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INTRODUCTION

The seco-steroid hormone 1,25-dihydroxyvitamin D3 
[1,25(OH)2D3] is the most potent metabolite of vitamin D3 and is 
an important regulator of calcium homeostasis and bone metab-
olism via actions in the intestine, bone, kidney, and parathyroid 
glands. 1,25(OH)2D3 exerts its effects via an intracellular recep-
tor that is a member of the steroid hormone receptor family (see 
chapters in Section II on Mechanism of Action). Throughout 
the last few decades it has become evident that the vitamin D 
receptor (VDR) is not limited to cells and tissues involved in 
regulation of calcium and bone metabolism but is also present 
in a wide variety of other cells and tissues including cancer cells 
of various origins. This has led to a vast series of studies on the 
role of vitamin D in tumor cell growth regulation, treatment of 
cancer and development of potent synthetic vitamin D analogs. 
Various specialized chapters will discuss in detail the effect of 
vitamin D on specific cancers (see chapters in Section X) and 

the development of analogs (see chapters in Section IX). In this 
chapter our goal is to set the stage by providing an overview of 
the history and current state of knowledge of the field. We will 
address several areas: recent developments in studies of vita-
min D and cancer, regulation of tumor cells, possible mecha-
nisms, and clinical applications. Since the field has become so 
vast of course we could not cite all of the relevant papers, and 
the reader is referred to the specialized chapters on the various 
cancers that follow this chapter for more detail.

VITAMIN D AND CANCER

Vitamin D Receptor
As exemplified in Table 94.1, the VDR has been demon-

strated in a broad range of tumors and malignant cell types. 
VDR level is increased in ovarian carcinoma compared to 
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normal ovarian tissue [1]. For colon and breast cancer cells an 
inverse relationship between VDR level and degree of differ-
entiation has been described by some investigators [2,3]. For 
colorectal cancer it was shown that VDR expression is asso-
ciated with the degree of tumor differentiation [4] and with 
a more favorable prognosis [5]. Accordingly, VDR expression 
in colon tumor stromal fibroblasts predicted a favorable clini-
cal outcome [6]. This is an important aspect of the anticancer 
actions of vitamin D: interacting with surrounding stromal 
cells and not only with the cancer cells. In pancreatic cancer, 
the VDR regulates transcription of pancreatic stellate cells, 
which results in stromal remodeling that results in reduced 
tumor volume and increased chemotherapeutic response [7]. 
In hepatocellular carcinoma, p62/SQSTM1 protein was found 
to acts as a negative regulator of liver inflammation and fibro-
sis through VDR signaling in hepatic stellate cells [8].

A VDR immunoreactivity score showed an increase in VDR 
in breast carcinoma specimens compared to normal breast 
tissue but no clear relation with proliferative status could be 
assessed [9]. A later study by the same group showed that VDR 
expression is not a prognostic factor for breast cancer but the 
strong VDR immunoreactivity in the breast cancer specimens 
supports the evidence that it may be a target for intervention 
[10]. Also in other studies no associations between VDR con-
centration and clinical and biochemical parameters of breast 
cancer were found [11–13]. These outcomes could be the result 
of the fact that in clinical human breast tumor samples, vari-
able expression of the VDR was found in different cohorts [14].

Albeit that the association studies on VDR expression and 
predictive and/or prognostic characteristics for cancer are 
so far not conclusive, depending also on other features like 
VDR functionality or 25(OH)D levels, the widespread distri-
bution of the VDR in malignant cells indicates that regulation 
of cancer cell function might be a new target in the action of 
1,25(OH)2D3 and provides a biological basis for the epidemio-
logical observations discussed below.

An interesting observation has put the VDR in relation to 
cancer in another perspective. It was shown that VDR can 
function as a receptor for the secondary bile acid lithocho-
lic acid (Mangelsdorf third edition Vitamin D). This com-
pound is hepatotoxic and a potential enteric carcinogen. 

Interestingly, both binding of lithocholic acid and vitamin D 
to the VDR results in induction of CYP3A, the enzyme that 
detoxifies lithocholic acid in the liver and intestine [15,16] 
(see also Chapter 84). It is postulated that vitamin D and lith-
ocholic acid, by binding to the VDR, activate a feed-forward 
catabolic pathway that increases CYP3A expression leading 
to detoxification of carcinogenic bile acids.

A relationship between the presence of VDR and carcino-
genesis was also shown for the skin. Absence of VDR increased 
the sensitivity for chemically induced tumorigenesis [17]. 
Moreover, in mice the vitamin D analogs EB1089 prevented 
β-catenin-induced trichofolliculomas, while low levels of VDR 
associated with the induction by β-catenin of infiltrative basal 
cell carcinomas [18].

The β-catenin as well as the Hedgehog signaling and the 
recently found long noncoding RNA pathways underlie the 
protective role of the VDR as a tumor suppressor in the skin 
[19,20]. In addition, regulation of c-MYC by the VDR may 
lie at the basis for cancer preventive actions [21]. In stroma 
from pancreatic tumors, the VDR is a master transcriptional 
regulator of the conversion to quiescent cells after calcipotriol 
treatment leading to reduced tumor volume and increase in 
survival compared to chemotherapy [7].

Although cellular effects of 1,25(OH)2D3 traditionally 
have been attributed to activation of the nuclear VDR, over 
the years research has been performed to identify a mem-
brane 1,25(OH)2D3 receptor (see also Chapter 16 (vol. 1 of this 
book)). As discussed in Chapter 16 (vol. 1 of this book), the 
best evidence suggests that this rapid acting membrane recep-
tor is related to the VDR.

Epidemiology
The first to document an association of cancer mortality 

with sun exposure and latitude was Hoffman in 1915 [22]. 
Later studies in 1980 by Garland et al., provided additional 
data showing that death rates from colon cancer tended to 
increase with increasing latitude and decreasing sunlight [23]. 
The sunlight/ecological concept is discussed in Chapters 61 
and 95. Later more direct evidence about a correlation between 
vitamin D concentration and colon cancer came from the 
inverse relationship between levels of serum 25-hydroxyvi-
tamin 25(OH)D and the incidence of colon cancer [24,25]. In 
a metaanalysis Gorham et al. estimated that an increase of 
84 nmol/L (33 ng/mL) in serum 25(OH)D level would lead to 
a 50% reduction in the incidence of colon cancer [26]. A study 
of National Health and Nutrition Examination Survey III 
(NHANES III) data also found an association between 25(OH)
D concentration and colorectal cancer mortality. Individuals 
with a 25(OH)D level over 80 nmol/L (32 ng/mL) had a 75% 
lower risk of death from colorectal cancer than those with 
lower levels of 25(OH)D. A concentration over 95 nmol/L cor-
related with a 55% reduction in colon cancer risk compared to 
those with a level below 40 nmol/L [27]. Several studies con-
firmed that a higher concentration of vitamin D was associated 
with lower colon cancer incidence and patients have a better 
overall survival [28].

TABLE 94.1 Vitamin D Receptor in Tumors and Malignant Cell 
Types

Basal Cell Carcinoma
Breast Carcinoma
Bladder Cancer
Cervical Carcinoma
Colonic Adenocarcinoma
Colorectal Carcinoma
Gall Bladder Carcinoma
Glioblastoma
Kaposi Sarcoma
Lung Carcinoma
Lymphocytic Leukemia
Malignant B-Cell Progenitors
Malignant Melanoma
Medullary Thyroid Carcinoma

Myeloid Leukemia
Multiple Myeloma
Osteogenic Sarcoma
Ovarian Carcinoma
Neuroblastoma
Non-Hodgkin’s Lymphoma
Pancreatic Carcinoma
Parathyroid Adenoma
Pituitary Adenoma
Prostate Carcinoma
Renal cell Carcinoma
Squamous cell Carcinoma
Transitional cell Bladder Carcinoma
Uterine Carcinosarcoma
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From the NHANES III study it was reported that women 
with a serum concentration of 25(OH)D more than 62 nmol/L 
had a 75% decrease in mortality due to breast cancer [27]. From 
two other studies the authors concluded that there was a 58% 
lower risk of breast cancer in women with 25(OH)D concen-
tration more than 95 nmol/L compared to women with lev-
els lower than 37.5 nmol/L [29,30]. In a metaanalyses 1750 
women were stratified into 5 groups of 25(OH)D concentra-
tions ranging from high to low and this showed a clear dose-
response association [31]. The highest breast cancer rates were 
found in the group with the lowest 25(OH)D concentration 
(<32 nmol/L), while the cancer rates were lower at higher lev-
els (>130 nmol/L). Later studies confirmed the relationship 
between higher 25(OH)D levels and a lower risk for breast 
cancer progression and mortality [32]. A large Finnish epide-
miological study showed an association of low serum 25(OH)
D with prostate cancer [33,34]. The incidence of prostate can-
cer was twice as high in men with a 25(OH)D concentration 
below 70 nmol/L and 1,25(OH)2D3 levels below 77 pmol/L.

A full discussion of the epidemiologic data linking vitamin 
D and cancer can be found in Chapter 95. It is strongly sug-
gestive that avoiding vitamin D deficiency may be a way to 
reduce cancer risk and progression, while results of ongoing 
clinical trials are still awaited [35].

Studies showed that the association between UVB irradi-
ance and prostate cancer incidence depends on the season of 
irradiance [36]. The relationship between sunlight exposure 
and cancer, especially with respect to vitamin D, had been 
carefully reviewed earlier by Studzinski and Moore [37]. The 
dual relationship between sunlight and cancer is of interest 
and remains the subject of many studies [38–40]. A relation 
between skin type and prostate cancer has been described 
[41–43] and an article discussing the skin, sunlight, vitamin D 
and cancer from an evolutionary perspective has been pub-
lished [44]. Grant et al. estimated that between 50,000 and 
63,000 Americans and between 19,000 and 25,000 adults from 
the United Kingdom die every year from cancer due to vita-
min D deficiency [45]. An analysis of the economic burden due 
to vitamin D insufficiency from inadequate exposure to solar 
UVB, diet and supplements was $40–56 billion in 2004 versus 
an economic burden for excess UV irradiation of $6–7 billion 
[46]. In Multiple myeloma, lower 25(OH)D levels were associ-
ated with higher plasma cell number in the bone marrow and a 
high incidence of vitamin D deficiency was found in myeloma 
patients [47].

In addition, the relationship between cancer, diet, and 
calcium intake and vitamin D has been addressed in several 
studies [48–50]. A study on intake of micronutrients suggested 
that vitamin D and calcium might interact with antioxidants 
like vitamin C and E in reducing colorectal cancer risk [51]. 
It is clear that sunlight exposure, vitamin D intake, and other 
dietary components such as calcium and fat should be con-
sidered as possibly interacting with one another when the 
relationship between vitamin D and cancer risk is assessed. 
The data on VDR as bile acid sensor and its postulated role in 
detoxification provide a direct biological basis for the relation 
between increased colon cancer and high-fat diets [52] and that 

colon cancer occurs in areas with higher prevalence of rickets 
[53]. In addition, mice lacking VDR have been reported to have 
a higher proliferation rate in the colon [54,55]. A survey of pos-
sible mutations in the VDR in osteosarcomas, several other 
sarcomas, nonsmall cell lung cancers, and a large number of 
cell lines representing many tumor types did not show that 
mutations or rearrangements in the VDR gene play a role in 
these cancers [56]. Aspects of sunlight and the epidemiology 
of vitamin D and calcium will be discussed in greater detail in 
Chapters 61 and 95.

However, data on the associations between vitamin D and 
cancer are not consistent. This has been observed in prostate 
cancer [32]. In a large prospective study by Ahn et al. the 
hypothesis that vitamin D is associated with decreased risk of 
prostate cancer was not supported; in contrast higher circulat-
ing 25(OH)D3 concentrations may be associated with increased 
risk of aggressive disease [57]. Also in other types of cancer the 
same association showing benefit by vitamin D was not always 
found. In breast cancer similar vitamin D intakes were found 
in breast cancer patients and control subjects [58]. Moreover, 
in a mouse model no relationship was found between dietary 
intake of a wide range of doses of calcium or vitamin D on 
carcinogen-induced skin tumors [59]. Also for ovarian cancer 
a similar discrepancy was observed. For example, Grant et al. 
reported a strong association between vitamin D levels, geo-
graphical latitude and ovarian cancer mortality [38,60], while 
more recently Toriola et al. in a case-control study with the 
Finnish Maternity Cohort did not find a significant association 
between ovarian cancer and serum 25(OH)D3 levels [61].

