Adenovirus

Joseph P. Lynch, III, M.D.,1 Michael Fishbein, M.D.,2 and Marcela Echavarria, Ph.D.3

ABSTRACT

Adenoviruses (AdV) are DNA viruses that typically cause mild infections involving the upper or lower respiratory tract, gastrointestinal (GI) tract, or conjunctiva. Rare manifestations of AdV infections include hemorrhagic cystitis, hepatitis, hemorrhagic colitis, pancreatitis, nephritis, or encephalitis. Adenovirus infections are more common in young children, owing to lack of humoral immunity. Epidemics of AdV infections may occur in healthy children or adults in closed or crowded settings (particularly military recruits). The disease is more severe, and dissemination is more likely in patients with impaired immunity (eg, organ transplant recipients, human immunodeficiency virus infection, congenital immunodeficiency syndromes). Fatality rates for untreated severe AdV pneumonia or disseminated disease may exceed 50%. More than 50 serotypes of AdV have been identified. Different serotypes display different tissue tropisms and correlate with clinical manifestations of infection. The predominant serotypes differ among countries or regions and change over time. Transmission of novel strains between countries or across continents and replacement of dominant serotypes by new strains may occur. Treatment of AdV infections is controversial because prospective, randomized therapeutic trials have not been done. Cidofovir is considered the drug of choice for severe AdV infections, but not all patients require treatment. Vaccines have been shown to be highly efficacious in reducing the risk of respiratory AdV infection but are currently not available.

KEYWORDS: Adenovirus, respiratory viral infection, serotypes, cidofovir

ADENOVIRUS (AdV)

Adenovirus (AdV) infections most often involve the upper or lower respiratory tract, pharynx, conjunctiva, or gastrointestinal (GI) tract.1,2 More than 80% of AdV infections occur in children <4 years old (due to lack of humoral immunity).1–5 Immunosuppressed persons1,3,6,7 are also more susceptible.2,8–11 High baseline immunity against AdV (titer of ≥1:32) confers substantial protection.12 Epidemics of AdV infections may occur in healthy children2,8–11 or adults in closed or crowded settings (particularly military recruits).13–17 The vast majority of cases are self-limited. However, the clinical spectrum is broad, and dissemination or pneumonia can be fatal, in both immunocompetent18,19 and immunocompromised patients.1,3,20–24

1Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California; 2Department of Pathology and Laboratory Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California; 3Clinical Virology Laboratory, Centro de Educacion Medica e Investigaciones Clinicas (CEMIC) University Hospital, Buenos Aires, Argentina.

Address for correspondence and reprint requests: Joseph P. Lynch, III, M.D., Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, The David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Rm. CHS 37-131, Los Angeles, CA 90095 (e-mail: jplynch@mednet.ucla.edu).

Respiratory Viral Infections; Guest Editors, Adriana Weinberg, M.D. and Martin R. Zamora, M.D.

Semin Respir Crit Care Med 2011;32:494–511. Copyright © 2011 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel: +1(212) 584-4662.

ISSN 1069-3424.
Virology

Human AdV is a family of double-stranded, nonenveloped DNA viruses belonging to the genus Mastadenovirus of the Adenoviridae family. 25,26 Fifty-two serotypes and seven species (A through G) are recognized. 27–29 New candidates are recognized, 30 but their classification is still under discussion. The use of phylogenetic analysis as the sole means of classifying a new serotype is controversial. Species A, B, C, D, and E circulate globally and have been implicated in outbreaks of infections in humans. 30 However, more than half of AdV serotypes are infrequently detected, 30 and only one third of serotypes are associated with human disease.22,25,27,30–33 Different serotypes display different tissue tropisms and correlate with clinical manifestations of infection. 1,22,27,29 (discussed in detail later).

Epidemiology

AdVs may cause epidemics of febrile respiratory infections (FRIs), pharyngocconjunctival fever, 34 keratoconjunctivitis (KC), 35–38 or gastroenteritis and diarrheal illness. 39–50 Severe or disseminated AdV infections may occur in patients with impaired immunity 6 [eg, organ transplant recipients; human immunodeficiency virus (HIV) infection 51; congenital or combined immunodeficiency syndromes 52,53] and rarely in immunocompetent patients. 19,54

Infection can be by reactivation, exposure to infected individuals, or new acquisition from exogenous sources. 1,22 Infections occur throughout the year, 1 but most epidemics occur in the winter or early spring. 5 Latent AdV may reside in lymphoid tissue, 6,55 renal parenchyma, 56 or other tissues after childhood inoculation; reactivation may occur in severely immunosuppressed patients. 6,55,56 Importantly, asymptomatic carriage of AdV may persist for weeks or months. 7,77,78 Transmission of AdV can occur via inhalation of aerosolized droplets, direct conjunctival inoculation, fecal–oral spread, exposure to infected tissue or blood, 1,59,60 or environmental surfaces (eg, linen, pillows, lockers, guns). 61,62 The incubation period ranges from 2 to 14 days and depends upon viral serotype and mechanism of transmission. 1 Epidemics may spread rapidly among closed populations, for example, among military recruits, 12,13,16,29,33,61,63–65 and in hospitals, 5,60,66,67 neonatal nurseries, 66 psychiatric, 67,68 or long-term care facilities (LTCFs), 37,59,69 job training centers, 17 boarding schools or dormitories, 70 a children’s home, 71 orphanages, 72 public swimming pools, 73,74 and so forth. Crowding and poor hygienic behaviors may facilitate spread. 67 In institutionalized settings, infection control measures and cohorting may be essential to limit spread. 59,60,67 AdV lacks an envelope and is thus resistant to many disinfectants. 76 Alcoholic (95% ethanol) solution is an effective disinfectant. 58

CLINICAL FEATURES OF ADENOVIRUS INFECTION

Respiratory Tract Involvement

AdV accounts for at least 5 to 10% of pediatric and 1 to 7% of adult respiratory tract infections (RTIs). 1,2,5 In immunocompetent patients (children or adults), symptoms abate spontaneously (within 2 weeks) and induce type-specific immunity. 1 Fever, pharyngitis, tonsillitis, cough, and sore throat are common symptoms in children and young adults with AdV RTI. 2,5,13 GI symptoms may manifest concomitantly. 2,15 In a study of 317 hospitalized children with acute AdV RTI in Taiwan, GI symptoms included diarrhea (25%), vomiting (22%), and abdominal pain (19%). 11 Another study in Korean children with RTIs cited the following GI symptoms: diarrhea (31%), vomiting (20%), and abdominal pain (4%). 77 Pneumonia occurs in up to 20% of young children (particularly in newborns and infants) 5,6,10,77 but is uncommon in immunocompetent adults. 1,12,13,67,68,78 However, fatalities due to AdV pneumonia (sometimes associated with septic shock) have been described in previously healthy children 8 or adults. 15,19,54,68 Meningitis is a rare complication of AdV pneumonia. 78 In immunocompromised persons, dissemination and/or severe respiratory failure may develop in 10 to 30% of cases. 1,13,79 Fatality rates for severe AdV pneumonia may exceed 50% 15,79 (Fig. 1). In children, long-term respiratory sequelae of AdV RTI include bronchiectasis, bronchiolitis obliterans, and hyperlucent lung. 80,81

