regression analysis of pregnant
women and children, as well as adults, baseline 25(OH)D
concentration was identified as a significant predictor of
achieved 25(OH)D concentrations. The increment in 25
(OH)D concentration ranges from 0.6 to 0.9 nmol/L per 1

Table 3A Compare the effectiveness between vitamin D2 and vitamin
D3 of all adults in achieved 25(OH) D concentration (in nmol/L)

Independent variable β (SE) 95% CI of
β

Model
characteristics

Na I2 R2

Vitamin D dose (100
IU/day)

1.0 (0.1) 0.8 1.2 154 0.56 0.71

Vitamin D2
b −16.4 (5.9) −28 −4.7

A systematic review and meta-analysis of the response of serum 25-hydroxyvitamin D concentration to. . .



nmol/L increase in baseline 25(OH)D concentration, which
is similar to a preview systematic review with 0.8 ng/mL per
1 ng/mL increase in baseline 25(OH)D concentration [42].
The subgroup dose–response analyses in adults in different
regions found that Asian adults, whose baseline 25(OH)D
concentrations were much lower than those of North
Americans and Europeans, the increment in 25(OH)D
concentration per 100 IU/day VitD was highest, which is
consistent with previous studies [194, 195]. However, a
meta-analysis of changes in 25(OH)D concentration asso-
ciated with VitD supplementation in Caucasian subjects
over 50 years old, however, found that higher concentra-
tions at baseline were not associated with lower increases in
achieved 25(OH)D concentrations [54]. The heterogeneity
between studies maybe related to variation in age and
ethnicity.

In addition, we also identified the type of VitD given as
an important factor affecting achieved 25(OH)D con-
centration. Both VitD2 and VitD3 function as prohormones
and the only difference between them is the structure of
their side chains. There is still a controversy about the

comparative efficacy of between VitD2 and VitD3 for
obtaining optimum 25(OH)D concentrations. Some studies
found the two types were equivalent in raising 25(OH)D
concentration [128, 196, 197], while others found that
VitD2 was rather less effective [54, 198–200] than VitD3

when given in daily doses. However, our results showed
that compared with VitD3, VitD2 was considerably less
effective than VitD3, in raising serum 25(OH)D con-
centration [by –16.4 nmol/L] per 100 IU/day when taken as
a daily supplement. As reported by Horst et al. [201], the
difference between VitD2 and VitD3 is due to the fact that
once 1,24,25(OH)3D2 is formed, this change is irreversible
and this metabolite is inactive, and while 1,24,25(OH)3D3 is
an active form of VitD [202]. Furthermore, the half-life of
25(OH)D2 in the circulation is shorter than that of 25(OH)
D3, which some people suggest is because it is destroyed or
not bound to VitD binding proteins but others suggest that
more of it gets into target cells than of the 25(OH)D3

metabolite. It is of note that the side chain of VitD2 would
not preclude the activation of the molecule in the 25- or 1α-
hydroxylation position or inactivation. However, of the
present conflict between findings from different studies may
reflect differences in sample size and supplemental dosages
[203]. Overall, our findings suggest that VitD3 should be a
better option for VitD supplementation than VitD2.

Another finding of our study was that age is a significant
predictor of the response to VitD3 supplementation. The

Table 5 Multivariate random-effect meta-regression on adults from
Europe, North America, Asia, Middle East, and Africa with vitamin D3

supplementation

Independent variable β (SE) 95% CI
of β

Model
characteristics

Na I2 R2

Europe

Vitamin D dose (100 IU/day) 1.4 (0.1) 1.2 1.6 104 0.41 0.88

Baseline 25(OH)D (nmol/l) 0.6 (0.1) 0.4 0.8

Age 0.4 (0.1) 0.3 0.6

North America

Vitamin D dose (100 IU/day) 1.3 (0.2) 0.9 1.6 55 0.54 0.75

Baseline 25(OH)D (nmol/l) 0.7 (0.1) 0.4 1

Asia

Vitamin D dose (100 IU/day) 1.6 (0.3) 1.1 2.2 26 0.5 0.84

Baseline 25(OH)D (nmol/l) 0.8 (0.3) 0.3 1.4

Middle East and Africa

Vitamin D dose (100 IU/day) 1.2 (0.3) 0.4 2 10 0.56 0.77

Baseline 25(OH)D (nmol/l) 1.1 (0.4) 0.1 2.1

Multivariate random-effect meta-regression model

25(OH)D 25-hydroxyvitamin D, I2, I-squared_res R2 adjusted R-
squared, N number of observations, CI confidence interval
aStudy arms

Table 4 Association between independent variables of all adults with
vitamin D3 and placebo administration with achieved 25(OH) D
concentration (in nmol/L)

Independent variable β (SE) 95% CI
of β

Model
characteristics

Na I2 R2

Vitamin D dose (100 IU/day) 1.3 (0.1) 1.2 1.5 225 0.6 0.81

Baseline 25(OH)D (nmol/L) 0.6 (0.1) 0.5 0.7

Age 0.3 (0.1) 0.1 0.4

Multivariate random-effect meta-regression model

25(OH)D 25-hydroxyvitamin D, the sum of both 25(OH)D2 and 25
(OH)D3,; I2 I-squared_res, R2 adjusted R-squared, N number of
observations, CI confidence interval
aStudy arms