A concluding comment is that a high number, but by no 
means not all, observational, epidemiological, and preclinical 
studies suggest a protective anticancer action of vitamin D. 
The Cochrane review [62] warns for study bias in randomized 
trials due to low numbers of participants and selective groups 
of participants. More trials are necessary on vitamin D supple-
mentation, involving younger participants, men/women and 
taking into account vitamin D status, longer treatment/higher 
doses and longer follow-up of all participants.

Vitamin D Receptor Gene Polymorphisms
Several polymorphisms have been identified in the VDR 

gene and studied in relation to various endpoints including 
osteoporosis and other diseases (discussed in Chapter 65). Over 
the last 15–20 years an increasing number of studies have exam-
ined the association of polymorphisms in the VDR and cancer. 
An early study showed an association between polymorphisms 
at the 3′ end of the VDR gene and prostate cancer [63]. This was 
shortly followed by a study showing an association of prostate 
cancer with variations in the 3′ poly-A stretch in the VDR gene 
[64]. Subsequently several other studies also showed associa-
tions of polymorphisms in the 3′ region of the VDR gene and 
prostate cancer risk [65–68] albeit other studies did not confirm 
this association [69–71]. For the Cdx-2 VDR promoter poly-
morphism an increased risk for prostate cancer was reported 
to be dependent on UV radiation exposure [72]. For breast can-
cer both the presence [73,74] and absence [75] of an association 
with polymorphisms in the VDR gene have been reported. Also 
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for colon cancer both presence [76,77] and absence [78] of an 
association with VDR polymorphisms have been reported. In 
a recent study that compared cases to unaffected sibling con-
trols, no association between any of the VDR single nucleotide 
polymorphisms and risk for colorectal cancer was observed 
[79]. No association of VDR polymorphisms with basal cell car-
cinoma was reported [80]. An association with the aggressive 
renal cell carcinoma was found for the TaqI VDR polymorphism 
[81], while the FokI but not with TaqI polymorphism was asso-
ciated with altered risk for malignant melanoma [82], Another 
study on rectal cancer reported a correlation between VDR gene 
polymorphisms and erbB-2/HER-2 expression [83]. It can be 
concluded that so far the studies searching for a link between 
VDR gene polymorphisms and cancer risk are far from conclu-
sive with some studies finding a relationship to cancer risk and 
others failing to find one. A major reason might be the limited 
size of most of the studies so that they do not have the power to 
identify with statistical significance a small increase in risk. In 
the absence of a large definitive study, more association studies 
of VDR gene polymorphisms and specific cancers are needed, 
which should be followed by a metaanalysis to more defini-
tively assess whether there is an association and if so, what the 
size of the effect is. In an updated metaanalysis including newer 
studies, an overall significant association of FokI polymorphism 
was found with any type of cancer [84].

In studies of VDR gene polymorphisms it also is impor-
tant to take into account the potential impact of environmen-
tal factors interacting with the genetic variance. Diet, vitamin 
D intake and sun exposure may modify the association with 
cancer risk. Interaction between vitamin D and calcium intake 
and cancer was found in some of the VDR gene polymorphism 
studies [76,85–87]. They reported decreased risk of prostate 
cancer [85] and colorectal adenomas [86] in those with lower 
vitamin D levels and a particular VDR gene polymorphism. 
However, results of these studies are unusual in light of the 
fact that higher calcium and vitamin D intake are generally 
associated with a modestly reduced risk of colorectal neopla-
sia. In the study by Poynter et al. calcium and vitamin D intake 
derived from the food frequency questionnaire did not change 
their observation about the absence of an association between 
VDR gene variations and colorectal cancer [79]. Finally, and 
most importantly, it should be realized that except for the 
FokI translational start site polymorphism, all other polymor-
phisms analyzed so far are anonymous with no change in the 
coded protein. Thus functionality of the polymorphism or 
linkage with other polymorphisms that may be functional still 
needs to be proven. The 3′ polymorphisms have been shown 
to be in linkage with 3′-UTR polymorphisms but no relation 
with VDR mRNA stability could be demonstrated [88]. In the 
VDR promoter region 1a two functional polymorphism have 
been identified. The Cdx-2 promoter polymorphism has been 
reported to lead to different VDR gene expression [89,90] and 
the G-1521-C polymorphism to binding of different complexes 
in gel shift analyses [91,92]. Further detailed discussion of pos-
sible functional consequences of VDR gene polymorphisms 
and impact of vitamin D levels is beyond the scope of this 
chapter but will be addressed in Chapter 65.

Growth and Development
In addition to the epidemiological studies and demonstra-

tion of VDR in cancer cells, since the early 1980s there is also 
an increasing amount of cell biological data supporting a role 
for vitamin D as an inhibitor of cancer growth [35,93–95]. 
Multiple studies have shown that at elevated concentrations 
(10−9–10−7 M), 1,25(OH)2D3 inhibits the growth of tumor cells 
in vitro. It was demonstrated as early as 1981 that 1,25(OH)2D3 
inhibits the growth of malignant melanoma cells and stimu-
lates the differentiation of immature mouse myeloid leukemia 
cells in culture [96–98]. 1,25(OH)2D3 also induces differen-
tiation of normal bone marrow cells. Immature bone marrow 
cells of the monocyte-macrophage lineage are believed to be 
the precursors of osteoclasts, and 1,25(OH)2D3 induces dif-
ferentiation of immature myeloid cells toward monocytes-
macrophages and also stimulates the activation and fusion 
of some macrophages. From these results it has been postu-
lated that 1,25(OH)2D3 stimulates differentiation and fusion 
of osteoclast progenitors into osteoclasts [99–101]. In addition, 
in the intestine, 1,25(OH)2D3 has important effects on cellular 
proliferation and differentiation [102]. Thus the differentiation 
inducing capacity of bone and interstitial cells, 1,25(OH)2D3 
may play an important role in the regulation of calcium and 
bone metabolism. These in vitro findings were followed by 
the in vivo observation that 1,25(OH)2D3 prolongs the survival 
time of mice inoculated with myeloid leukemia cells [103]. 
As shown in Table 94.2, over the years 1,25(OH)2D3 has been 
shown to have beneficial effects in several other in vivo ani-
mal models of various types of cancers [104–126]. For more 
detailed reviews of breast, prostate, colon and other cancers 
see other chapters in this section of the book.

An important aspect and limitation of the treatment of cancer 
with 1,25(OH)2D3 was revealed by this limited set of clinical trials 
(See section Clinical Studies); to achieve growth inhibition, rela-
tively higher doses of 1,25(OH)2D3 are needed (confirming the 
in vitro data), which can cause the side effect of hypercalcemia. 
This has prompted the development of analogs of 1,25(OH)2D3 to 
dissociate the antiproliferative effect from the calcemic and bone 
metabolism effects (see Section IX in this book). Although the 
precise mechanism for this dissociation of activities is not com-
pletely understood, at the moment several 1,25(OH)2D3 analogs 
are available that seem to fulfill these criteria. In Table 94.3 the 
in vivo animal studies using 1,25(OH)2D3 analogs on various can-
cer types are summarized [114,120,121,123–145] and more fully 
discussed in Section IX of this volume.

Clinical Studies
Only a limited number of clinical trials of vitamin D in can-

cer have been performed up to now, which may be attributed 
in part to the calcemic activity of 1,25(OH)2D3. Alfacalcidol 
(1α-hydroxyvitamin D3;1α-(OH)D3), which is converted to 
1,25(OH)2D3 in vivo, caused a beneficial response in low-
grade non-Hodgkin’s lymphoma patients [146,147]. In addi-
tion, in a study treating patients with myelodysplasia with 
alfacalcidol, transient improvement in peripheral blood 
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counts were seen, however, half of the patients developed 
hypercalcemia [148]. Another study reported a sustained 
hematological response in six myelodysplasia patients 
treated with high doses of alfacalcidol [149]. These patients 
were restricted in their dietary calcium intake; nevertheless, 
four patients developed hypercalcemia due to increased bone 
resorption. With respect to treatment of cutaneous T-cell lym-
phoma with a combination of 1,25(OH)2D3 and retinoids, 
contrasting results have been obtained. It has been suggested 
that the variability was due to differences in phenotype of the 
various lymphomas [150–152].

A study on early recurrent prostate cancer showed that 
daily treatment with 1,25(OH)2D3 slowed the rise in prostate-
specific antigen (PSA) [153]. Using a regime of once weekly 
treatment with very high-dose calcitriol in patients with ris-
ing PSA after prostatectomy was found to be safe but did 
not result in a significant reduction in PSA [154]. Two studies 
were specifically designed to examine the route and sched-
ule of administration and calcemic response in patients with 
advanced malignancies [155,156]. The complicated set of trials 
using very high dose 1,25(OH)2D3 plus taxotere in advanced 
prostate cancer has recently been reviewed [157]. Further 

discussion on clinical trials can be found in the chapters on the 
specific malignancies that follow.

Clinical trials using vitamin D analogs have been initi-
ated over the last years. However, these were mostly limited 
clinical trials focusing on small groups of patients for whom 
regular treatment had failed. Only a relatively few studies 
have been published. The analogs calcipotriol (Daivonex/
Dovonex/MC903) has been used for topical treatment of 
advanced breast cancer; however, several of the patients still 
developed hypercalcemia [158]. Studies have been carried out 
in advanced breast cancer [159] and pancreatic cancer [160], 
but the clinical results were limited. In a single case of Kaposi 
sarcoma and topical application of calcipotriol good success in 
tumor regression was reported [122]. Also the impact of inhi-
bition of CYP24 to enhance the anticancer activity of vitamin 
D has been studied and a potentiation of the vitamin D effect 
was found as had been shown in cells work previously [161]. 
Data on clinical studies with vitamin D and vitamin D analogs 
are reviewed by Vijayakumar et al. [162,163], Feldman et al. 
[35], Giammanco et al. [164] and Scaranti et al. [165]. Still more 
randomized controlled trials are necessary to overcome some 
unsolved issues in previous studies.

TABLE 94.2 In Vivo Effects of 1,25(OH)2D3 and 1α-(OH)D3 in Animal Models of Cancera (Partial Listing)

Tumor Model Effect References

Adenocarcinoma CAC-8 cells injected in nude mice Reduction in tumor volume [124]

Breast NMU- and DMBA-induced breast cancer in rats Tumor suppression [110,113]

Colon Human colon cell line implanted into nude mice; 
DMH-induced colon cancer in rats; APCmin mice

Tumor suppression; Reduction of the incidence 
of colon adenocarcinomas; decrease in polyp 
number and tumor load

[107,109,112,493]

Kaposi sarcoma KS Y-1 cells implanted in nude mice Tumor growth retardation [122]

Leydig tumor Leydig cell tumor implanted into rats Tumor suppression [114]

Liver tumor Injection of liver carcinogen diethylnitrosamine in 
mice and low vitamin D diet

Increase in tumor growth [370]

Lung Implantation of Lewis lung carcinoma into mice Reduction of the number of metastases 
(without suppression of primary tumor); Tumor 
suppression; increased antitumor immunity

[104,118,397,494]

Melanoma Human melanoma cells implanted into nude mice Tumor suppression [107]

Osteosarcoma Human osteosarcoma cells implanted into nude 
mice

Tumor suppression [115]

Prostate Dunning MAT LyLu rat prostate model; LNCaP 
xenografts in nude mice; PAIII tumors in Lobund-
Wistar rats.