Keratoconjunctivitis

Adenoviral keratoconjunctivitis is a major cause of ocular morbidity and can lead to visual loss. 82,83 Manifestations of ocular AdV infection include epidemic keratoconjunctivitis (EKC), pharyngocconjunctival fever, and non-specific conjunctivitis. 38,84–86 The most common serotypes associated with EKC are AdV–8, 19, 37, and 5, 38,82,83,85,87–90 but other serotypes (eg, AdV–3, 4, 7, 11, and 14) can cause conjunctivitis. 35,36,82,83,88,91,92 In Taiwan, AdV–8, 19, and 37 were the predominant causes of AdV EKC. 96 AdV–8 predominated from 1980 to 1994; after 1995, AdV–37 and AdV–19 predominated and AdV–8 disappeared. 97 Outbreaks of EKC can occur in chronic care facilities, 59,93 hospitals or outpatient clinics, 84,85,94 and closed settings. 95 In one chronic care facility, 47 of 95 residents developed EKC due to AdV–37 between September 14 and December 1990 (attack rate 49%). 59 The outbreak was successfully interrupted following strict infection control, cohorting, suspension of new admissions, and changing to a disinfectant that inactivated AdV. Nosocomial transmission has been noted in eye clinics or hospitals via environmental contamination (ophthalmic instruments, eyedrops). 85,94
Rigorous sterilization of instruments and infection control were essential to curb epidemics. However, some serotypes (notably AdV-40 and 41) have an affinity for the GI tract, with predominant symptoms of gastroenteritis or diarrhea. Rare complications include hemorrhagic colitis, hepatitis, cholecystitis, and pancreatitis.

Gastrointestinal Manifestations
AdV infections can cause GI symptoms even when the primary site of involvement is the respiratory tract (particularly in young children). However, some serotypes (notably AdV-40 and 41) have an affinity for the GI tract, with predominant symptoms of gastroenteritis or diarrhea. Rare complications include hemorrhagic colitis, hepatitis, cholecystitis, and pancreatitis.

Urinary Tract Involvement
AdV may cause urinary tract infections (UTIs), particularly among hematopoietic stem cell transplant (HSCT) and solid organ transplant (SOT) recipients. Typical manifestations include dysuria, hematuria, hemorrhagic cystitis (HC), and renal allograft dysfunction. Renal biopsies may reveal viral nephropathy or (in the context of renal transplant recipients) allograft rejection. Most AdV UTIs (including HC) are self-limiting. However, necrotizing tubulointerstitial nephritis, fatal or dialysis-dependent renal failure, obstructive uropathy, and fatal dissemination may occur. Most common serotypes associated with HC include AdV-11, 34, 35, 3, 7, and 21. The diagnosis is often made by culture, or polymerase chain reaction (PCR) in urine, or serology. Renal biopsy may demonstrate viral infection of tubular epithelial cells with “smudge cells” and intranuclear inclusions.

Disseminated Disease
Disseminated AdV infections are rare among immunocompetent hosts, but dissemination occurs in 10 to 30% of HSCT recipients with AdV infection. Diagnosis is made by PCR in blood or recovery of AdV from more than one site. Among HSCT recipients with symptomatic AdV disease, fatality rates range from 12 to 70%. Case fatality rates for AdV pneumonia may exceed 50%.

Rare Manifestations
Rare manifestations of AdV infections include myocarditis and cardiomypathy, encephalitis, mononucleosis-like syndromes, pulmonary dysplasia, intestinal intussusception in children, and sudden infant death.

SPECIFIC PATIENT POPULATIONS AT RISK
Adenovirus Infections in Immunocompetent Persons
Epidemics of AdV respiratory infections may occur in healthy children (particularly < 4 years old) or adults in closed settings (particularly the military). The vast majority of cases are self-limited;
disseminated and fatal infections are rare in immunocompetent hosts.15,78

Adenovirus Infections in Military Recruits

Outbreaks of AdV FRIs among military recruits elucidated the molecular epidemiology and dynamics of transmission of AdV.12,13,29,61,62 Acute FRI due to AdV is a major cause of morbidity in the military, not only in the United States15,63,64 but globally.33,65 Military recruits are especially vulnerable, owing to crowding and stresses associated with the basic training environment.15 The affected (military) population is highly mobile. Following completion of basic training, recruits are dispersed to secondary sites for advanced training, paving the way for epidemic spread.75 Peak illness rates occur during weeks 3 through 5 of training.16 AdV accounts for >50\% of FRIs and 90\% of pneumonia cases among healthy military recruits.12,13,15,16 In a prospective study of 271 new military recruits in training, 25\% developed an acute FRI due to AdV-4 over a 6-week period; all FRIs occurred among recruits with an initial AdV titer of <1:4.62 Serum antibodies to AdV-4 were present in 34\% at enrollment and climbed to 97\% by 6 weeks.62 Historically, serotypes AdV-7 and 4 predominated as a cause of FRIs in the U.S. military.12,13,63

Beginning in 1971, all recruits in the U.S. military were vaccinated with live enteric-coated AdV-4 and AdV-7 vaccines.121 Following this strategy, the incidence of AdV infections in the military setting fell substantially.131 Unfortunately, in 1995 the sole manufacturer of the AdV vaccines ceased production; existing supplies were completely depleted by 1999.15 The lack of availability of vaccines led to reemergence of epidemics of AdV infections in military facilities (all services).15,16,63,64,132–134 Surveillance of U.S. recruits in training from 1999 to 2004 cited >73,000 AdV infections; during that time frame, serotype 4 accounted for >95\% of AdV infections.16 The epidemic of infections resulted from spread of AdV-4 from an army basic training site to secondary sites.64 In 1997, an epidemic (>500 cases) of AdV FRIs in the navy’s sole basic training center in the United States was attributed to serotypes AdV-7 (70\%) and AdV-3 (24\%), respectively.15 In 2006 and 2007, a novel strain of AdV-14 emerged as a cause of FRIs in recruits at a U.S. Air Force base26 and has become the predominant strain in the military.

