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Abstract

Extensive media coverage of the potential health benefits of vitamin D supplementation has 

translated into substantial increases in supplement sales over recent years. Yet, the potential for 

drug-vitamin D interactions is rarely considered. This systematic review of the literature was 

conducted to evaluate the extent to which drugs affect vitamin D status or supplementation alters 

drug effectiveness or toxicity in humans. Electronic databases were used to identify eligible peer-

reviewed studies published through September 1, 2010. Study characteristics and findings were 

abstracted, and quality was assessed for each study. A total of 109 unique reports met the inclusion 

criteria. The majority of eligible studies were classified as Class C (non-randomized trials, case-

control studies, or time series) or D (cross-sectional, trend, case report/series, or before-and-after 

studies). Only two Class C and three Class D studies were of positive quality. Insufficient evidence 

was available to determine whether lipase inhibitors, antimicrobial agents, antiepileptic drugs, 

highly active antiretroviral agents or H2 receptor antagonists alter serum 25(OH)D concentrations. 

Atorvastatin appears to increase 25(OH)D concentrations, while concurrent vitamin D 

supplementation decreases concentrations of atorvastatin. Use of thiazide diuretics in combination 

with calcium and vitamin D supplements may cause hypercalcemia in the elderly, or those with 

compromised renal function or hyperparathyroidism. Larger studies with stronger study designs 

are needed to clarify potential drug-vitamin D interactions, especially for drugs metabolized by 

cytochrome P450 3A4 (CYP3A4). Health care providers should be aware of the potential for drug-

vitamin D interactions.
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Introduction

Vitamin D, a steroid hormone precursor, is well known for its role in maintaining calcium 

homeostasis and normal bone structure. Recent evidence suggests that the vitamin may also 

play a role in a variety of other physiologic processes such as modulation of inflammatory 

pathways 1 and susceptibility to diabetes 2, cancer 3, and infectious 4 and cardiovascular 5 

diseases. Extensive media coverage of the potential health benefits of vitamin D has 

translated into vitamin D supplement sales in the United States (US) increasing from $75 

million in 2006 to $550 million in 2010 6. Supplemental vitamin D is available in doses that 

can be considered pharmacologic (≥400 IU) compared to the usual US dietary intake 

(approximately 160–200 IU/day 7), and thus may interact with several types of prescription 

medications 8, potentially altering drug effectiveness or toxicity. Conversely, certain drugs 

may alter vitamin D metabolism and status.

Supplemental vitamin D is available in two forms, cholecalciferol (vitamin D3) and 

ergocalciferol (vitamin D2). Vitamin D3 is produced endogenously in the skin upon exposure 

to ultraviolet (UV) radiation, and is found in fortified foods and foods of animal origin such 

as fish, eggs, and liver. Vitamin D2 is only available exogenously, primarily through 

consumption of plant foods, fortified foods and dietary supplements. The liver is the primary 

site for the initial hydroxylation reaction that converts both vitamin D2 and D3 to the main 

circulating form of vitamin D, 25-hydroxycholecalciferol (25(OH)D). This conversion 

occurs via hepatic 25-hydoxylases, which include the cytochrome P450 (CYP) enzymes 

2R1, 3A4, and 27A1. The active steroid hormone form of vitamin D is 1,25-

dihydroxycholecalciferol (1,25(OH)2D), which is formed from 25(OH)D at both the local 

tissue level and in the kidney by an additional hydroxylation of 25(OH)D via 1α-

hydroxylase (CYP27B1) 9. Catabolism of vitamin D metabolites occurs via 24-hydroxylase 

(CYP24A1). Vitamin D metabolism is depicted in Figure 1.

As a steroid hormone, 1,25(OH)2D is involved in intracellular signaling through both rapid 

responses (initiation of membrane-associated signal transduction) and genomic responses 

(initiation/inhibition of transcription for genes containing a vitamin D response element) 10. 

In the slower genomic responses, binding of 1,25(OH)2D to the vitamin D receptor in the 

cytoplasm forms a heterodimer with the retinoid X receptor (RXR), which is then 

translocated into the nucleus where it binds to vitamin D receptor elements (VDRE) in the 

promoter region of certain genes and either activates or inhibits gene transcription (Figure 

2). Gene expression profiling has shown that 1,25(OH)2D enhances transcription of several 

phase 1 11 and phase 2 12 biotransformation enzymes, as well as p-glycoprotein (also known 

as multidrug resistant protein 1) 13, enzymes which are involved in drug bioavailability and 

metabolism.

The metabolically active 1,25(OH)2D form is tightly regulated at the tissue level, and is 

present in circulation only in picomolar quantities, thus 25(OH)D is considered the more 
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clinically relevant metabolite for assessing overall vitamin D status. Although the Dietary 

Reference Intakes for Calcium and Vitamin D report issued in 2011 by the Institute of 

Medicine proposes ≥20 ng/mL as the definition of sufficiency based solely on requirements 

to prevent osteoporosis 14, it has been hypothesized that serum 25(OH)D concentrations of 

≥30–32 ng/mL (75–80 nmol/L) are optimal in healthy populations 15–17.