Reduction in lung metastasis; Tumor 
suppression

[120,121,123,125,126]

Retinoblastoma Retinoblastoma cell line implanted into nude mice; 
Transgenic mice with retinoblastoma

Tumor suppression [108,111]

Walker carcinoma Walker carcinoma cells injected in rats Tumor suppression [117]

Skin DMBA/TPA-induced skin tumors in mice
Human squamous cell carcinoma cells (A431) 
injected in nude mice

Inhibition of tumor formation
Tumor cell death

[105,106]
[414]

aThe dosage, duration of treatment, diet, and effects on serum/urinary calcium vary among the studies.
DMBA, 7,12-dimethylbenz[a]anthracene; DMH, 1,2-dimethylhydrazine dihydrochloride; NMU, nitrosomethylurea; TPA, 12-O-tetradecanoylphorbol-13-acetate.
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Angiogenesis and Metastasis
For the tumor suppressive activity of vitamin D3 com-

pounds in vivo, besides growth inhibition and differentia-
tion, two additional aspects contribute to potential benefits 
including: (1) effects to inhibit angiogenesis and (2) actions 
that inhibit invasion and metastasis. First we will discuss 
vitamin D and angiogenesis. Angiogenesis is an essential 
requirement for the growth of solid tumors. Compounds that 
inhibit angiogenesis might therefore contribute to antitumor 
therapy. Antiangiogenic drugs may lead to inhibition of tumor 

progression, stabilization of tumor growth, tumor regression, 
and prevention of metastasis. Antiangiogenic effects may 
play a role in the tumor suppressive activity of vitamin D3 
compounds [166]. The effect of 1,25(OH)2D3 on angiogenesis 
may be due to inhibition of tumor cell proliferation, result-
ing in fewer angiogenic cells. However, inhibition of angio-
genesis could also be observed when the tumor cells were 
treated in vitro with 1,25(OH)2D3 and, after cell washing, were 
injected into mice [167]. Under these conditions both control 
and 1,25(OH)2D3-treated mice were injected with similar num-
bers of cells. Therefore, these data indicate that 1,25(OH)2D3 

TABLE 94.3 In Vivo Effects 1,25(OH)2D3 Analogs in Animal Models for Cancer (Partial Listing)

Analogs Model Antitumor Effect References

1,25(OH)D2 Retinoblastoma Tumor suppression [143]

1,25(OH)D5 Breast Tumor suppression [144]

CB966 Breast Tumor suppression [129]

CB1093 Prostate Tumor suppression
No effect on angiogenesis

[125]

DD-003 Colon Tumor suppression [135]

EB1089 Adenocarcinoma Tumor suppression [124]

EB1089 Breast Tumor suppression [129,132,140,413]

EB1089 Colon Tumor suppression [139]

EB1089 Hepatocellular carcinoma Inhibition of tumor incidence [495]

EB1089 Leydig cell tumor Tumor suppression [114]

EB1089 Prostate Tumor suppression
Reduction lung metastases
No effect on angiogenesis

[121,123,125,126,141,142]

KH1060 Prostate Tumor suppression [126]

LG190119 Prostate Tumor suppression [123]

OCT Breast Tumor suppression [128,133]

OCT Breast Tumor suppression [130]

OCT Breast Tumor suppression [133]

OCT Colon Decreased tumor incidence [136]

MC903 Breast Tumor suppression [131]

Ro 23-7553 Prostate Tumor suppression [137]

Ro 23-7553 Leukemia Increased survival [127]

Ro 24-5531 Breast Decreased tumor incidence [134]

Ro 24-5531 Colon Decreased tumor incidence [138]

Ro-25-6760 Prostate Tumor suppression [120]

Ro-26-9114 Colon decrease in polyp number and tumor load [493]

Ro-26-9114 Prostate Tumor suppression [126]

CB966, 24a,26a,27a-tri-homo-1α,25-dihydroxyvitamin D3; CB1093, 20-epi-22(S)-ethoxy-23yne-24a, 26a,27a-trihomo-1α,25-dihydroxyvitamin D3; DD-003, 22(S)-24-homo-
26,26,26,27,27,27-hexafluoro-1α,22,25-trihydroxy-vitamin D3; EB1089, 22,24-diene-24a,26a,27a-trihomo-1α,25-dihydroxyvitamin D3; MC903, 1,24-dihydroxy-22-ene-24-cyclo-
propyl-vitamin D3; OCT, 22-Oxacalcitriol; Ro 23–7553, 1,25dihydroxy-16-ene-23-yne-vitamin D3; Ro 24–5531, 1,25dihydroxy-16-ene-23-yne-26,27-hexafluorovitamin D3; Ro 
26–9114, 1α,25-(OH)2-16-ene-19-nor-24-oxo-D3.
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inhibits the release of angiogenic factors (vascular endothelium 
growth factor, transforming growth factor-α, basic fibroblast 
growth factor, epidermal growth factor, etc.) or stimulates anti-
angiogenic factors. 1,25(OH)2D3 treatment caused a reduction 
in the angiogenic signaling molecule, angiopoietin-2 in squa-
mous cell carcinoma and radiation-induced fibrosarcoma-1 
cells [168]. In retinoblastomas in mice, 1,25(OH)2D3 has also 
been shown to reduce angiogenesis [169]. A study by Oades 
et al., however, showed that the 1,25(OH)2D3 analogs EB1089 
and CB1093 inhibited tumor growth in two prostate animal 
models but did not inhibit angiogenesis in a rat aorta assay 
[125]. Whether this implicates that vitamin D affects angiogen-
esis in a tumor situation and not in a nonmalignant condition 
is not clear. This may resemble the effects of endostatin, which 
inhibits pathological but not normal vascularization [170,171]. 
In support of this possibility is the finding that 1,25(OH)2D3 
and its analogs EB1089, Ro-25-6760, and ILX23-7553 potently 
inhibit growth of endothelial cells derived from tumors but 
less potent against normal aortic or yolk sac endothelial cells 
[168]. In SW480-ADH colon cancer cells 1,25(OH)2D3 has a 
complex regulatory effect on the angiogenic phenotype: it 
increases the expression of VEGF and TSP-1, but not that of 
PDGF-B, through the activation of their respective promot-
ers [172]. Finally, an interesting observation is deglycosylated 
vitamin D-binding protein (DBP-maf) has also been reported 
to inhibit angiogenesis [173,174] and to inhibit growth of 
pancreatic tumor in nude mice [174]. Whether 1,25(OH)2D3 
may interfere with DBP-maf in tumor growth inhibition and 
antiangiogenesis remains to be established. Interaction with 
another factor, interleukin-12, in the inhibition of angiogenesis 
has been reported [175].

The second mechanism of antitumor activity to be dis-
cussed, and one that is related to angiogenesis, is invasion 
and metastasis. Metastasis is the primary cause of the fatal 
outcome of cancer diseases. A study by Mork Hansen et al. 
indicated that 1,25(OH)2D3 may be effective in reducing the 
invasiveness of breast cancer cells [176]. They showed that 
1,25(OH)2D3 inhibited the invasion and migration of a meta-
static human breast cancer cell line (MDA-MB-231) using the 
Boyden chamber invasion assay. In support of this, it was 
shown that 1,25(OH)2D3, and the analogs KH1060, EB1089, 
and CB1093, all inhibited secretion of tissue-type and uroki-
nase plasminogen activator and increase plasminogen activa-
tor inhibitor 1 in the MDA-MB-231 metastatic breast cancer 
cell line [177].

In line with decreasing the capability of breast cancer 
cells to metastasize 1,25(OH)2D3 also inhibited the epithelial- 
mesenchymal transition, an important step in metastatic 
behavior [178]. Current understanding of the role of vitamin 
D in the epithelial-mesenchymal transition is reviewed by 
Larriba et al. [179].

The vitamin D analogs EB1089 also prevented skel-
etal metastasis in vivo and prolonged survival time in nude 
mice transplanted with human breast cancer cells [180]. 
Interestingly, it was shown that vitamin D deficiency pro-
motes the growth of human breast cancer cells in the bones 
of nude mice [181]. A recent study found that ablation of VDR 

expression in BCa cells accelerated primary tumor growth 
and enabled the development of metastases, demonstrating a 
tumor autonomous effect of vitamin D signaling to suppress 
BCa metastases [182]. The authors went on to show that vita-
min D signaling inhibited the expression of the tumor progres-
sion gene Id1, and this pathway was abrogated in vitamin D 
deficiency in vivo in 2 murine models of BCa. The findings are 
relevant to humans, because they discovered that the mecha-
nism of VDR regulation of inhibitor of differentiation 1 (ID1) 
was conserved in BCa derived from human breast cancer cells, 
and there was a negative correlation between serum 25(OH) 
D levels and the level of ID1 in primary tumors from patients 
with BCa. Interestingly, the “prohormone” 25(OH)D could 
delay neoplasia, tumor growth and metastasis in a nonimmu-
nodeficient MMTV-PyMT mouse model of metastatic breast 
cancer [183].

Vitamin D also inhibited the invasive ability of human pros-
tate cancer cell lines, LNCaP, PC-3, and DU145. 1,25(OH)2D3 
decreased MMP-9 and cathepsins, while it increased the activ-
ity of tissue inhibitors of metalloproteinase-1 and cathepsin 
inhibitors [184]. 1,25(OH)2D3 decreased androgen-stimulated 
progression of prostate cancer, but prolonged treatment with 
1,25(OH)2D3 increased metastatic behavior in a model of trans-
genic adenocarcinoma of mouse prostate. This shows the need 
for further mechanistic studies to elucidate both antineoplastic 
as well as possible prometastatic effects of vitamin D in pros-
tate cancer [185].

In an in vivo study it was shown that 1,25(OH)2D3 reduces 
the metastasis to the lung of subcutaneously implanted Lewis 
lung carcinoma cells [118]. In two animal models of pros-
tate cancer 1,25(OH)2D3 and the analogs EB1089 and RO25-
6760 inhibited lung metastases [120,121]. In these models 
the tumors were implanted subcutaneously and therefore, in 
contrast to the model of direct tumor cell injection in the left 
ventricle [186], no bone metastases occurred. In pancreatic 
cancer, the vitamin D analogs MART-10 as well as 1,25(OH)2D3 
repressed migration and invasion of tumor cells via blocking 
the epithelial-mesenchymal transition [187]. MART-10 was 
also reported to repress metastases of head and neck squa-
mous carcinoma cells [188].

A fact to be considered in relation to metastasis is that bone 
is the most frequent site of metastasis of advanced breast and 
prostate cancer. There are some indications from clinical stud-
ies that bone metastases develop preferentially in areas with 
high bone turnover [189,190]. In contrast, agents that inhibit 
bone resorption like bisphosphonates and Denosumab have 
been reported to reduce the incidence of skeletal metas-
tasis and improve survival [191–194]. Promising are also 
studies that focus on bone anabolic therapies [195]. Akech 
et al. showed that Runx2 is a key regulator of events associ-
ated with prostate and breast cancer metastatic bone disease 
[196]. Runx2 is intimately involved in vitamin D actions in 
osteoblast development [197]. As 1,25(OH)2D3 may stimulate 
bone turnover, treatment of cancer with 1,25(OH)2D3 might 
theoretically increase the risk of skeletal metastases. This 
aspect of 1,25(OH)2D3 therapy certainly needs further study. 
Considering the use of vitamin D3 analogs with reduced 
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calcemic activity or treatment with parental vitamin D3 in 
combination with other compounds to reduce bone turnover 
may be helpful (see section Combination Therapy below). The 
versatile aspects of endocrine interplay (including vitamin D) 
in the cross talk between bone cells and metastatic cancer cells 
were reviewed by Hofbauer et al. [198].

The data obtained so far on angiogenesis and metasta-
sis show that these two processes contribute to the multiple 
mechanisms by which vitamin D3 exerts anticancer activity.

Parathyroid Hormone-Related Peptide
1,25(OH)2D3 and parathyroid hormone (PTH) mutually 

regulate synthesis and secretion of one another (see Chapter 
27 (vol. 1 of this book)). Production and secretion of PTH are 
inhibited by 1,25(OH)2D3 via a transcriptional effect, and a 
vitamin D responsive element (VDRE) in the promoter of the 
PTH gene has been identified [199,200]. Parathyroid hormone-
related peptide (PTHrP) was initially isolated from several 
carcinomas and is responsible for the syndrome of humoral 
hypercalcemia of malignancy [201,202] (see Chapter 46 (vol. 
1 of this book)). Although originally identified in carcinomas, 
PTHrP has also been identified in normal cells. As will be dis-
cussed now, vitamin D effects to inhibit PTH and PTHrP may 
have a role in its anticancer actions and in reducing metastases 
to bone [203,204].