Hematopoietic Stem Cell Transplant Recipients

The reported incidence of AdV infections is highly variable (3 to 47\%) among HSCT recipients.1,3,21–24,31,117–120,135–137 The lower range (3\%) was observed when systematic screening was not performed,137 whereas higher rates reflect prospective studies with regular sampling of plasma for AdV DNA (by PCR).117,138 The incidence is 2 to 3.5 times higher in children (>20\%) compared with <10\% in adults.79,136,139,140 Additional risk factors for AdV infections among HSCT recipients include allogeneic HSCT.79,137 HLA (human leukocyte antigen) mismatch,79,141 severe T cell depletion,24,79 and graft versus host disease (GVHD).1,2,23,24,117,118,120,137 Infection can reflect primary infection (eg, community or nosocomial acquisition)58 or reactivation of latent infection.3,55,58 Serotypes most commonly cited among organ transplant recipients include species C (AdV-1, 2, 5), species A (AdV-31), and species B (AdV-11, 34, 35).40,116,135

AdV in HSCT recipients is usually detected within 100 days of the transplant.79 Clinical manifestations range from mild, self-limited disease to fatal dissemination.79 In most patients, the disease is localized (eg, urinary tract, gastroenteritis, upper or lower respiratory tract infections) but dissemination occurs in 10 to 30\% of cases.24,79,136,139 In this context, mortality rates are high.79 Among 76 adult HSCT recipients with symptomatic AdV infections the mortality rate was 26\%.137 Mortality rates were higher among patients with pneumonia (73\%) and disseminated disease (61\%). Severe lymphopenia,1,79 severe GVHD,24,137 isolation from more than one site,79 and high AdV viral loads in plasma142,143 correlate with higher mortality. However, the prognosis may be good, particularly when the viral load is low. A retrospective study in pediatric HSCT recipients detected AdV in blood (by PCR) in 11/26 (42\%); viremia cleared in seven (63\%) without antiviral therapy.32 Quantification of AdV DNA load by real-time PCR in plasma of HSCT recipients may identify patients at high risk for dissemination139,142 or assess response to therapy.139,142 Although indications and efficacy of therapy are controversial, cidofovir (CDV) was associated with a low mortality rate (2\%) in pediatric HSCT recipients with AdV infections.138 In that study, clinical and microbiological cure was achieved in 56/57 patients.138

Solid Organ Transplant Recipients

The incidence of AdV infections is 5 to 22\% among SOT recipients.1,79,120,144 AdV infections have been noted in liver,145,146 renal,108,114,147 intestinal,148 heart,144 and lung149 transplant recipients (primarily in children). Among SOT recipients, risk factors for AdV include pediatric age,79,145 receipt of antilymphocyte antibodies,79 and donor-positive/recipient-negative AdV status.79 In a prospective study, PCR detected AdV viremia within 12 months of transplant in 19/263 (7.3\%) SOT recipients, including liver 10/121 (8.3\%), kidney 6/92 (6.5\%), and heart 3/45 (6.7\%).144 At the time of viremia, 11 (58\%) were asymptomatic. All recovered spontaneously without sequelae. In a retrospective
review of 484 pediatric liver transplant recipients, 49 (10%) developed AdV infections; nine died of invasive AdV infection. In another retrospective review of 191 adult liver transplant recipients, 11 (5.8%) had AdV infection associated with two deaths. Clinical manifestations of AdV infection are protean, but the primary site of disease in SOT recipients is often related to the transplanted organ. In liver transplant recipients, AdV typically causes jaundice, hepatomegaly, and hepatitis. In renal transplant patients, the principal symptom is HIC; further, AdV may target the renal allograft, leading to graft failure. In pediatric heart transplant recipients, the presence of AdV in posttransplant endomyocardial biopsies increased the risk for graft loss and posttransplant coronary artery disease. Only four cases of AdV infections were identified in a cohort of 383 lung transplant recipients (1.3%); incidence was 3/40 (8%) among pediatric LTRs and 1/268 (0.4%) among adult LTRs. However, all four developed severe hemorrhagic, necrotizing AdV pneumonia; all died within 45 days of the transplant. In a study of 19 pediatric LTRs, AdV was detected in eight, resulting in two early deaths as well as late graft loss and obliterative bronchiolitis. A case of fatal AdV pneumonia in an adult LTR 4 years posttransplant was described. Although these studies underscore the potential for AdV to cause severe, even fatal, infections in SOT recipients, routine PCR surveillance in adult SOT recipients is not recommended. Further, the need for therapy for mild or asymptomatic cases is not clear. Prospective studies have shown that AdV viremia may be asymptomatic and may clear spontaneously. We reserve treatment (with cidofovir) for symptomatic patients or those with dissemination.

Human Immunodeficiency Virus Infection

The risk for AdV infection in patients with acquired immunodeficiency syndrome (AIDS) is 28% at 1 year (17% if the CD4 count is <200/mm³). The GI tract is involved in >90%, but most patients are asymptomatic or have mild symptoms (eg, diarrhea). UTIs may occur in up to 20% of AIDS patients, but bladder inflammation or bleeding is rare. Serotype D is associated with GI infection, whereas UTIs are usually caused by serotype B or D. AdV (particularly serotypes 1, 2, 3) may cause fatal cases in HIV-infected patients. Since the advent of highly active antiretroviral therapy (HAART), AdV disease is uncommon in HIV/AIDS patients until immune system deterioration occurs.

Congenital Immunodeficiency Syndromes

AdV may complicate congenital immunodeficiency disorders such as severe combined immunodeficiency (SCID) syndrome, agammaglobulinemia, common variable immunodeficiency, immunoglobulin A deficiency, and others. Patients with SCID are most susceptible. In these patients, AdV tends to cause severe and recurrent pulmonary infections, disseminated disease, and even death. Incidence data for AdV in patients with congenital immunodeficiencies are limited. A review of 201 patients with Bruton X-linked agammaglobulinemia cited only one death due to AdV infection.

IMPORTANCE OF SEROTYPES

Globally, serotypes 1 through 5, 7, 21, and 41 are most commonly associated with human disease (Table 1). Different serotypes display different tissue tropisms and correlate with clinical manifestations of infection. Among children, the most common AdV serotypes associated with RTIs are types 1 and 7. In adults (particularly military recruits), serotypes implicated in FRIs include subspecies B1 (AdV-3, 7, 11, 16, and 21), species C (AdV-1, 2, 5, and 6), and species E (AdV-4). Historically, most infections among U.S. military recruits were due to AdV strains 4 and 7. Recently, AdV-14 (a subspecies B2 serotype) was implicated as a cause of severe FRI in communities with outbreaks. AdV infection can be severe or fatal, particularly in immunocompromised hosts.