Table 3B Compare the effectiveness between vitamin D2 and vitamin
D3 of all adults on daily vitamin D supplements in achieved 25(OH) D
concentration (in nmol/L)

Independent variable β (SE) 95% CI of β Model
characteristics

Na I2 R2

Vitamin D dose (100
IU/day)

1.0 (0.1) 0.8 1.2 132 0.23 0.8

Vitamin D2
b −15.8 (5.8) −27.3 −4.3

Multivariate random-effect meta-regression model

25(OH)D 25-hydroxyvitamin D, I2 I-squared_res, R2 adjusted R-
squared, N number of observations, CI confidence interval
aStudy arms
bCompared with vitamin D3

M. Mo et al.



increment in 25(OH)D concentration was 0.3 nmol/L per+
1-year in age, older participants showing a superior
response to VitD3 supplementation, independent of baseline
25(OH)D concentration or dose. Barger-Lux [195] has
reported similar findings, where age independently influ-
enced VitD responses at+ 0.42 nmol/L per+ 1-year in age.
Though aging is not necessarily accompanied by intestinal
malabsorption of VitD [204], the decreased synthetic
capacity of the skin with increasing age has been related to
the deficiency of VitD due; on the one hand to falls in skin
7-dehydrocholesterol concentrations, and on the other hand
to of alterations in skin morphology [205]. The high pre-
valence of VitD deficiency in the elderly may well con-
tribute to the greater effects reported [206, 207]. There was
also an obvious trend for the achieved increment to be
relatively higher with smaller doses than with larger dose
among elderly. Moreover, the achieved increment in 25
(OH)D concentration per 100 IU/day VitD among elders
was higher with lower dose supplementation (3.3 nmol/L),
compared with those in adults (18–64 years) (2.1 nmol/L)
even though the WM baseline 25(OH)D concentration of
the elders ( >64 years) in the current meta-analysis was
higher than that seen in the adults (18–64 years). Seamans
et al. [102] also reported similar results that daily supple-
mentation with same dose of VitD3 increased 25(OH)D
concentration over winter concentrations in ≥64-year-old
adults, while it diminished the decline in 25(OH)D con-
centration in 20- to 40-year-old adults.

In addition to VitD dose, baseline 25(OH)D concentra-
tion, age and type of VitD given, other factors have been
reported to be associated with VitD supplementation and
influence the 25(OH)D concentration, including season,
latitude, concomitant calcium supplementation, BMI, and
frequency [176, 207–210]. However, none of them reached
statistical significance as predictors of achieved 25(OH)D in
our study. One possible reason maybe that the recruitment
of participants was conducted across different seasons and
that participants were enrolled into the cohort at different
time points [149, 156, 157]. Other studies report that VitD
deficiency was more common in those respondents whose
blood samples were collected in autumn or winter rather
than in those collected in spring or summer [207]. In
addition, the inter-individual difference in blood sample
collecting times may further weaken the seasonal effect.

Existing evidence for defining an optimal intakes of VitD
for pregnant women has been inadequate, and the guidelines
from different governmental organizations do not differ from
those for other adults [194]. European Food Safety Authority-
Draft scientific opinion recommends 600 IU/day of VitD3 for
pregnant and lactating women, which is far below our esti-
mated RDA of VitD3 of 2250 IU/day. As shown in a trial by
Nancy et al. [181], the prevalence of VitD sufficiency using
2000 IU/day of VitD3 supplementation reached >97%, which