In normal human mammary epithelial cells, 1,25(OH)2D3 
did not affect basal but inhibited growth factor-stimulated 
PTHrP expression via an effect on transcription [205]. In nor-
mal keratinocytes 1,25(OH)2D3 had no effect on PTHrP secre-
tion in basal culture conditions [206] but did inhibit growth 
factor-stimulated PTHrP production as well [207]. Likewise, 
1,25(OH)2D3 as well as the analogs 22-oxacalcitriol and 
MC903 inhibited PTHrP secretion in immortalized human 
keratinocytes (HPK1A), but this inhibition was less in the 
more malignant ras-transfected clone HPK1A-ras [208,209]. 
1,25(OH)2D3 and the analogs EB1089 and 22-oxacalcitriol 
inhibit the PTHrP gene transcription in and release from the 
squamous cancer cell line NCI H520 [210]. In addition, in the 
human T-cell lymphotropic virus type I transfected T-cell line 
MT-2, 1,25(OH)2D3, and 22-oxacalcitriol inhibited PTHrP gene 
expression and PTHrP secretion [211] and in rat H-500 Leydig 
tumor cells [212], and 1,25(OH)2D3 inhibited PTHrP secretion 
by PC-3 prostate cancer cells. However, another study demon-
strated a prostate cancer-specific or cell-specific effect. Vitamin 
D and the analogs EB1089 inhibit the PTHrP expression via 
a negative VDRE in LNCaP but not PC3 prostate cancer cells 
[213,214]. It was suggested that this might play a role in the 
growth inhibition by vitamin D as PTHrP stimulates pros-
tate cancer growth, tumor invasion and metastasis [215–217]. 
In vivo observations comparable to these in vitro observations 
have also been made. When H-500 Leydig tumor cells were 
implanted in Fisher rats, treatment with 1,25(OH)2D3 and the  
analogs EB1089 resulted in reduced levels of tumor PTHrP 
mRNA and PTHrP serum levels [114]. EB1089 also reduced 
serum levels of PTHrP in nude mice implanted with squa-
mous cancer cells [218]. In Fisher rats implanted with the 

Walker carcinoma, 1,25(OH)2D3 caused a decrease in serum 
PTHrP but the ratio of PTHrP levels and tumor weight was 
similar in rats receiving vehicle or 1,25(OH)2D3. The data 
point to an indirect effect on PTHrP via growth inhibition. 
However, the PTHrP mRNA levels appeared to be decreased 
by 1,25(OH)2D3 [117]. In nude mice bearing the FA-6 cell line of 
a pancreas carcinoma lymph node metastasis, 22-oxacalcitriol 
inhibits PTHrP gene expression, which is related to inhibition 
of tumor-induced hypercalcemia [219]. Together, the overall 
picture that emerges from these studies is that an important 
additional anticancer effect of vitamin D3 and analogs could 
be the inhibition of the syndrome of humoral hypercalcemia 
of malignancy due to PTHrP.

In contrast to these inhibitory effects in human tumor cells 
and tumor models, a stimulatory effect of 1,25(OH)2D3 and 
EB1089 on PTHrP gene transcription and PTHrP production 
by a canine oral squamous carcinoma cell line (Sec 2/88) has 
been observed [220,221]. Also in vivo with the canine adeno-
carcinoma CAC-8 in nude mice, stimulation of PTHrP by 
1,25(OH)2D3 and EB1089 was observed [221]. These findings 
indicate that the effect of vitamin D and analogs on canine 
tumors differ from the action on human tumors.

VITAMIN D EFFECTS ON TUMOR CELLS

Cell Cycle
It has now been well established that vitamin D inhibits 

growth of cells by interfering with the cell cycle (see Chapter 96). 
In a randomized clinical trial an inverse relation of vitamin 
D metabolite levels and Ki67 intensity (proliferative activity) 
in prostate cancer tissue was found after vitamin D treatment 
[222]. Both in breast cancer [223] as well as in colon cancer 
inhibition of cell proliferation via vitamin D is associated with 
JNK1. JNK1 interacts with the VDR and regulates its expres-
sion, influencing 1,25(OH)2D3 mediated inhibition of prolifer-
ation of cancer cells [224]. Proliferating cells progress through 
the cell cycle, which comprises the G0/G1 phase (most differ-
entiated, nondividing cells are in the G1 phase), the S phase in 
which new DNA is synthesized, and the G2 phase, which is 
followed by mitosis (M phase) whereon the cells reenter the 
G0/G1 phase. In most of the cells studied so far treatment with 
1,25(OH)2D3 and its analogs results in a blockade at a specific 
check-point, i.e., the restriction point (R), in the G1 phase limit-
ing the transition of G1 to S and reducing the number of cells 
in S phase. Some studies also have examined the effect on the 
G2 phase, but these results are somewhat more diverse. In 
general it can be concluded that blocking the transition from 
the G0/G1 phase to the S phase plays an important role in the 
growth inhibitory effect of 1,25(OH)2D3. Numerous genes and 
proteins have been described that participate in the regula-
tion of the cell cycle. It is beyond the scope of this chapter to 
discuss in detail the regulation of all of the genes/proteins by 
vitamin D. In Fig. 94.1, an overview is given of the interact-
ing genes/proteins that are involved in intracellular signaling 
and regulating the cell cycle. These genes and proteins are part 
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of the cascade of events on which vitamin D exerts its effects. 
The components shown to be regulated by vitamin D are indi-
cated. Fig. 94.1 is a compilation of data presented thus far and 
it is important to realize that probably not all of the genes/
proteins are affected by vitamin D in all tumor cells. However, 
in this way, one can get an overview and appreciate the broad-
range of effects mediated by vitamin D on intracellular signal-
ing pathways involved in regulation of (tumor) cell growth. 
More details on the regulation will be discussed in more detail 
in various other chapters in this section of the book especially 
Chapter 96.

Besides effects on cell cycle regulation vitamin D has 
recently been implicated to be involved in control of genomic 
stability [225]. 1,25(OH)2D3 has been reported to inhibit 
hepatic chromosomal aberrations and DNA strand breaks 
[226]. This is supported by the finding that 1,25(OH)2D3 and 
EB1089 stimulated the expression of GADD45, which stimu-
lates DNA repair [227] and might be coupled to release of p53 
from Mdm2 (see Fig. 94.1). Notably, a recent study has shown 
that supplemental vitamin D3 and calcium, separately but 
not together, decreased the level of the DNA damage marker 
8-hydroxy-2′-deoxyguanosine in normal colorectal mucosa in 
a randomized clinical trial [228].

(Proto)-oncogenes and Tumor Suppressor Genes
Oncogenes and tumor suppressor genes generally are 

involved in control of the cell cycle and apoptosis. One of the 
most widely studied oncogenes in relation to vitamin D is 
c-myc. c-Myc suppresses expression of cell cycle/growth arrest 
genes gas1, p15, p21, p27, and gadd34, -45, and -153 [229] and 
has been postulated to play an early role in the following cas-
cade of events in G1: cyclins activate cyclin-dependent kinases 
(CDKs), which in turn can phosphorylate the retinoblastoma 
tumor suppressor gene product (p110RB), resulting in transition 
from G1 to S phase (see Fig. 94.1). In several cancer cell types 
1,25(OH)2D3 has been reported to decrease c-myc oncogene 
expression [230]. Analysis of HL-60 sublines showed a relation 
between reduction of c-myc expression and inhibition of pro-
liferation [231]. Similar observations were made for neuroblas-
toma cells treated with 1,25(OH)2D3, EB1089 and KH1060 [232]. 
The mechanism of c-myc inhibition appears to be both direct, 
by inducing the binding of proteins to an intron element and 
the involvement of HOXB4 [233,234], and at least in colon can-
cer cells also indirect via the inhibition of the transcriptional 
activity of β-catenin and T cell factor (TCF) complexes [235]. 
In earlier studies, we did not observe a 1,25(OH)2D3-induced 
change in c-myc expression in MCF-7 and ZR-75.1 breast cancer 
cells, while they were both growth inhibited [236], and a simi-
lar observation has been made for the colon-adenocarcinoma 
CaCo-2 cell line [237]. Nontransformed embryonic fibroblasts 
are growth inhibited by 1,25(OH)2D3, whereas c-myc expres-
sion is not changed or is even increased [238,239]. In the 
MG-63 osteosarcoma cell line, 1,25(OH)2D3 has been shown to 
enhance c-myc expression [240], whereas we observed growth 
inhibition by 1,25(OH)2D3 [241]. Likewise, 1,25(OH)2D3 inhib-
its proliferation and increases c-MYC expression in fibroblasts 
from psoriatic patients [242].

In a recent study inhibition of c-myc was implicated as 
playing a major role in the ability of 1,25(OH)2D3 to inhibit 
prostate cancer proliferation [243]. As an underlying mecha-
nism, 1,25(OH)2D3 and the VDR regulate the functional bal-
ance of c-MYC and its repressor MAD1/MXD1, to suppress 
c-MYC function [21]. Collectively, these data show that regula-
tion of c-myc expression may be part of growth inhibition by 
vitamin D but that this is not generally applicable to all cells. 
1,25(OH)2D3 has also been reported to regulate expression 
of other oncogenes [244–246]; however, these data are rather 
limited.

Nevertheless, it is clear that 1,25(OH)2D3 has effects on the 
expression of various proto-oncogenes. The data so far are not 
conclusive with respect to that genes are crucial in the growth 
inhibitory action of 1,25(OH)2D3. This can be attributed to 
the fact that these (proto)oncogenes encode for transcription 
factors, growth factor receptors or components or intracellu-
lar signaling cascades. The effects of these genes may differ 
between cells dependent on the presence or absence of addi-
tional cell type–specific conditions. Therefore, their postulated 
role is often complex. For example, increased c-myc expres-
sion can be related not only to induction of apoptosis but 
also to stimulation of cell cycle progression. Interestingly, in 
oncogene-induced senescence, functional relationships were 
revealed between Ras, the vitamin D/VDR axis and DNA 
repair factors [247].

In contrast to the oncogenes, the effect of 1,25(OH)2D3 on 
tumor suppressor genes like the retinoblastoma gene is much 
clearer. This may be related to the fact that, in contrast to onco-
genes, retinoblastoma and p53 take well-defined positions in 
the control of cell cycle and DNA repair (see Fig. 94.1). The 
p110RB retinoblastoma gene product can either be phosphor-
ylated or dephosphorylated. In the phosphorylated form it 
can activate several transcription factors and cause transi-
tion to S phase and DNA synthesis [248]. In human chronic 
myelogenous leukemia cells [249], breast cancer cells [250], 
and HL-60 cells [251,252], 1,25(OH)2D3 caused a dephosphor-
ylation of p110RB, which is related to growth inhibition and 
cell cycle arrest in G0/G1 and in one study also in G2 [252]. 
In the leukemic cells 1,25(OH)2D3 also caused a reduction in 
the cellular level of p110RB [249,251]. In nontransformed kera-
tinocytes 1,25(OH)2D3 induced dephosphorylation of p110RB 
as well [253]. The other major tumor suppressor gene is p53 
(in humans). For leukemic U937 cells it was reported that pres-
ence of p53 is important for 1,25(OH)2D3-induced differentia-
tion [254]. In rat glioma cells 1,25(OH)2D3 induces expression 
of p53 [255]. However, 1,25(OH)2D3 can inhibit cell growth and 
induce differentiation in cancer cells with defective p53 [256] 
and also p53-independent induction of apoptosis by EB1089 
has been demonstrated [257]. These latter observations might 
be explained by the fact that vitamin D also interferes at levels 
in the cascade of cell cycle control downstream of p53 (see Fig. 
94.1). Recently, novel interesting data were added to the story 
of p53 and 1,25(OH)2D3 [258]. It was shown that a mutant p53, 
often present in tumors, physically and functionally interacts 
with VDR. Mutant p53 is recruited to vitamin D target genes 
and can stimulate gene expression and relieve suppression of 
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other genes. Mutant p53 increases nuclear accumulation of 
VDR and transforms vitamin D into an antiapoptotic agent 
[258]. An interesting unique relationship between tumor sup-
pressor genes and vitamin D has been shown for the Wilms’ 
tumor suppressor gene WT1. This zinc-finger containing tran-
scription factor induces transcription of the VDR gene [259].