Table 1 Adenovirus Serotype According to Geographic Region

<table>
<thead>
<tr>
<th>Country</th>
<th>1 (%)</th>
<th>2 (%)</th>
<th>3 (%)</th>
<th>4 (%)</th>
<th>7 (%)</th>
<th>21 (%)</th>
<th>41 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States (2004–07) (civilians)¹²⁶</td>
<td>17.7</td>
<td>24.3</td>
<td>34.6</td>
<td>4.8</td>
<td>3.0</td>
<td>2.0</td>
<td>1.7</td>
</tr>
<tr>
<td>United States (2004–07) (military)¹²⁶</td>
<td>NA</td>
<td>NA</td>
<td>2.6</td>
<td>92.8</td>
<td>NA</td>
<td>2.4</td>
<td>NA</td>
</tr>
<tr>
<td>Toronto (2007–08)⁴</td>
<td>18</td>
<td>26</td>
<td>46</td>
<td>4.8</td>
<td>NA</td>
<td>5.5</td>
<td>NA</td>
</tr>
<tr>
<td>Korea (1991–2007)²⁷</td>
<td>9.2</td>
<td>11.2</td>
<td>37</td>
<td>3.9</td>
<td>23.3</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Taiwan (1981–1989)⁹</td>
<td>NA</td>
<td>6</td>
<td>68</td>
<td>0</td>
<td>3</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Taiwan (2000)⁹</td>
<td>NA</td>
<td>6</td>
<td>36</td>
<td>28</td>
<td>21</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Taiwan (2001)⁹</td>
<td>NA</td>
<td>15</td>
<td>2</td>
<td>52</td>
<td>1</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Taiwan (2004-05)²</td>
<td>4.1</td>
<td>6.4</td>
<td>87.2</td>
<td>0.6</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>United Kingdom (1982–1996)¹⁸⁰</td>
<td>12.1</td>
<td>18.6</td>
<td>14.9</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>10.9</td>
</tr>
</tbody>
</table>

NA, not available.
both military and civilian populations in the United States.14,20,29,157,158 Other B2 subspecies rarely cause
FRIs but AdV-11 (a B2 subspecies) was implicated in
outbreaks of FRIs in China,70 Singapore,33 the Middle
East,151 the United States,17 and Latin America.160
AdV-11 may also cause UTIs or HC in children or
transplant recipients.3,29,79 Other serotypes associated
with HC include AdV-33, 34, and 35.3,29 AdV-35 was
also implicated in an epidemic of pneumonia in a
chronic psychiatric facility.67 Species D (AdV-8, 19, and 37)
usually cause conjunctivitis,27,82,161 but more common
serotypes (eg, AdV-3, 4, 7, and 11) can also cause
conjunctivitis.9,57 Gastroenteritis is associated with en-
teric AdV strains 40 and 41 (species F).3,162 AdV-12, 18,
and 31 (species A); and AdV-52 (species G).38 Sero-
types AdV-5, 31, 34, 35, and 39 have been implicated in
outbreaks in
immunocompromised pa-
tients,32,40,135,156,163 particularly HSCT.1,32,97,164,165 or
SOT.108,166 recipients. In some patients, multiple sero-
types or species were isolated concomitantly.167

Molecular Characterization of AdV

Different genome types within serotypes have been identi-
ified by restriction enzyme analysis,63 multiplex PCR
techniques targeting fiber genes168 or hypervariable
regions of the heonx genes, and sequencing of the fiber
genes35,169 and heonx genes.25,27,170 The widely used
genotyping system was proposed and modified by Li et
al.10,171 The prototype AdV strain is designated “p”;
other genome types within the serotype are designated “a” through “k.” Genome types may be further distin-
guished by restriction pattern with selected enzymes (eg,
AdV-7p, AdV-7p1, etc.).10,63 Using this system, at least
27 genome types of AdV-7 were identified.69 This
system has been used to correlate genomic types with
geographic distribution and pathogenic potential.63 New
serotype(s) may emerge as the dominant pathogen(s),
and may exhibit heightened virulence or transmissibility
from earlier strains.

The fiber gene mediates attachment of AdV to
the host cell.172,173 Different fiber types display different
tissue tropisms. For example, AdV-11p causes
mostly UTIs, whereas AdV-11p1, AdV-11a, and
AdV-14p exhibit a tropism for the respiratory tract.30
Most AdVs utilize the coxsackie-AdV receptor
(CAR), except for species B viruses that use CD46, a
complement protein, as a receptor.173 A secondary
interaction with specific integrins is required for viral
entry.

Global Epidemiology

The predominant serotypes differ among different coun-
tries or regions, and they change over time.2,10,27,63,75,174–177 Transmission of novel strains
between countries or across continents and replacement
of dominant serotypes by new strains may occur.29,178
Serotypes 1 through 7 account for >80% of AdV
infections in infants and children.57,179 In the United
States from 2004 to 2006, the most common serotypes
among respiratory isolates from civilians (children or
adults) were AdV-3 (34.6%), AdV-2 (24.3%), AdV-1
(17.7%), AdV-5 (5.3%), AdV-4 (4.8%), AdV-7 (3.0%),
AdV-21 (2.0%), and AdV-41 (1.7%)126 (Table 1). In
Toronto, Ontario, Canada, the most common serotypes
(2007–08) (respiratory isolates) were AdV-3 (46%),
AdV-2 (26%), AdV-1 (18%), and AdV-21 (5.5%)4
(Table 1). In a survey in the United Kingdom (1982 to
1996), most common serotypes implicated in AdV in-
fecions (all sites) were AdV-2 (18.6%), AdV-3 (14.9%),
AdV-1 (12.1%), and AdV-41 (10.9%).180
In Latin America, AdV-7 has been the predom-
inanent strain associated with RTI in many countries.8,160

In Asia, AdV-3 and AdV-7 have been the pre-
dominant serotypes associated with RTI in children.9,10,181 A survey of isolates from children with
RTIs in South Korea from 1991 to 2007 implicated
the following serotypes: AdV-3 (37.0%), AdV-7
(23.3%), AdV-2 (11.2%), AdV-1 (9.2%), AdV-5
(5.9%), AdV-4 (3.9%), AdV-11 (3.4%), and AdV-6
(1.8%)27 (Table 1). In southern Taiwan, AdV-3
counted for 68% of AdV RTIs from 1981 to 1989,
44% from 1990 to 1998, 36% in 2000, and 46% in
2002.2,9,11 In Beijing, China, AdV-3 was the predom-
ninant cause of AdV RTIs from 1962 to 1985.13