provides evidence that supports our specific recommendation
for pregnant women as being both appropriate and adequate.
The recommended doses from different governmental organi-
zations vary widely in both children and adults with limited sun
exposure, from 200 to 2000 IU/day, which is partly due to
disagreements on the minimum desirable 25(OH)D con-
centration [194]. We recommended children with low baseline
25(OH)D concentration (54.8 nmol/L) and insufficient sun
exposure, to receive a RDA of 1340 IU/day of VitD3. One
RCT conducted by Rajakumar et al. [66] showed that to
maintain 25(OH)D concentrations at 20 ng/mL (50 nmol/L),
1543 IU/day VitD was needed, which approximates our
recommendation. We recommended 2519 and 797 IU/day for
European adults aged 18–64 and 65–85 years, respectively, to
reach a sufficient 25(OH)D concentration of 75 nmol/L.
Healthy Somali women living in Sweden aged 32–36 years
were treated with 1600 IU/day for 3 months and increased 25
(OH)D concentration by 29 nmol/L, which showed a dose-
dependent increase from very low levels to sufficient serum 25
(OH)D concentration [98]. In a trial in free-living adults ≥64
years of age, >99% of the participants reached 25(OH)D
concentration of 50 nmol/L with supplementation at 600 IU
VitD3 per day after a 22-week intervention [163]. Another
RCT conducted in Finland also found that with 800 IU/day
supplements, all the participants reached the 25(OH)D con-
centration of 50 nmol/L [164], while recommend, respectively,
729, 2026, and 1229 IU/day for adults in North America, Asia
and Middle East and Africa to reach a sufficient 25(OH)D
concentration of 75 nmol/L. However, a 6-month RCT of
VitD3 supplementation among 138 White and African Amer-
icans aged 18–65 years suggested 3800 IU/day for those above
a 25(OH)D threshold of 55 nmol/L and 5000 IU/day for those
below that threshold [211]. A RCT conducted among Chinese
adults with VitD supplementation of 2000 IU/day, 86% of the
subjects achieved 25(OH)D concentrations ≥75 nmol/L [81],
which supports our estimate of 2026 IU/day VitD supple-
mentation, as adequate for the majority of adults in Asia for
achieving a status of sufficiency. Another 12-week double-
blind RCT in healthy overweight and obese Iranian women
found that with VitD3 supplementation at 1000 IU/day, serum
25(OH)D significantly increased in the VitD group compared
with the placebo group (38.2 ± 32.7 nmol/L vs. 4.6 ± 14.8
nmol/L; p < 0.001), which further suggests that our recom-
mendation of 1229 IU/day will be adequate. Differences exists
between the present recommendations and other reports,
probably related to the diverse and comprehensive factors we
have included in the analyses of factors predicting achieved 25
(OH)D concentration, rather than, solely VitD dose, such as
baseline 25(OH)D concentration and age and regional- and
age-specific populations. Experimental data from recent RCTs
mentioned above also provide evidence to support the results.
However, more RCTs of larger population samples from wide
areas are needed to verify our findings.

A systematic review and meta-analysis of the response of serum 25-hydroxyvitamin D concentration to. . .



There are several strengths in our study. This is the first
systematic review to assess the dose–response to VitD
supplementation of different populations across seven
regions. Based on dose–response relationship analysis,
optimal dosage of VitD3 for achieving sufficient circulating
25(OH)D concentrations and prevent VitD deficiency in
different populations at the global and regional level were
estimated. Furthermore, the effect of latitude, season, age,
BMI, the type of VitD use and frequency of VitD supple-
ments, and duration of administration on 25(OH)D con-
centration has been investigated. However, limitations still
existed. First, we did not explore the effect of sex and ethnic
diversity because the participants of most studies were of
same sex or ethnicity and other studies did not report result
by sex or ethnicity separately. Second, we could not exclude
the influences from sun exposure, skin characteristics,
dietary intake, and VitD intake because these confounding
factors were not assessed in the available RCT data. Third,
high heterogeneity was detected in some meta-analyses,
which may be related to the differences of baseline char-
acteristics of the included subjects, supplementation dose,
frequency and duration, supplementation type of VitD use.
In addition, serum 25(OH)D concentration was measured
by different standard or nonstandard assays, which would
contribute to the high heterogeneity we found and lead to
the reduction of the value of the evidence used in our meta-
analysis of RCT data [212]. In the present meta-analysis, a
total of 29 (21%) studies used high performance liquid
chromatography (HPLC) tandem mass spectrographic
assay, which is the “gold standard” for 25(OH)D mea-
surement. As some studies measured both 25(OH)D2 and 25
(OH)D3, some measured 25(OH)D3 alone, and many pro-
vided assay data that were very different from HPLC data
on the same samples. From a harmonization study between
liquid chromatography–tandem mass spectrometry (LC‐
MS/MS) and Diasorin RIA for measurement of 25(OH)D
concentrations in a large population survey, concentrations
measured by LC‐MS/MS were much higher than those
measured by Diasorin RIA, with a mean difference of 51.6
nmol/L [213]. Precision testing showed that the Roche
Elecsys Vitamin D Total competitive protein-binding assay,
standardized against HPLC tandem mass spectrographic
assays within-run coefficient of variations (CVs) of ≤ 7%,
within-laboratory CVs of < 9.5%, between-laboratory pre-
cision CVs of ≤ 10.1%, and a functional sensitivity below
9.8 nmol/L (at CV 12.9%) [214]. And the intraassay and
inter-assay CVs for the enzyme-linked immunosorbent
assay (ELISA) method were 5.9 and 6.6%, respectively.
Method-related differences in results of total serum 25(OH)
D from different studies have confounded international
efforts to develop evidence-based guidelines for the eva-
luation of VitD status. Further relevant studies are needed to
resolve these problems in the future. Finally, as the results

of meta-analysis were derived from pooled data from dif-
ferent studies, ecological bias may be present that we could
not adjust for since details for individuals were not
available.

Conclusions

This study found that there were clear and consistent
positive dose–response relationships between VitD supple-
mental dose and achieved serum 25(OH)D concentration in
each population that baseline 25(OH)D concentration and
age were significant predictors for achieved 25(OH)D
concentration and that VitD3 had higher effects on serum 25
(OH)D concentration than did VitD2. We have, therefore,
recommended VitD3 for supplementation, and provided
population-specific and regional recommendations for
intakes of VitD3 necessary to achieve optimal 25(OH)D
concentrations examined, except for pregnant women and
children where there were insufficient data due to the lim-
ited numbers of studies available for analysis.
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