Several interesting additional genes, interactions and vita-
min D targets in cancer treatment should be mentioned. It has 
been demonstrated that 1,25(OH)2D3 can trigger NF-κB activ-
ity through PI3K/Akt pathways [260,261] and also, treatment 
of NB4 leukemic cells with vitamin D causes a rapid phos-
phorylation of IκBα [262]. Contrary to these observations, vita-
min D has been shown to inhibit NF-κB activity by increasing 
IκBα expression in different cell lines [263–265]. Sun et al. [266], 
using mouse embryonic fibroblasts derived from Vdr−/− mice, 
demonstrated that VDR plays an inhibitory role in NF-κB acti-
vation by regulating IκBα levels and VDR-p65 interaction. This 
role for VDR was supported by a recent study that also dem-
onstrated that 1,25(OH)2D3 inhibits transcriptional activity of 
NF-κB in breast cancer cells via histone deacetylase (HDAC3 
and SMRT) mediated p65 transrepression [267]. Kovalenko 
et al. showed direct transcriptional regulation by 1,25(OH)2D3 
of NF-κB in RWPE1 immortalized but nontumerogenic pros-
tate cells [268]. Fekrmandi et al. found that 1,25(OH)2D3 sup-
pressed NF-κB function by enhancing the turnover of the 
FBW7-dependent subunit [269]. 1,25(OH)2D3 also indirectly 
inhibits NF-κB by directly stimulating expression of IGFBP-3, 
an inhibitor of NF-κB [270].

Interestingly, in relation to NF-κB regulation, as early as 
1994, Chen and DeLuca isolated and characterized a vitamin 
D-induced gene in HL-60 cells [271]. The encoded protein, 
named vitamin D-upregulated protein-1 (VDUP1), is a thiore-
doxin-binding protein-2 [272]. Thioredoxin has several roles in 
processes such as proliferation or apoptosis. It also promotes 
DNA binding of transcription factors such as NF-κB, AP-1, 
p53, and PEBP2. In addition, overexpression of thioredoxin 
suppresses the degradation of IκB and the transactivation of 
NF-κB, whereas overexpression of nuclear-targeted thiore-
doxin exhibits enhancement of NF-κB-dependent transacti-
vation [273]. However, it is in only more recent studies that 
a coupling between VDUP1 and cancer has been made. The 
expression of VDUP1 was found to correlate with malignant 
status of colorectal and gastric cancers [274]. 5-fluorouracil, 
which is widely used for treatment of colon cancer, induces 
VDUP1 expression in the SW620 colon cancer cell line [275]. In 
smooth muscle cells and cardiomyocytes VDUP1 inhibits pro-
liferation and is involved in induction of apoptosis [276,277]. 
A relation with vitamin D effects on cancer is made by two 
recent studies showing induction of VDUP1 by 1,25(OH)2D3 in 
tumor cells and that VDUP1 induces cell cycle arrest [278,279]. 
Moreover, interaction with histone deacetylase (HDAC; see 
Fig. 94.1), and promyelocytic leukemia zinc-finger (PLZF) 
was demonstrated. Interestingly and further complicating 
the story, PLZF inhibits 1,25(OH)2D3 induced differentiation 
of U937 leukemic cells by binding to the VDR and inhibit-
ing gene transcription [280,281]. Interestingly, a new related 
gene, DRH1, was cloned and its expression was found to be 

strongly reduced in hepatocellular carcinoma tissue compared 
to normal liver [282]. DRH1 is 41% homologous with VDUP1. 
Whether this points to a new family of cancer genes remains to 
be established but it certainly opens new venues for interven-
ing in cancer cell growth. PIM-1 kinase was identified as a new 
VDR interacting protein, regulating 1,25(OH)2D3 target gene 
(osteopontin) transcription and DR3 reporter response [283].

Important in the regulation of gene expression is the 
involvement of microRNAs (miRNAs). These small endog-
enous RNAs target mRNAs and cause translational repression 
or degradation [284]. In gastric cancer cells it was found that 
miR-145 is induced by 1,25(OH)2D3 and mediates antiprolif-
erative and effects on gene regulation by vitamin D, with as a 
direct target transcription factor E2F3 [285]. Also in other can-
cers vitamin D regulates miRNA expression that opens new 
routes for therapeutic targeting [286,287]. The VDR itself is 
also regulated by miRNAs: miR-125b repressed endogenous 
levels of VDR in MCF-7 cells. Because miR-125b is downregu-
lated in cancer, this may result in upregulation of the VDR and 
positively influence the antitumor effects of vitamin D [288]. 
The regulation of miRNAs by vitamin D in cancer model sys-
tems and impact on 1,25(OH)2D3 signaling is reviewed by Ma 
et al. [289].

Several alternate therapeutic targets for vitamin D antican-
cer activity can be mentioned here that are discussed in more 
detail in the following various chapters on specific cancers. 
One is vitamin D regulation of enzymes involved in estro-
gen and androgen synthesis and metabolism because these 
pathways drive the growth of breast and prostate cancer, 
respectively [290–294]. Vitamin D downregulates the expres-
sion of estrogen receptor (ER) alpha. Two negative VDREs in 
the ER promotor act together in inhibiting ER expression by 
1,25(OH)2D3 [295].

Next, telomerase activity provides a mechanism for 
unlimited cell division. In HL-60 cells 1,25(OH)2D3 inhibits 
telomerase activity [296]. Additionally, whether the homeo-
box genes will prove to be a major target for vitamin D action 
in cancer remains to be elucidated but in a differential expres-
sion screen in the human U937 leukemic cells the HoxA10 
gene was shown to be regulated by 1,25(OH)2D3 [297]. A final 
area is the antiinflammatory activity of vitamin D especially 
its ability to inhibit of COX-2 and the prostaglandin path-
way [298]. Inflammation and carcinogenesis are intimately 
related and vitamin D inhibits many proinflammatory path-
ways perhaps contributing to its chemoprevention as well 
as its therapeutic activity [270]. Stromal-epithelial cross talk 
is important in the effects of 1,25(OH)2D3 on the inflamma-
tory process, as was shown in prostate cancer [299]. Vice 
versa, proinflammatory cytokines such as TNFα and IL-6 can 
decrease the expression of CYP27B1 in colon cancer, impair-
ing activation of vitamin D, so limiting its antiinflammatory 
action again [300].

It was further suggested that the inhibitory effects on pros-
tate cancer cell growth by vitamin D were related to the ability 
of 1,25(OH)2D3 to modulate assembly of C x 32 proteins into 
gap junctions, a way of cell–cell communication that is impor-
tant in cell growth and differentiation [301].
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It is to be expected that as a result of the increasing appli-
cation of large-scale microarray gene expression analyses a 
vast number of new cell cycle and vitamin D regulated genes 
will be identified and these additional findings will add to 
the unraveling and further understanding of the mechanism 
of vitamin D control of cancer cell proliferation [302–304]. 
Recently, RNA sequence data revealed 523 genes that were 
differentially expressed in breast cancer tissue after vitamin 
D treatment (compared to 127 genes in normal breast tissue). 
These genes were mainly involved in processes as cellular 
adhesion, metabolic pathways and tumor suppressor-like 
pathways [305].

Apoptosis
The blockade in the cell cycle that prevents transition into S 

phase may cause cells to either go into apoptosis (programmed 
cell death) or enter a specific differentiation pathway. What 
exactly determines the decision between apoptosis or differ-
entiation remains to be elucidated. It is suggested that early 
G1 phase may be the point at which switching between cell 
cycle progression and induction of apoptosis occurs [306,307]. 
Induction of apoptosis by 1,25(OH)2D3 is an orderly and char-
acteristic sequence of biochemical, molecular, and structural 
changes resulting in the death of the cell [308]. Apoptosis is a 
mechanism by which 1,25(OH)2D3 inhibits tumor cell growth 
and may be the explanation for the tumor suppression and 
reduction in tumor volume found in various in vivo animal 
studies (see section Growth and Development).

1,25(OH)2D3 has been shown to regulate expression of 
apoptosis genes and to induce apoptosis of cancer cells of 
various origins. For example, 1,25(OH)2D3 and the analogs 
Ro 25-6760 induce a cell cycle blockade in HT-29 human 
colon cancer cells causing growth inhibition and induction 
of apoptosis [309]. The bcl-2 oncogene decreases the rate of 
programmed cell death [310]. However, protection of HL-60 
cells against apoptosis occurred despite downregulation of 
bcl-2 gene expression [311]. In several breast cancer cell lines 
(MCF-7, BT-474, MDA-MB-231) 1,25(OH)2D3 and the analogs 
KH1060 and EB1089, decreased bcl-2 expression [256,312] and 
also CB1093 reduced bcl-2 expression in MCF-7 cells related 
to induction of apoptosis [313]. However, only in MCF-7 
cells this change in bcl-2 expression was accompanied by 
apoptosis. The apoptosis induced by 1,25(OH)2D3 and the 
analogs EB1089 and CB1093 in MCF-7 and T47D breast can-
cer cells does not involve caspases or p53 activation [314]. 
1α,25(OH)2D3 induced apoptosis in MCF-7 cells via disrup-
tion of mitochondrial function, which is associated with Bax 
translocation to mitochondria, cytochrome c release, and pro-
duction of reactive oxygen species [315]. It was shown that 
for MCF-7 cells calpain, a calcium-dependent cysteine prote-
ase, may take over the role of the major execution protease in 
apoptosis-like death induced by vitamin D and EB1089 [316].

In B-cell chronic lymphocytic leukemia cells in vitro, 
the vitamin D3 analogs EB1089 also induces apoptosis via 
a p53-independent mechanism involving p38 MAP kinase 
activation and suppression of ERK activity [257]. In prostate 

cancer, the effects of vitamin D on apoptosis of tumor cells 
is caspase dependent and the human VDR is a target of cas-
pase-3, suggesting that activation of caspase-3 may limit VDR 
activity [317].

Effects on other apoptosis genes/proteins such as BAX and 
BAK have been reported [318] and microarray gene expression 
analyses and differential screening will also definitively reveal 
additional vitamin D targets involved in regulating apoptosis 
[304,319]. Remarkably, treatment of patients with vitamin D3 
and calcium increased BAK immunostaining in the interior of 
colonic polyps [320] without affecting BCL2 expression in the 
same polyps [320] or in normal colon mucosa [321]. In a squa-
mous cell carcinoma model system, the 1,25(OH)2D3 analogs 
Inecalcitol showed antitumor activity via apoptosis through 
the activation of the caspase 8/10- caspase 3 pathway [322].

A central role for apoptosis in the action of 1,25(OH)2D3 
is unclear because growth inhibition of several other breast 
cancer cells besides MCF-7 cells appeared to be independent 
of apoptosis [256]. In addition, MCF-7 cells that showed 
growth inhibition by 1,25(OH)2D3 could, after removal of 
the hormone, again be stimulated to grow, implying tran-
sient growth inhibition and not cell death [236]. Stable 
transfection of leukemic U937 cells with the wild-type 
p53 tumor suppressor gene resulted in a reduced growth 
rate and produced cells that can undergo either apoptosis 
or maturation. In these cells 1,25(OH)2D3 protects against 
p53-induced apoptosis and enhances p53-induced matu-
ration [254], In two independent studies with HL-60 cells, 
1,25(OH)2D3 was found either to protect against or to have 
no effects on apoptosis [311,323]. Vitamin D protection 
against apoptosis was also detected in human U937 leuke-
mic cells treated with tumor necrosis factor α [324]. Absence 
of a vitamin D effect on apoptosis might be explained by 
the expression of the antiapoptotic protein BAG-1 p50 iso-
form. This protein has been shown to bind to the VDR and 
block vitamin D induced transcription [325]. Presence of 
additional interacting factors might also be important for 
the eventual effect on apoptosis as in the study with HL-60 
cells that, in the presence but not the absence of 9-cis-retinoic 
acid, 1,25(OH)2D3 did induce apoptosis [323]. Role of vita-
min D interaction with other factors will be discussed in 
more detail in Combination Therapy section.

In summary, the data obtained so far show that 
1,25(OH)2D3-induced growth inhibition can be related to 
apoptosis in some cases but that growth inhibition also can 
be observed independent of apoptosis. Possibly in these lat-
ter cases induction of differentiation is more prominent. The 
factor(s) that decide whether cells undergo apoptosis or dif-
ferentiation is(are) unclear but is probably dependent on cell 
cycle stage, presence of other factors, and levels of expres-
sion of various oncogenes and tumor suppressor genes. 
These variables contribute to what appears to be cell-specific 
actions of vitamin D to induce apoptosis. An interesting phe-
nomenon to be studied concerning vitamin D and apopto-
sis is calbindin 28K. Calbindin 28K is a well known vitamin 
D-induced protein, which has been shown to inhibit apopto-
sis [326]. It is tempting to speculate that calbindin 28K plays 
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a role in the decision of whether vitamin D induces cells to 
differentiate or to go into apoptosis or that it is involved 
when 1,25(OH)2D3 protects against apoptosis. Additionally, 
EB1089 induces lysosomal changes and autophagic cell death 
in human MCF-7 breast cancer cells [327,328].