Striking differences in distribution of serotypes
have been noted in civilian and military populations. In
the United States from 2004 to 2006, AdV-3 was
implicated in 34.6% of respiratory AdV infections
among civilians, AdV-4 in 4.8%, and AdV-21 in
2.0%126 (Table 1). By contrast, during that same time
frame, AdV-4 accounted for 92.8% of AdV RTIs among
military recruits, AdV-3 for 2.6%, and AdV-21 in
0.7%.126 A previous survey in the United States from
1999 to 2002 implicated AdV-4 in >95% of AdV RTIs
among military recruits.182 Interestingly, between 2002
and 2006, diverse B serotypes (AdV-3, 7, 21, and 14)
emerged among U.S. military recruits.182 After 2006–
07, AdV-14 emerged as the predominant serotype in
U.S. military recruits.29

Changes in serotypes and genome types among
geographic regions underscore the potential for new
strains to evolve and replace existing strains. Globally,
AdV-7c and 7b were the predominant AdV-7 genotypes
in North America, Europe, and Australia from the 1960s
to the 1980s. In Beijing, China, AdV-7d predominated from 1980 to 1990 and was responsible for outbreaks in Japan in 1995 and Korea in the 1990s. In Latin America, AdV-7b had been the predominant AdV-7 subtype, but in the mid-1980s a new strain (AdV-7h) emerged in Argentina, Brazil, and Chile and largely replaced AdV-7b. In Taiwan, all isolates of AdV-7 during the 1999 to 2001 outbreaks were AdV-7b. In the United States, the AdV-7 prototype strain (Ad7p) accounted for two thirds of AdV-7 isolates from 1966 to 2000. AdV-7d2 first appeared in the United States in 1993 and since 1996 was implicated in several civilian and military outbreaks in the United States and Canada. AdV-7h was first identified in the United States in 1998. The appearance of AdV-7d2 and AdV-7h in North America represents recent introduction of these viruses and may herald a shift in predominant genome types circulating in the United States.

Among AdV-3 strains, AdV-3a, 3b, and p have predominated in the United States and globally since the 1960s. In the 1980s, three major clusters of AdV-3, comprising 17 genomic types, were noted among six continents. Cluster 1 occurred in Africa, Europe, South America, and North America. Genomic cluster 2 was identified in Africa; genomic cluster 3 was identified in Africa, Asia, Australia, Europe (a few), and North America. In Europe, AdV-3p1 and AdV-3b predominated from 1961 to 1980, whereas AdV-3p3 and AdV-3p1 predominated in the United States. In Korea, epidemics of AdV-3 in children from 1991 to 1999 were due to AdV-3a and included six novel genotypes. In the People’s Republic of China, AdV-3a2 genotype was the predominant AdV-3 genome type from 1962 to 1985. Since 1983, AdV-3a4, 3a5, and 3a6 have occurred in parallel with AdV-3a2 in China. In Korea, all AdV-3 isolates during an outbreak (2004–05) were AdV-3a2. In 2006–07, an outbreak of AdV-3 infections due to a novel strain (AdV-3a51) was reported in New Haven, Connecticut.

Epidemiology and Characteristics of Specific Serotype

Given the large number of AdV serotypes (n = 53), a discussion of each serotype is beyond the scope of this review. However, the following sections discuss a few of the common serotypes (eg, AdV-1, 2, 3, 4, 7, 21), additional serotypes associated with specific clinical syndromes (eg, AdV-8, 37, 40, 41), and the recent emergence of AdV-14 in the United States.

ADENOVIRUS SEROTYPES 1 AND 2

Serotypes AdV-1 and 2 (both species C) are common causes of epidemic FRIs worldwide but appear to be less virulent than AdV-7 or AdV-3. The prevalence of AdV-1 and AdV-2 varies among different geographic regions and populations. In the United States (2004–06), AdV-1 and AdV-2 accounted for 17.6% and 24.3% of AdV clinical respiratory isolates among civilians (children or adults), respectively, but only 0.4% and 0.4% among military recruits. The prevalence of these serotypes at other sites is variable: Toronto, Ontario, Canada (2007–08), AdV-1 (18%), AdV-2 (26%); United Kingdom (1982 to 1996), AdV-1 (12.1%), AdV-2 (18.6%); Buenos Aires (1984 to 1988), AdV-1 (10%), AdV-2 (20%); Seoul, South Korea (1990 to 1998), AdV-1 (9.2%), AdV-2 (11.2%); Taiwan (2004–05), AdV-1 (4.1%), AdV-2 (6.4%).

ADENOVIRUS SEROTYPE 3

Globally, AdV-3 is among the most common serotypes implicated in AdV infections in children and adults. AdV accounted for 13% of AdV respiratory isolates reported to the World Health Organization from 1967 to 1976 and continues to be a cause of endemic and epidemic infections (Table 1). In the United States and southern Ontario from 2004 to 2006, AdV-3 accounted for 34.6% of AdV RTI in civilians and 2.6% among military trainees. The prevalence of AdV-3 at other sites is variable: Toronto, Ontario, Canada (2007–08), 46%; United Kingdom (1982 to 1996), 14.9%; Seoul, South Korea (1990 to 1998), 15%; Seoul, South Korea (1991 to 2007), 37.0%; AdV-3 (along with AdV-7) was the most common cause of AdV RTIs in South Korea, Taiwan, and China. In Taiwan, during an outbreak of respiratory AdV infections in children from November 2004 to February 2005, AdV-3 was implicated in 87.5% of cases. However, changes in serotype distribution may occur. In Taiwan, AdV-3 was the predominant serotype from 1981 to 1989 (68%) and 1990–98 (44%) but decreased to 2% of respiratory isolates in 2001 (largely replaced by AdV-4 and AdV-7).

Importantly, AdV-3 may cause fatal pneumonias in immunocompetent children and adults. AdV-3 and a recombinant strain of AdV-3/7 were responsible for an outbreak of FRIs (including two fatalities) in children in Portugal in 2004.

ADENOVIRUS SEROTYPE 4

AdV-4 is a cause of sporadic infections in civilians and has been implicated in epidemics of FRI or pneumonia in civilian and military populations. In civilian populations, AdV-4 was implicated in 4.8% of AdV RTI in the United States (2004 to 2006); 1% in Toronto, Ontario, Canada (2007–08); 3.9% (pediatric isolates) in South Korea (1991 to 1997). In Taiwan, AdV-4 accounted for 29% of pediatric respiratory isolates from 1981 to 2001, and became the predominant serotype (52%) in 2001. Until recently, AdV-4 was the most common serotype associated with FRI in U.S.
military recruits.14,69,133,190 The strategy of vaccinating all military recruits against AdV-4 and AdV-7 beginning in 197114,191 eliminated both serotypes as causes of epidemic FRI in the military for more than 2 decades.69 After the vaccine was depleted, an outbreak of AdV-4 occurred at an army basic training site in 1997.64 Over the next several years, AdV-4 spread to multiple secondary sites.16 From 1999 to 2004, AdV-4 accounted for >95% of AdV FRIs among U.S. military recruits.16 By 2006–07 the novel strain AdV-14 largely replaced AdV-4 as a cause of AdV FRI among U.S. military recruits.29

ADENOVIRUS SEROTYPE 7

Globally, AdV-7 was the third most common serotype reported to the World Health Organization (WHO) from 1967 through 1976, following AdV-1 and AdV-2.73 and remains one of the leading serotypes worldwide.27,63,192 AdV-7 infections manifest as FRI, pharyngoconjunctival fever, bronchitis, necrotizing bronchiolitis, or pneumonia.63,160,183 Importantly, AdV-7 appears to be more virulent than other serotypes.9,77,160,174,181,193 Fatal pneumonias may occur in immunocompetent children5,160,184,194,195 and adults.19

Epidemic AdV-7 infections have been reported in the United States,5,195,196 Canada,194 Latin America,160,197 Australia,198 Israel,175 South Korea,65,77 Japan,174,183 China,19 and globally.126,175 Outbreaks typically occur in closed settings, such as military barracks,15 chronic care facilities,69 hospitals,5 and neonatal66 and pediatric5,199,200 units. In the late 1960s, AdV-7 and AdV-4 accounted for most cases of FRI among U.S. military recruits.69,190 Following routine vaccination of U.S. military recruits beginning in 1971,131,191 no epidemics of FRI were attributed to AdV-7 or AdV-4 from 1984 through 1994.69 However, in 1997, after the vaccine supply was depleted, an epidemic (> 500 cases) of AdV FRI in a U.S. Navy training site was attributed to serotypes AdV-7 (70%) and AdV-3 (24%).15 Since 2007, AdV-7 has largely disappeared as a cause of FRI in U.S. military settings (replaced by AdV-14).29

The prevalence of AdV-7 varies according to geographic regions and over time and depends on strain type, herd immunity in the region, and epidemiological settings.5,69,126,195 In the United States from 2004 to 2006, AdV-7 accounted for only 5/581 (0.9%) of clinical AdV respiratory isolates in military facilities and 48/1653 (2.9%) isolates in civilian settings.126 In Toronto, Ontario, Canada, AdV-7 was not detected among 96 AdV respiratory isolates from 2007 to 2008.4 By contrast, AdV-7 has been a prominent cause of FRI in Latin America160,197 and Asia.27,77,192 AdV-7 was the leading cause of death due to AdV pneumonia in Latin America in the 1980s and 1990s.160,197 In a study of 165 AdV RTIs in children in Argentina and Uruguay, AdV-7 accounted for 62.2% of isolates and was responsible for 17 of 18 fatalities.160 The prevalence of AdV-7 as a cause of AdV FRI in Asia is variable, ranging from <1%174 to >60%.65 In Seoul, South Korea, from 1990 to 1998, AdV-7 accounted for 41% of RTIs, followed by AdV-3 (15%) and AdV-2 (15%).77 From 1991 to 2007 in Seoul, AdV-7 accounted for 23.3% of pediatric respiratory AdV isolates, second only to AdV-3 (37.0%).57 (Table 1). Outbreaks of AdV-7 infections in Korea from 1995 to 2000 were due to diverse genome types; one genome type (AdV7d) may have been introduced from Japan.192 In a survey of 200 military recruits in South Korea in 2006, 122 recruits (61%) developed AdV FRIs.65 All 122 isolates were caused by AdV-7. By contrast, in Taiwan, AdV-7 was implicated in only 2% of AdV RTIs in children in 2001, but 19% in 2002.11 In Taiwan, AdV-7 emerged as the predominant serotype (45%) in 1999–2000 but fell drastically to 1% in 2001 (replaced by AdV-4).8 In Beijing, China, AdV-7 and AdV-3 were the most common serotypes causing pneumonia from 1958 to 1990.10 In Japan, AdV-7 constituted <1% of AdV infections from 1981 to 1992 (one to four cases per year), but increased to >100 cases/year from 1995 to 1997.174

At least 27 genome types of Ad-7 have been identified by enzyme restriction fragment analysis,69 shifts or replacement of predominant genome types may occur.15,126,175,176 Globally, AdV-7c and 7b were the predominant subtypes in the 1960s and 1970s.176 A shift from AdV-7c to AdV-7b was noted in Europe in 1969, and in 1975 in Australia.176 During the 1970s, AdV-7b was the predominant subtype in the United States, Europe, and Australia.176 During that decade, AdV-7c was detected in South Africa, AdV-7d in China, AdV-7e in Brazil, and AdV-7f in Australia.176 A new subtype (AdV-7d)175 was associated with sporadic175 and epidemic FRIs in children69 and military recruits.15 Sporadic and epidemic spread of AdV-7a was noted in hospitals5,66 and other closed community settings.71 In Buenos Aires from 1984 to 1988, 29 cases of FRI due to a new strain (AdV-7h) were reported; 84% were children <1 year old; more than half (n = 16) required intensive care unit (ICU) care: 10 patients with multifocal pneumonia or necrotizing bronchiolitis died.184 In a review of 73 pediatric cases of AdV FRI in Buenos Aires between 1984 and 1988, AdV-7h was implicated in 25 and was responsible in all six deaths.178 A similar strain had been circulating in Chile from 1984 to 1987.178 Pediatric respiratory AdV-7 isolates from Uruguay, Chile, and Argentina from 1984 to 1990 included AdV-7b, 7c, and 7h.197 AdV-7c predominated in 1986, but AdV-7h emerged as the predominant strain in 1986. AdV-7b cocirculated during this period but was of lower virulence.197 AdV-7h accounted for 61.2% of AdV RTIs in children in Argentina and Uruguay from 1991 to 1994 and was responsible for 17 of 18 fatalities.160 In São
Paulo, Brazil, in 1995, AdV-7b replaced AdV-7a, which had been the predominant AdV-7 subtype for more than a decade.39 In the United States and eastern Ontario from 1966 to 2000, AdV-7b accounted for 65% of clinical respiratory isolates of AdV-7, followed by AdV-7c (28%), and AdV-7h (2%).63 AdV-7d2 was first detected in the United States in 1993; AdV-7h was first detected in the U.S. Southwest in 1998.63 Since 1996, AdV-7d was responsible for several civilian and military epidemics in the United States.63 In Beijing, China, AdV-7d was the predominant AdV-7 subtype responsible for AdV pneumonia from 1980 to 1990.10 In Taiwan, AdV-7a was detected in 1983 but all clinical isolates from 1999 to 2001 were AdV-7b.9 In Israel, four genotypes (AdV-7a1, 7b, 7d2, and 7k) were detected among clinical isolates from 1968 to 1995.175 These various studies emphasize that new serotypes may emerge as the dominant pathogen and may exhibit heightened virulence or transmissibility from earlier strains.