Differentiation
In addition to proliferation and apoptosis, the third major 

cellular process in the array of vitamin D anticancer actions 
is differentiation. As described above for the classic actions 
of 1,25(OH)2D3 related to calcium homeostasis, effects on cell 
differentiation and proliferation are involved. There is a con-
siderable body of evidence that the principal human cancer 
cells can be suitable candidates for chemoprevention or differ-
entiation therapy with vitamin D. However, different mecha-
nisms of 1,25(OH)2D3 induced differentiation are cell-type and 
cell-context specific [329,330]. The coupling between prolifera-
tion and differentiation has been most widely studied for cells 
of the hematopoietic system and keratinocytes. In general, 
1,25(OH)2D3 inhibits proliferation and induces differentiation 
along the monocyte-macrophage lineage. Rapidly proliferat-
ing and poorly differentiated keratinocytes can be induced to 
differentiate by 1,25(OH)2D3. A further relationship between 
the vitamin D3 system and differentiation is demonstrated by 
the fact that in poorly differentiated keratinocytes 1,25(OH)2D3 
production and VDR levels are high, whereas after induction 
of differentiation these levels decrease [331]. In melanoma 
cells, in addition to growth inhibition [96], 1,25(OH)2D3 stimu-
lates melanin production [332]. Effects on differentiation have 
also been reported for other cell types. Inhibition of prostate 
cancer cell proliferation is paralleled by an increased pro-
duction of PSA per cell, a sign of differentiation [333,334]. In 
the BT-20 breast cancer cells 1,25(OH)2D3 induced morpho-
logical changes indicative for differentiation [335]. In several 
breast cancer cell lines the stimulation of differentiation has 
been established by determining lipid production by the cells 
[256]. In this study, Elstner et al. demonstrated an uncou-
pling between effects on proliferation and differentiation. In 
two breast cancer cell lines 1,25(OH)2D3 and various analogs 
induced differentiation even though the cells were resistant to 
cell cycle and antiproliferative effects. This together with data 
obtained with human myelogenous leukemia cells [249] sug-
gest a dissociation between the cellular vitamin D3 pathways 
involved in regulation of differentiation and proliferation (see 
also section Resistance and Vitamin D Metabolism). For an 
HL-60 subclone a similar observation was made [231], and in 
another HL-60 subclone the induction of differentiation was 
found to precede the G0/G1 cell cycle blockade. In contrast to 
the above-mentioned observations on stimulation of differen-
tiation, 1,25(OH)2D3 inhibits erythroid differentiation of the 
erythroleukemia cell line K562 [336] and 1,25(OH)2D3 inhibits 
Activin A-induced differentiation of murine erythroleukemic 
F5-5 cells [337]. Paracalcitol, a vitamin D2 analogs, converted 
committed myeloid hematopoietic stem cells from wild-type 
but not from VDR-knockout mice to differentiate into macro-
phages [338].

In an early paper Shabahang et al.found that the level of 
VDR correlated with the degree of differentiation in human 
colon cancer cell lines and suggested it might serve as a use-
ful biological marker in predicting clinical outcome in patients 
[2]. Differentiation of rapidly dividing HT-29 colon cancer 
cells to differentiated slowly proliferating cells was associated 
with decreased VDR abundance, loss of VDR homologous 
upregulation, and the development of hormone unrespon-
siveness to 1,25(OH)2D3 [311]. 1,25(OH)2D3 induces an adhe-
sive phenotype typical of the differentiated epithelial cells 
that is mostly based on the upregulation of E-cadherin and 
other plasma membrane adhesion proteins of adherens junc-
tions (α-catenin) and tight junctions (occludin, claudins, ZO-1) 
[235,339]. In addition, 1,25(OH)2D3 regulates the phenotype 
of human breast cancer cells, Thus, it increases the expression 
of E-cadherin, claudin-7 and occludin and of proteins such as 
paxillin, focal adhesion kinase and αv and β5 integrins that 
are involved in adhesion to the substratum [340]. Moreover, 
1,25(OH)2D3 represses several markers of the basal/myoepi-
thelial phenotype (P-cadherin, smooth muscle α-actin and α6 
and β4-integrins), the proinvasive and proangiogenic protein 
tenascin-C protein, and the mesenchymal marker N-cadherin 
that are associated with aggressiveness and poor prognosis in 
breast cancer [341,342]. Another prodifferentiation action of 
vitamin D, that may be beneficial in breast cancer, is the dif-
ferentiation of preadipocytes that express high levels of aro-
matase, to differentiated adipocytes that express much lower 
levels of aromatase [294]. Although precise relationships 
among growth inhibition, cell cycle effects, and apoptosis are 
not entirely clear, it can be concluded that an important effect 
of vitamin D3 on both normal and malignant cells is induction 
of differentiation.

Growth Factors and Growth Factor Receptors
Besides regulation of cell cycle-related oncogenes and tumor 

suppressor genes, interaction with tumor- or stroma-derived 
growth factors is important for growth inhibition. Stimulation 
of breast cancer cell proliferation by coculture with fibroblasts 
is inhibited by 1,25(OH)2D3 [343]. A good candidate to interact 
with the 1,25(OH)2D3 action is transforming growth factor-β 
(TGFβ). TGFβ is involved in cell cycle control and apoptosis 
[344,345]. TGFβ can interfere with the cascade of events in the 
gi phase described above and inhibit the ability of cells to enter 
S phase when it is present during the gi phase. TGFβ has been 
shown to suppress c-myc, cyclin A, cyclin E, and cdk2 and cdk4 
expression [345]. In line with this, TGFβ has been reported 
to inhibit phosphorylation of p110RB [346]. Vitamin D3 com-
pounds induce dephosphorylation of the retinoblastoma gene 
product, and vitamin D3 growth inhibition of MCF-7 breast 
cancer cells is inhibited by a TGFβ neutralizing antibody [347]. 
1,25(OH)2D3 and several analogs stimulated the expression of 
TGFβ mRNA and secretion of active and latent TGFβ1 by the 
breast cancer cell line BT-20 [174]. 1,25(OH)2D3 enhanced TGβ1 
gene expression in human keratinocytes [348] and the secre-
tion of TGFβ in murine keratinocytes [349]. In both studies 
antibodies against TGFβ inhibited the growth inhibitory effect 
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of vitamin D3. Further evidence for a vitamin D3-TGFβ inter-
action is that bone matrix of vitamin D-deficient rats contains 
substantially less TGFβ than controls [350]. It has been shown 
for the interaction between TGFβ signaling pathways and vita-
min D that the cross talk may be mediated by Smad3. Smad3, 
one of the SMAD proteins downstream in the TGFβ signaling 
pathway, was found in mammalian cells to act as a coactivator 
specific for ligand-induced transactivation of VDR by forming 
a complex with a member of the steroid receptor coactivator-1 
protein family in the nucleus [351]. However, Smad3 is not of 
itself sufficient to coactivate VDR in TGFβ/vitamin D3 resis-
tant MCF7L cells and other factors are required. It was found 
that the PI 3-kinase pathway inhibitor LY29004 inhibited the 
synergy of TGFβ and EB1089 on VDR-dependent transactiva-
tion activity. This indicates that the cross talk between TGFβ 
and vitamin D signaling is also PI 3-kinase pathway depen-
dent [352]. Therefore, on the basis of these consistent findings, 
TGFβ is a likely candidate to play a role in the l,25(OH)2D3-
induced growth inhibition [352].

Interactions with the insulin-like growth factor [258] system 
have also been described. IGFs are potent growth stimulators 
of various cells, and their effect is regulated via a series of IGF-
binding proteins (IGFBPs). The IGFBPs, especially IGFBP-3 
have potent antiproliferative and proapoptotic actions [353]. 
These effects include both IGF-dependent actions, by seques-
tering the potent growth factor, and IGF-independent, having 
direct actions via its own receptor [354,355]. Among the many 
ways vitamin D inhibits prostate cancer growth, stimulation of 
IGFBP-3 may be a major contributor [356].

1,25(OH)2D3 and the analogs EB1089 inhibit the IGFI-
stimulated growth of MCF-7 breast cancer cells [357]. In 
prostate cancer cell lines, 1,25(OH)2D3 induced expression of 
IGFBP-6 but not IGFBP-4 [358]. In human osteosarcoma cell 
lines, 1,25(OH)2D3 and the analogs 1α-dihydroxy-16-ene-23-
yne-26,27-hexafluorochole-calciferol potently stimulated the 
expression and secretion of IGFBP-3 [359–361]. In one study an 
association has been made between increased IGFBP-3 levels 
and 1,25(OH)2D3 growth inhibition [359]. Recent observations 
that antisense oligonucleotides to IGFBP-3 prevented growth 
inhibition of prostate cancer cells by 1,25(OH)2D3 [303] pro-
vided further evidence for an interplay between 1,25(OH)2D3 
and IGFBP-3. Interestingly, in the human osteosarcoma cell 
line MG-63, 1,25(OH)2D3 and TGFβ synergistically increased 
IGFBP-3 secretion [361]. IGF-II is also a growth and survival 
factor for colorectal cancer cells and 1,25(OH)2D3 and sev-
eral analogs interfere with IGF-II signaling. They upregulate 
IGFBP-6, which inhibits IGF-II signaling, and type II IGF 
receptor (IGF-R-II) that also blocks this pathway and acceler-
ates IGF-II degradation [362,363]. An example of growth fac-
tor receptor regulation by 1,25(OH)2D3 concerns the epidermal 
growth factor receptor (EGFR). This receptor is downregulated 
in T47-D breast cancer cells and upregulated in BT-20 breast 
cancer cells. Nevertheless, 1,25(OH)2D3 inhibits the growth 
of both cell lines [364,365]. These data provide evidence that 
interactions with growth factors are part of the 1,25(OH)2D3 
action on tumor cells. In primary colon adenocarcinoma cells 
as well as in the colon cancer Caco-2 cell line 1,25(OH)2D3 

inhibits EGF mitogenic signaling and a mutual modulation of 
receptor expression between 1,25(OH)2D3 and EGF has been 
proposed [366,367]. In A431 epidermoid cells 1,25(OH)2D3 
alters EGFR membrane trafficking and inhibits EGFR signal-
ing [368].

It was found that TCF-4, a transcriptional regulator and 
beta-catenin binding partner is an indirect target of the VDR 
pathway. TCF-4 functions as a transcriptional repressor that 
restricts breast and colorectal cancer cell growth. 1,25(OH)2D3 
increases TCF-4 at the RNA and protein levels in several human 
colorectal cancer cell lines, the effect of which is completely 
dependent on the VDR. This 1,25(OH)2D3/VDR-mediated 
increase in TCF-4 may have a protective role in colon cancer as 
well as other diseases [369]. In an in vivo model of liver tumor 
formation, vitamin D deprivation caused tumor growth in the 
context of TGFβ/Smad3 disruption. This via regulation of toll-
like receptor 7 expression and β-catenin activation [370].

As described above, it is clear that 1,25(OH)2D3 has effects 
on the expression of various oncogenes and tumor suppres-
sor genes and that multiple interactions with various growth 
factors exist. However, the data on these aspects separately as 
well as in combination are still too limited to define the total 
mechanism of action for the 1,25(OH)2D3 anticancer effects. 
However, with respect to growth inhibition, at this time two 
models of action can be postulated. In the first one 1,25(OH)2D3 
directly interferes with a crucial gene(s) involved in the control 
of the cell cycle. In this case, in view of the general pattern 
of the genes involved in cell cycle control, this mechanism of 
action will be similar in all types of cancer cells. However, the 
effect on cell cycle genes will be dependent on the presence 
or absence of additional growth factors. This will eventually 
determine, depending on which growth factors are present, 
the differences in 1,25(OH)2D3 action not only between cancer 
types of different origin but also within cancer types of simi-
lar origin. In the second model 1,25(OH)2D3 may regulate cell 
cycle indirectly via changing the production of growth factors, 
growth factor signaling, growth factor-binding protein levels, 
or receptor regulation. It is conceivable that a combination 
of both models forms the basis of 1,25(OH)2D3 regulation of 
tumor cell growth.