ADENOVIRUS SEROTYPE 8
AdV-8 accounts for <1% of AdV infections4,27,77,126 but is a well-recognized cause of EKC.77,82,87,93 In four studies in Asia and the Middle East, AdV-8 accounted for 64 to 79% of EKC due to AdV.82,83,89,95 Conjunctival hemorrhage, corneal involvement, and preauricular lymphadenopathy were noted in most cases.82

ADENOVIRUS SEROTYPE 11
AdV-11 is relatively uncommon, but may cause hemorrhagic conjunctivitis34–36,70 and FRI (including pneumonia) in immunocompetent patients and hemorrhagic cystitis in immunocompromised patients.17,70 In the United States from 2004 to 2006, AdV-11 accounted for <1% of AdV RTI in military recruits and civilians126; in Toronto, Ontario, Canada, AdV-11 was not detected among 96 clinical respiratory AdV isolates (Table 1). By contrast, AdV-11 represented 3.4% of 741 pediatric respiratory isolates from South Korea from 1991 to 2007.27 Outbreaks of AdV-11 FRIs were described in Asia,33,70 South America,160 the United States,17,182 the Middle East,159 and globally. AdV-11 may cause UTI, including hemorrhagic cystitis, in organ transplant recipients (particularly children).1,56,105,201 AdV may remain dormant in the renal parenchyma until it is reactivated by an impaired immune system.56

EMERGENCE OF ADENOVIRUS SEROTYPE 14 IN THE UNITED STATES
AdV-14 was first isolated in the Netherlands in 1955 during an outbreak of acute respiratory disease (ARD) among military recruits.29 AdV-14 was subsequently isolated during similar outbreaks of ARD in Great Britain in 1955,202 Uzbekistan in 1962,29 and Czechoslovakia in 1963.29 Interestingly, apart from sporadic isolations in the Netherlands in the early 1970s, no cases of AdV-14 infections were reported globally between the 1960s and 2004.11,29 A retrospective study of children hospitalized in Taiwan during 2001–02 with ARD implicated AdV-14 in 2 to 11% of isolates.11 However, AdV-14 had never been identified in North America before its emergence in 2006.63 Beginning in March 2006, outbreaks of FRI due to AdV-14 (several hundred cases) were noted in several U.S. military bases.61,75,182,203 Subsequent cases among health care workers suggested nosocomial infection.63 Surveillance cultures from patients with FRIs from 21 military training sites in 2007 detected AdV-14 at multiple sites in California, Florida, Mississippi, Texas, and South Korea.75 By 2007, several outbreaks in civilian populations were documented in Washington,157 Oregon,204 Alaska,158 Wisconsin,29 Pennsylvania,29 and at least 15 states.20,29 The severity of FRIs was variable, but fatal pneumonias were described.20,29,61,157,204 Reconstruction of the history of circulation of AdV-14 in the United States traced the earliest detected case of infection to California in December 2003.29 In Oregon, AdV-14 emerged in October 2005 and become the predominant circulating serotype by 2007.204 By 2007, AdV-14 had replaced AdV-4 as the dominant serotype on U.S. military bases.30,182 Analysis of 99 isolates recovered from patients (military and civilian) with AdV FRI between December 2003 and June 2009 from different geographic locations confirmed that all isolates were identical.29 These isolates represented a new genomic type designated AdV-14p1 (formerly known as 14a).29 The complete genetic sequence of AdV-14p1 indicates a close relationship to AdV-11a, suggesting recombination between AdV-14 and AdV-11 strains.30 Enhanced surveillance and identification of early cases, infection control measures, cohorting, and restricting travel curbed epidemics at several sites,75 but endemic and epidemic cases have continued in some locales.29 As a recently emerged virus, AdV-14p1 has an increased potential for high attack rates and rates of transmission, owing to the lack of herd immunity.30

ADENOVIRUS SEROTYPE 21
AdV-21 was associated with epidemics of FRIs in military recruits in the Netherlands in the 1960s,205 but only sporadic cases were noted over the next 2 decades.206 In 1984 and 1985, outbreaks of AdV-21 infections in children in the Netherlands and Germany reflected the emergence of closely related variants of the original AdV-21 in the 1960s.206 AdV-21 has been associated with pharyngitis and conjunctivitis,207 FRI,163 and pulmonary complications (eg, bronchiectasis, bronchiolitis obliterans) in children208 but is uncommon.27 In the United States from 2004 to 2006, AdV-21 accounted for 2.0% and 2.4% of AdV RTI in civilians and military recruits, respectively.126 In Toronto, Ontario, Canada (2007–08), AdV-21 accounted for 5.5% of
clinical respiratory AdV isolates. By contrast, AdV-21 was never isolated in 741 pediatric respiratory isolates from Korea from 1991 to 2007.27 Interestingly, Adv-21 may be less transmissible than other AdV serotypes. In an isolated station in Antarctica, only 15% of individuals developed clinical infections over a 5-week period, despite contact with infected individuals and low baseline humoral immunity (neutralizing antibody titer >1:3 in only 11%).209

ADENOVIRUS SEROTYPE 31
AdV-31 may cause gastroenteritis in healthy children and has been associated with severe (sometimes) fatal infections in HSCT recipients.54,121,210–212 Nosocomial transmission (seven cases) in a pediatric HSCT unit was described212

ADENOVIRUS SEROTYPE 37
AdV-37 accounts for <1% of AdV infections4,27,77,126 but may cause epidemic keratoconjunctivitis.77,82,83,85,87–89

ADENOVIRUS SPECIES F (SEROTYPES 40 AND 41)
Globally, AdV species F (serotypes 40 and 41) are endemic and typically cause gastroenteritis and diarrheal illness in children.39–50 Fatalities may occur as a result of dehydration in infants.39,40 In immunocompromised hosts (particularly HSCT recipients), fatal dissemination may occur58,213 but is rare. Epidemics have been cited in schools45 and hospitals.58 Endogenous reactivation (probably originating from AdV persistent in mucosal lymphoid cells)55 may occur. Nosocomial transmission may occur due to high AdV levels in feces during diarrheal illnesses.58 Importantly, shedding of these viruses may be prolonged in immunosuppressed patients.58 In one pediatric HSCT unit, six children developed AdV-41 infection within 2 weeks (principal manifestation gastroenteritis and mild hepatitis).59 The outbreak was curtailed following strict infection control procedures.

Diagnosis of Adenovirus Infection
AdV can be detected in affected sites [eg, nasopharyngeal aspirates, swabs, washings, bronchoalveolar lavage (BAL), urine, stool, blood] by virus-specific direct or indirect immunofluorescent stains, conventional or shell vial cultures, or PCR.3,27 Viral cultures by conventional techniques are the gold standard but could be insensitive for certain samples (eg, blood) and may take up to 21 days to detect the cytopathic effect.1,3,27 Biopsy of involved tissues may reveal AdV nuclear inclusions1; immunohistochemical stains may identify the AdV hexon antigen.114 PCR of AdV DNA in plasma, urine, or infected sites may establish the diagnosis1,142 and is highly sensitive for disseminated disease.214,215 Quantification of the viral load using realtime PCR is a useful marker to assess response to therapy.139,214 Among transplant recipients, serial PCR assays of blood and stool weekly may detect AdV disease prior to the onset of symptoms and facilitate early, preemptive therapy.22,117,138,144 The role of routine surveillance is controversial, although it has been increasingly used, especially in high-risk patients.1 Quantitative viral loads may not correlate with clinical presentation or disease severity.72 The study of the viral kinetics may be more useful to determine prognosis of disease.

Determination of serotype with the neutralization test is laborious and time consuming. Multiplex PCR-based techniques targeting the fiber genes168 or hyper-variable regions of the hexon170 and/or sequencing of hexon genes allows definitive identification of the serotype/species.25,27 Serological tests may be useful in epidemiological investigations but are of limited practical value in individual patients.79

THERAPY
No antiviral drug has been approved to treat AdV.79 Prospective randomized, controlled trials are lacking. Ganciclovir displays in vitro activity against AdV but has no role to treat AdV infections.1 Ribavirin, a guanoside analogue, has antiviral activity against both DNA and RNA viruses.215 More importantly, in small clinical studies, ribavirin has not been shown to be efficacious.137,215 Cidofovir (CDV), a cytosine nucleotide analogue that inhibits DNA polymerase, has the greatest in vitro activity against AdV216–218 and is the preferred therapeutic agent.1 CDV is available only intravenously.1 Regimens (dosing, frequency, duration) are variable. The standard dose is 5 mg/kg every 1 to 2 weeks79,138 or 1 mg/kg twice weekly.79,122,138 Duration of therapy is variable (weeks to months) and depends upon clinical response and persistence or eradication of AdV.122,138 Although CDV is generally well tolerated,117,138 adverse effects include nephrotoxicity, myelosuppression, and uveitis.1,79 Hydration and probenacid may minimize nephrotoxicity.1,109,117,219 Careful monitoring of renal function (serum creatinine, proteinuria) is critical.

Numerous nonrandomized studies in HSCT and SOT recipients documented favorable responses to CDV.21,22,24,117,122,138,141,166,219–221 In a multicenter trial in allogeneic HSCT recipients, CDV eradicated AdV infection in 20/29 patients (69%) with various clinical manifestations.220 Another study cited improvement with CDV in 10/14 (77%) HSCT recipients with AdV hemorrhagic cystitis.72 In a cohort of pediatric HSCT recipients, CDV led to clinical improvement in eight of 10 with severe AdV infection and to viral clearance in
nine patients. However, given the lack of controlled trials, indications for and efficacy of CDV remain controversial. Interpretation of these studies is confounded by heterogeneous patient populations, differing extent and sites of disease, and degree of immunosuppression or immune reconstitution.

Immune reconstitution plays a critical role in controlling AdV infection. Increases in lymphocyte counts or CD4 counts were associated with clearance of AdV infection and improved survival. Further, serotype-specific neutralizing antibodies correlate with clearance of AdV. Patients whose viremia cleared exhibited an increased humoral response, with an eight- to 16-fold increase in serotype-specific antibodies. In light of these observations, reduction of immunosuppression, immune reconstitution of HSCT recipients, or donor leukocyte infusions may have adjunctive roles. Intravenous immunoglobulin (IVIg) has been used (together with CDV), but data are insufficient to assess efficacy.

Importantly, not all patients with AdV infections or viremia require treatment. High mortality rates in retrospective studies in part reflect that virtually all patients had symptoms attributable to AdV infection. Prospective studies in SOT or HSCT recipients using plasma PCR at regular intervals noted that up to 58% were asymptomatic at the time of viremia, and spontaneous resolution without sequelae was common. In a cohort of SOT recipients with AdV viremia, all 19 recovered spontaneously without sequelae. Similarly, in a study of pediatric HSCT recipients, AdV viremia was detected in 42% and cleared without therapy in 64%. We believe antiviral treatment should be considered for the following indications: disseminated (≥ two sites) disease, severe pneumonia, high viral loads in blood, virulence or tropism of the viral strain, persistent severe lymphopenia, or immune deficits. Further, preemptive therapy may have a role in viremic but asymptomatic organ transplant recipients at high risk for dissemination. In one study, CDV was administered to 18 pediatric HSCT recipients with asymptomatic viremia; viremia resolved in 13 (81%). Prospective, randomized trials are needed to elucidate indications for therapy in both symptomatic and asymptomatic patients with AdV infections.

VACCINES

Oral vaccines against AdV types 4 and 7 developed for the U.S. military in 1971 were depleted by 1999. A new vaccine for AdV-4 and AdV-7 has been developed; phase 3 has been completed and hopefully vaccination of military populations can be accomplished soon. Importantly, antibodies to AdV-4 and AdV-7 may cross protect against other serotypes (eg, AdV-3 and AdV-14).

REFERENCES

100. Bateman CM, Kesson AM, Shaw PJ. Pancreatitis and adenoviral infection in children after blood and marrow transplantation. Bone Marrow Transplant 2006;38(12):807–811

205. Van Der Veen J, Dijkman JH. Association of type 21 adenovirus with acute respiratory illness in military recruits. Am J Hyg 1962;76:149–159