COMBINATION THERAPY

The data obtained with 1,25(OH)2D3 and its analogs on 
growth inhibition and stimulation of differentiation offer 
promise for their use as an endocrine anticancer treatment. 
Single agent treatment with low calcemic 1,25(OH)2D3 analogs 
could be useful; however, combination therapy with other 
tumor effective drugs may provide an even more beneficial 
effect [157]. Up to now several in vitro and in vivo studies 
have focused on possible future combination therapies with 
1,25(OH)2D3 and 1,25(OH)2D3 analogs.

For breast cancer cells, the combination of one of the most 
widely used endocrine therapies, the antiestrogen tamoxifen, 
with 1,25(OH)2D3 or 1,25(OH)2D3 analogs resulted in a greater 
growth inhibition of MCF-7 and ZR-75-1 cells than treatment 
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with either compound alone [133,371]. In combination with 
tamoxifen, the cells were more sensitive to the antiprolifera-
tive action of 1,25(OH)2D3 and the analogs; that is, the EC50 
values of the vitamin D3 compounds in the presence of tamoxi-
fen were lower than those in the absence of tamoxifen. Studies 
with MCF-7 cells suggested a synergistic effect of 1,25(OH)2D3 
and tamoxifen on apoptosis [372]. In addition, in in vivo 
breast cancer models, a synergistic effect of the tamoxifen-
l,25(OH)2D3 analogs combination was observed [133,134].

Another interesting interaction relevant to breast cancer is 
that vitamin D inhibits aromatase thus reducing the estrogenic 
stimulus for proliferation [294]. Combination of 1,25(OH)2D3 
and aromatase inhibitors also showed synergistic activity in 
breast cancer cells. 1,25(OH)2D3 also downregulates the ER, 
again reducing the ability of estrogens to stimulate breast can-
cer growth [373]. Additional data on the interaction between 
the estrogen/antiestrogen system and vitamin D comes from 
studies showing the presence of an estrogen responsive ele-
ment in the VDR promoter and regulation of VDR by estradiol 
in breast cancer cells [374]. It is intriguing that the stimulator of 
breast cancer cell growth induces the expression of the recep-
tor for a growth inhibitor. VDR upregulation in breast cancer 
cells and increased transcriptional activity was mimicked by 
the phytoestrogens resveratrol and genistein and blocked by 
tamoxifen [375]. Estradiol induces metastasis-associated pro-
tein (MTA)-3, a component of the Mi-2/NuRD transcriptional 
corepressor complex that inhibits Snail1, which is in turn a 
repressor of VDR gene expression [376,377]. In this way, estra-
diol may increase VDR levels in breast cells. In colon cancer also 
VDR upregulation by estradiol has been reported, however, 
in colon it was hypothesized to contribute to the protective 
effect of estradiol on chemically induced colon carcinogenesis 
[378]. These important and complex interactions between the 
vitamin D and estrogen endocrine systems in the regulation of 
cancer [293] are promising and warrant further detailed analy-
ses, e.g., regarding tissue (cancer)-specific effects. In addition, 
the estrogen endocrine system may regulate the metabolism 
of 1,25(OH)2D3 in cancer cells and thereby affect its action (see 
section Resistance and Vitamin D Metabolism). Interaction 
with another sex steroid, testosterone, has been described for 
ovarian cancer. Vitamin D inhibits dihydrotestosterone (not 
convertible to estradiol) growth stimulation of ovarian cancer 
cells [379]. Intriguingly, also here the growth stimulator and 
growth inhibitor mutually upregulate their receptors.

Interestingly, triple-negative breast cancer can be targeted 
with androgen receptor (AR) and/or VDR agonists to reduce 
viability of cancer cells and to change in cancer stem cell phe-
notype. The combination of AR and VDR agonists with che-
motherapy was additive [380]. In prostate cancer cells it has 
been shown that 1,25(OH)2D3, while inhibiting androgen stim-
ulated growth upregulates the androgen receptor [381].

Interaction with another steroid in regulating cancer cells 
had already been reported in 1983. The synthetic glucocorti-
coid, dexamethasone and 1,25(OH)2D3 synergistically induced 
differentiation of murine myeloid leukemia cells [382]. This 
was supported by in vitro and in vivo data that dexametha-
sone enhanced the effect of vitamin D on growth inhibition, 

cell cycle arrest and apoptosis of squamous carcinoma cells 
[383,384]. A possible mechanism is the upregulation of VDR 
by dexamethasone [383]. An interesting aspect of this com-
bination is not only the direct interaction at cancer cell level 
but also in the control of the calcemic action of 1,25(OH)2D3. 
Glucocorticoids inhibit intestinal calcium absorption and 
increase renal calcium excretion and in this way it may limit 
the hypercalcemic action of 1,25(OH)2D3 [385].

Combination of vitamin D3 and retinoids has been exam-
ined in various systems. A combination of retinoic acid and 
1,25(OH)2D3 resulted in a more profound growth inhibition 
of both T47-D breast cancer cells [386] and LA-N-5 human 
neuroblastoma cells [387]. 9-cis-Retinoic acid augmented 
l,25-(OH)2D3-induced growth inhibition and differentiation 
of HL-60 cells [388]. Besides growth inhibition and differen-
tiation effects, the combination of 1,25(OH)2D3 and various 
isomers of retinoic acid were more potent in reducing angio-
genesis than either compound alone [167,389,390]. The back-
ground of the interaction between retinoids and 1,25(OH)2D3 
may be attributed to heterodimer formation of the respective 
receptors [391].

For several cytokines, interactions with 1,25(OH)2D3 have 
been described, stressing the importance of the antiinflamma-
tory actions of vitamin D in cancer [392,393]. Interferon-γ and 
1,25(OH)2D3 synergistically inhibited the proliferation and 
stimulated the differentiation of myeloid leukemia cells [394]. 
Treatment of LLC-LN7 tumor cells with 1,25(OH)2D3 and 
IFN-γ synergistically reduced tumor granulocyte-macrophage 
colony-stimulating factor (GM-CSF) secretion and a block-
age in the capacity of the tumor cells to induce granulocyte- 
macrophage-suppressor cells [116]. In the mouse myeloid 
leukemia cells interleukin-4 enhanced 1,25(OH)2 D3-induced 
differentiation [395]. Also with interleukin-1β, interleukin-3, 
interleukin-6, and interleukin-12 interactions with 1,25(OH)2D3 
have been reported [396–398]. 1,25(OH)2D3 and tumor necrosis 
factor synergistically induced growth inhibition and differen-
tiation of HL-60 [399]. For MCF-7 cells an interaction between 
1,25(OH)2D3 and tumor necrosis factor has also been reported 
[398,400]. In the presence of GM-CSF lower concentrations of 
1,25(OH)2D3 could be used to achieve a similar antiprolifera-
tive effect in MCF-7 cells [401] and to induce differentiation 
of U937 myeloid leukemic cells [402]. Other factors shown to 
interact with 1,25(OH)2D3 are butyrate [403,404], melatonin 
[405], and factors described in Section Differentiation.

Furthermore, combinations of vitamin D3 compounds with 
cytotoxic drugs, antioxidants and radiation have been stud-
ied. In vivo adriamycin and in vitro carboplatin and cisplatin, 
doxorubicin interacted synergistically with 1,25(OH)2D3 to 
inhibit breast cancer cell growth [128,406–408].

In a carcinogen-induced rat mammary tumor model, treat-
ment with 1α-(OH)D3 and 5-fluorouracil, however, did not 
result in enhanced antitumor effects [113]. Recently interac-
tions with a plant-derived polyphenolic antioxidant, carnosic 
acid were demonstrated in the differentiation of HL-60 cells, 
which was related to a decrease in the intracellular levels of 
reactive oxygen species [409,410]. Also interaction with radia-
tion therapy in breast cancer has been described [411–413]. In 
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a murine skin cancer model, brief oral administration of cho-
lecalciferol before photodynamic therapy enhanced tumor cell 
death [414].

The data on combinations of 1,25(OH)2D3 and 1,25(OH)2D3 
analogs with various other anticancer compounds are prom-
ising and merit further analyses. The development of effec-
tive combination therapies may result in better response 
rates and lower required dosages, thereby reducing the risk 
of negative side effects. An additional benefit is that some 
direct actions of 1,25(OH)2D3 may reduce side effects of toxic 
chemotherapy drugs when given in combination [415]. An 
overview and possibilities of combined cancer treatments 
of vitamin D and other compounds is given by Gocek and 
Studzinski [416].

RESISTANCE AND VITAMIN D 
METABOLISM

Classic vitamin D resistance concerns the disease heredi-
tary vitamin D-resistant rickets, which is characterized 
by the presence of a nonfunctional VDR and consequently 
aberrations in calcium and bone metabolism (see Chapter 
72). For cancer cells the presence of a functional VDR is 
also a prerequisite for a growth regulatory response, and a 
relationship between VDR level and growth inhibition has 
been suggested for osteosarcoma, colon carcinoma, breast 
cancer, prostate cancer cells, and rat glioma [255,417–420]. 
Cell lines established from DMBA-induced breast tumors 
in VDR-knockout mice are insensitive to growth arrest and 
apoptosis by 1,25(OH)2D3, EB1089 and CB1093 [421]. Albeit 
that VDR is a prerequisite for tumor cell growth regulation, 
the presence of the VDR is not always coupled to a growth 
inhibitory response of 1,25(OH)2D3. Results from studies 
with transformed fibroblasts [238], myelogenous leukemia 
cells [231,249,422], transformed keratinocytes [423], and vari-
ous breast cancer cell lines [256,424] demonstrated a lack of 
growth inhibition by 1,25(OH)2D3 even in the presence of 
VDR. In this situation the designation “resistant” is based 
on the lack of growth inhibition, even though, as discussed 
earlier in Differentiation section, some of these cells are still 
capable of being induced to differentiate [249,256]. This 
points to a specific defect in the growth inhibitory pathway. 
In the resistant MCF-7 cells this defect is not located at a very 
common site in the growth inhibitory pathway of the cell, 
because the growth could still be inhibited with the antiestro-
gen tamoxifen [424]. For myelogenous leukemia cells simi-
lar observations have been made [425]. Human VDR gene is 
transcriptionally repressed by SNAIL1 and SNAIL2/SLUG 
in human colon cancer cells leading to decreased levels of 
VDR RNA and protein and unresponsiveness to 1,25(OH)2D3 
effects [426–428]. SNAIL1 also causes a decrease in VDR RNA 
stability [426], while Snail1 represses VDR in mouse osteo-
blasts and SNAIL2/SLUG in human breast cancer cells [429]. 
In addition, Snail1 is probably mediating the decrease in 
VDR mRNA stability induced by oncogenic Ha-ras in mouse 
NIH-3T3 cells [430,431].

For VDR-independent resistance to growth inhibition 
and in general to 1,25(OH)2D3 effects several the underlying 
mechanism(s) have been proposed: increased levels of VDR 
corepressors, reduced bioavailability of 1,25(OH)2D3 due 
to either or both 24-hydroxylase (CYP24) upregulation and 
25-hydroxyvitamin D3 1α-hydroxylase (CYP27B1) down-
regulation, and disruption or phosphorylation of VDR-RXR 
dimers. Resistance to 1,25(OH)2D3 in breast and prostate can-
cer cells has also been found to be a consequence of increased 
levels of the VDR corepressors NCoR or SMRT [432,433]. This 
is in line with the reported synergistic effect on the prolif-
eration of prostate cancer cells of combined treatment with 
1,25(OH)2D3 and the histone deacetylase inhibitor tricho-
statin [403].

The resistant MCF-7 clone described by Welsh and col-
leagues is not related to upregulation of the P-glycoprotein 
[424]. Interestingly, these vitamin D resistant MCF-7 clones can 
be sensitized to vitamin D by activation of protein kinase C, 
resulting in induction of apoptosis and transcriptional activa-
tion, suggesting that alterations in phosphorylation may affect 
vitamin D sensitivity [434]. Hansen et al. described a different 
interesting growth inhibition resistant MCF-7 cell clone. This 
clone was not growth inhibited, while VDR was still present 
and CYP24 could still be induced [435].

Recurrent tumors are often resistant to therapy. Adding to 
the complexity of this phenomenon is the presence of a spe-
cific subset of cancer cells: the cancer stem cells. These cells are 
highly resistant to therapies and effective in repopulating the 
tumor [436]. Mammospheres, an indicator of stem cell activ-
ity, generated from breast cancer cell lines showed suppressed 
VDR signaling, but combined treatment with 1,25(OH)2D3 
and a nitric oxide (NO)-donor caused a significant decrease in 
mammosphere size and smaller tumor volume in nude mice 
[437]. Inhibition of breast cancer stem cell spheroid (mammo-
sphere) formation by 1,25(OH)2D3 was also found by Jeong 
et al. [438]. Effects of vitamin D on prostate progenitor/stem 
cells resulted in cell-cycle arrest, senescence, and differentia-
tion that were mediated by IL-1α [439]. These strategies may 
lead the way to find new concepts to overcome therapy resis-
tance. Targeting cancer stem cells by vitamin D is reviewed by 
So and Suh [440].

Another example of vitamin D resistance are HL60 cells that 
have been cultured for 4 years in the presence of 1,25(OH)2D3. 
This resulted in clones that are resistant to differentiation 
induction and growth inhibition. They became not only resis-
tant to vitamin D but also to 5-beta-d-arabinocytosine sug-
gesting a common metabolic pathway being responsible [441]. 
Whether this relates to the upregulation of the multidrug resis-
tance proteins is not clear. In the resistant leukemia JMRD3 cell 
line, altered regulation and DNA-binding activity of junD as 
part of the AP-1 complex has been reported [244]. Resistance to 
growth inhibition in the presence of VDR has also been linked 
to disruption of the VDR-RXR complex [442] and increased 
RXR degradation [443]. In addition, other factors, like the 
acute myeloid leukemia translocation products (e.g., PLZF) 
may contribute to resistance to vitamin D by sequestering 
the VDR [280,281]. More recently it was shown that alterated 
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corepressor and coactivator interaction with VDR and that epi-
genetic preferential suppression of antiproliferative gene pro-
moters can explain the resistance to growth inhibition [444]. 
Resistance has also been linked to epigenetic changes in the 
VDR promoter leading to suppressed or absent expression of 
VDR [445].

A unique mechanism for vitamin D resistance in immor-
talized cells has recently been uncovered. Epstein–Barr virus 
(EBV) has been used to transform and immortalize lympho-
blasts that can grow as cell lines in vitro. EBNA-3 is an EBV 
encoded protein that can regulate transcription of cellular 
and viral genes. EBNA3 binds the VDR and blocks the acti-
vation of VDR-dependent genes and protects transformed 
cell lines against vitamin-D3-induced growth arrest and/or 
apoptosis [446]. The 1,25(OH)2D3 sensitive and resistant cell 
clones provide interesting models to examine the molecular 
mechanisms of 1,25(OH)2D3-induced growth inhibition. For 
example, lack of p21 results in no cell cycle block [447] and 
no apoptosis was detected with a mutated p53 [256]. Finally, 
the identification of cellular proteins that are involved in 
the vitamin D resistance in new world primates might add 
to the understanding of tumor cell resistance to vitamin D 
[448,449].

At the moment the major mechanism for vitamin D 
resistance or reduced sensitivity in VDR containing tumor 
and cancer cells is 1,25(OH)2D3 catabolism via the C24-
hydroxylation pathway. An inverse relationship between 
cellular metabolism of 1,25(OH)2D3 via 24-hydroxylation 
and growth inhibition of prostate cancer cells has been sug-
gested [418]. The latter observation is intriguing, the more 
so as an inverse relationship between VDR level and induc-
tion of CYP24 activity was reported. In general, there may 
exist a direct relationship between VDR level and induction 
of CYP24 activity [419,450].

An important role in the control of 1,25(OH)2D3 action on 
cancer cells was provided by studies with the 1,25(OH)2D3 
resistant prostate cancer cell line DU145. It was shown that 
1,25(OH)2D3 did inhibit the growth of these cells when it was 
combined with the 24-hydroxylase inhibitor Liazorole [451]. 
1,25(OH)2D3 activity was likewise enhanced by combina-
tion with ketoconazole, a drug commonly used to treat pros-
tate cancer that inhibits CYP24 activity [452,453]. Inhibition 
of CYP24 activity in HL-60 cells also altered the effect of 
1,25(OH)2D3 and 20-epi analogs [454]. Recently, epigenetic 
silencing of the CYP24 gene modulates the growth response 
of tumor-derived endothelial cells [455]. The action of the 
analogs EB1089 was also limited by hydroxylation at the C24 
position [456]. However, it was suggested that the increased 
potency of EB1089 is at least partly due to resistance to CYP24 
[302]. Alternatively, 24-hydroxylation of the analogs KH1060 
has been implicated as one of the mechanisms to explain the 
potency of this analogs. The 24-hydroxylated metabolites of 
this analogs are very stable and remain biologically active 
[457,458]. It has been shown that the naturally occurring 
24-hydroxylated metabolite of vitamin D3 (24R,25-(OH)2D3) 
also has a preventive effect on chemically induced colon can-
cer [459].

Interaction between the estrogen system and CYP24 is 
also of importance. Data have shown that the phytoestro-
gen genistein inhibits CYP24 activity in prostate cancer cells 
and thereby increases the responsiveness to 1,25(OH)2D3 
[460,461]. A role for CYP24 as oncogene is suggested by data 
showing amplification of the CYP24 locus on chromosome 
20q13.2 [462], and increased copy-number causing overex-
pression in colorectal cancer [463]. CYP24A1 has been men-
tioned as a new prognostic biomarker for colorectal cancer 
patients [464].

In contrast to degradation of 1,25(OH)2D3 by CYP24 in 
cancer cells recently it has become clear that tumor cells con-
tain CYP27B1 activity and thereby are able to locally generate 
1,25(OH)2D3. Expression of 1α-hydroxylase has been demon-
strated in colorectal cancer [465]. It was postulated that in early 
stages tumor cells respond by upregulating 1α-hydroxylase 
activity to counteract neoplastic growth, while at later stages 
of tumor development this is lost [465]. Also in prostate cancer 
[466] and inflammatory myofibroblastic tumor [467] CYP27B1 
has been detected, albeit that in the latter case the tumor con-
tains large numbers of macrophages. It can be anticipated that 
in the coming years investigation of the expression of both 
CYP24A1, CYP27B1 in tumors will add to the understanding 
the role of vitamin D in inhibiting the initiation and progres-
sion of cancer. An overview of the signaling pathways of vita-
min D in cancer and their role in therapeutic involvement is 
shown by Deeb et al. [468], a review of molecular mechanisms 
underlying the positive effects of vitamin D in cancer is given 
by Fleet et al. [469].

STIMULATION OF PROLIFERATION

Over the years a limited number of studies have demon-
strated that, in contrast to growth inhibition, 1,25(OH)2D3 can 
also stimulate tumor cell growth and tumor development. In 
several cells 1,25(OH)2D3 has been reported to have a biphasic 
effect, that is, at lower concentrations (<10−9 M) it stimulates 
proliferation and at higher concentrations (10−9 to 10−7 M) it 
inhibits proliferation. However, clear growth stimulation can 
sometimes be observed not only at low concentrations but 
also at the concentrations generally found to inhibit tumor 
cell proliferation and tumor development. 1,25(OH)2D3 has 
been shown to stimulate the growth of a human medullary 
thyroid carcinoma cell line [470]. Not only cancer cells but 
also several normal cells, for example, human monocytes 
[471], smooth muscle cells [472], and alveolar type II cells 
[473], are stimulated to grow by 1,25(OH)2D3. Skin is another 
organ in which different effects of 1,25(OH)2D3 have been 
observed. In vivo studies demonstrated that 1,25(OH)2D3 
and analogs stimulate keratinocyte proliferation in normal 
mice [474–477] and enhance anchorage-independent growth 
of preneoplastic epidermal cells [478]. In contrast, other stud-
ies showed 1,25(OH)2D3 inhibition of proliferation of mouse 
and human keratinocytes [479,480], and 1,25(OH)2D3 is also 
effective in the treatment of the hyperproliferative disor-
der psoriasis [481]. Moreover, in vivo studies demonstrated 
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that, depending on the carcinogen, 1,25(OH)2D3 can either 
reduce [105] or enhance the induction and development 
of skin tumors in mice [482,483]. In addition, 1,25(OH)2D3 
enhances the chemically induced transformation of BALB 
3T3 cells and hamster embryo cells [484,485]. 1,25(OH)2D3 
also enhanced 12-O-tetradecanoylphorbol-13-acetate-induced 
tumorigenic transformation of mouse epidermal JB6 Cl41.5a 
cells [486,487].

Another example comes from research on osteosarcoma 
cells. In 1986 it was shown that 1,25(OH)2D3 stimulated the 
growth of tumors in athymic mice inoculated with the ROS 
17/2.8 osteosarcoma cell line [488]. Earlier the same group 
reported growth stimulation in vitro of these osteosarcoma 
cells at low concentrations but growth inhibition by 10−8 M 
[417]. They speculated that this discrepancy resulted from 
limited in vivo availability of 1,25(OH)2D3 for the tumor cells, 
resulting in concentrations shown to be growth stimulatory 
in vitro. However, in other experiments with nude mice the 
availability of 1,25(OH)2D3 did not seem to be a factor, as 
growth inhibition was observed (see Table 94.2). In particular, 
in nude mice implanted with human osteosarcoma cells (MG-
63), growth inhibition and tumor suppression by 1,25(OH)2D3 
were observed [115]. In two different in vitro studies, growth 
inhibition of MG-63 and growth stimulation of ROS 17/2.8 
cells was reported [489,490]. For smooth muscle cells it has 
been demonstrated, for example, that growth inhibition or 
stimulation can depend on the presence of additional growth 
factors in the culture medium [472]. We followed up on this 
concept by comparing the effects of 1,25(OH)2D3 and ana-
logs on the growth and osteoblastic characteristics of the two 
osteosarcoma cell lines under identical culture conditions. At 
concentrations 10−10 to 10−7 M 1,25(OH)2D3 caused an increase 
in cell proliferation by 100% in ROS 17/2.8 cells, whereas the 
proliferation of MG-63 cells was inhibited [241]. In contrast, 
in both cell lines 1,25(OH)2D3 stimulated osteoblastic differ-
entiation characteristics such as production of osteocalcin and 
alkaline phosphatase activity [241,489]. Analyses with another 
steroid hormone demonstrated that glucocorticoids inhibited 
the growth of both osteosarcoma cell lines [491,492]. These 
data indicate specific differences between these cell lines, 
especially with respect to the 1,25(OH)2D3 growth regulatory 
mechanisms.

In addition to these biological data in cells, an epidemio-
logical study also showed an increased risk of aggressive pros-
tate cancer with higher levels of 25-hydroxyvitamin D3 [57]. 
Taken together, the data on growth stimulation and tumor 
development, although detected in only a small minority of 
cancer cells, demonstrate that treatment with 1,25(OH)2D3 or 
analogs may not always cause growth inhibition and tumor 
size reduction. It is therefore of utmost importance to identify 
the mechanism(s) by which 1,25(OH)2D3 exerts its inhibitory 
and stimulatory effects on cell growth. This may provide tools 
to assess whether treatment of a particular tumor will be ben-
eficial. Moreover, purely from a mechanistic point of view, fur-
ther study of growth-stimulated and growth-inhibited cells, 
like the 1,25(OH)2D3 sensitive and resistant cells, may pro-
vide tools to examine the 1,25(OH)2D3 mechanism of growth 
regulation.

CONCLUSIONS

The data obtained so far, on (1) the distribution of the 
VDR in a broad range of tumors and (2) the inhibition of 
cancer cell growth, angiogenesis, metastasis, inflammation 
and PTHrP synthesis as well as the stimulation of differ-
entiation and apoptosis by 1,25(OH)2D3, all hold promise 
for the development of treatment strategies based on the 
avoidance of vitamin D deficiency and the adjunctive use of 
vitamin D3 in a wide range of cancers in combination with 
other antitumor drugs as an important therapeutic option. 
Throughout the previous decade data have accumulated on 
the cellular targets and mechanism of action of 1,25(OH)2D3-
induced cancer growth inhibition. The clinical application 
is enhanced by the development of 1,25(OH)2D3 analogs 
with potent growth inhibitory actions and reduced hyper-
calcemic activity. Nevertheless it is crucial for the coming 
years to deliver strong randomized controlled clinical tri-
als in humans to support the potential of vitamin D in can-
cer treatment uncovered by investigation of cultured cells, 
animal models and epidemiological studies. In the mean-
time, continuing research to understand the mechanisms 
by which vitamin D3 exerts its effects on tumor cell growth 
is needed so that therapeutic modalities may be employed 
more effectively.
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