Lower 25(OH)D levels are commonly reported in obese individuals compared to normal 

weight subjects. These findings have been attributed to sequestration of the fat-soluble 

vitamin D in adipose tissue, the major storage site for vitamin D 18. At latitudes >40° 

(Minneapolis = 45° N), UV intensity is not strong enough to stimulate cholecalciferol 

synthesis in the skin during the winter months 19. Several studies show that 25(OH)D 

concentrations are higher in men than women, although the reasons for these differences are 

not known 20. In addition to low dietary/supplemental vitamin D intake and low UV 

exposure, other factors associated with suboptimal 25(OH)D levels include advanced age 

and darker skin pigmentation 20, 21.

The 25-hydroxylase CYP3A4, which converts ergo- and cholecalciferol to 25(OH)D, is also 

a phase I biotransformation enzyme for many drugs 22. In vitro studies indicate that as many 

of half of all therapeutic drugs are metabolized by CYP3A4, while other drugs may inhibit 

or induce CYP3A4 activity (Table 1) 23. CYP3A4 is active in the mucosal enterocytes in the 

intestines as well as hepatocytes 24, 25, therefore interactions between orally administered 

drugs and dietary/supplemental vitamin D intake may be more significant than for 

intravenously administered drugs or vitamin D synthesized as a result of UV exposure. The 

CYP3A4 gene also contains a vitamin D response element, and CYP3A4 expression is up-

regulated in the presence of 1,25(OH)2D 26, 27. Thus, vitamin D may alter metabolism of 

drugs requiring CYP3A4 activation 13.

Other potential biologic mechanisms for drug-vitamin D interactions include: 1) altered 

absorption of the fat soluble vitamin D when taken concurrently with drugs that inhibit 

absorption or enhance elimination of dietary fat, and 2) exacerbation of risk of 

hypercalcemia when taken with calcium-sparing medications.

The purpose of this systematic review is to determine the extent to which drugs affect 

vitamin D status (by altering absorption, metabolism, or excretion of vitamin D), or the 

extent to which vitamin D alters drug absorption and metabolism, activity or toxicity. 

Specifically, the review will focus on human studies examining non-calcemic/bone 

mineralization drug-vitamin D interactions.

Methods

Study selection

A systematic literature search of electronic databases was conducted for articles published 

through September 1, 2010. Databases that yielded articles meeting the eligibility criteria 

were: BIOSIS Previews, CAB Abstracts, Cumulative Index of Nursing and Allied Health, 

Global Health, International Pharmaceutical Abstracts, and Medline.
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A search strategy was initially performed using the Medical Subject Headings (MeSH) and 

keywords “vitamin D”, “cholecalciferol”, “ergocalciferol”, “drug interactions”. Based on 

articles identified during the initial search, the search terms “colestyramine”, “statin”, 

“antibiotics”, “cimetidine”, “anticonvulsants”, “glucocorticoids”, “cyclosporins”, “mineral 

oils”, “hormone replacement therapy”, “weight reduction”, “mineral oils”, “diuretics”, 

“thiazides”, “hydroxymethylglutaryl-CoA reductase inhibitors”, “histamine H2 antagonists”, 

“HIV protease inhibitors”, or “immunosuppressive agents” were added in subsequent 

searches. Additional references within identified primary research or review articles were 

also examined for eligibility.

Studies were included in the systematic review if they assessed vitamin D intake or 

concentrations and drug interactions in humans. Reports were excluded if the focus was on 

vitamin D analogues, osteoporosis or osteopenia treatment, or if vitamin D metabolism was 

altered as a consequence of the disease process rather than a treatment or an intervention. 

Animal or cell culture studies were also excluded. Case reports were included for most drug 

categories, however they were excluded for steroid and antiepileptic drugs because a 

considerable number of studies with stronger study designs were available for those drug 

categories.

Data abstraction and quality assessment

Using a standardized data abstraction form, two of the authors (K.R., J.H.R.) abstracted data 

for each trial. A third author (S.J.O.) reviewed the articles and abstraction forms for 

accuracy of the classification and quality rating. In cases where the third author disagreed 

with classification and/or rating assigned by the primary reviewer, the study was discussed 

among the authors until a consensus was reached. The following information was abstracted 

from each study: first author, year of publication, location of the study, study design, study 

population, sample size, duration of participant follow-up, drug dose and formulation, effect 

on 25(OH)D concentrations or drug level/activity, potential confounders evaluated in the 

study, and study limitations. If a study reported findings related to both 25(OH)D and 

1,25(OH)2D concentrations, only the data related to 25(OH)D were abstracted.

The American Dietetic Association Evidence Analysis classification system and quality 

criteria checklist 28 was used to assign class and quality ratings. The ADA system was 

chosen because it is oriented towards medical nutrition interventions and is designed to 

support translation to clinical practice guidelines. Study classification was based on study 

design, with randomized controlled trials being assigned a classification of A, cohort studies 

assigned a B classification, case-control and time series studies assigned a C classification, 

and cross-sectional, case series, case reports and before-and-after studies assigned a D 

classification. The quality criteria checklist includes questions in 10 categories relating to 

the reporting of the research methods and findings: a clear statement of the research 

question, potential for bias in selection of study participants, comparability of the study 

groups, methods for handling withdrawals, appropriateness of exposure assessment or the 

intervention, appropriateness of the outcome assessment, statistical analysis methods, 

whether the conclusions are supported by the data, and the potential for bias from the 

study’s funding or sponsorship. Studies that appeared to be free from selection bias, applied 
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appropriate randomization procedures, and had appropriate intervention methods/exposure 

assessment and outcome measurements received a positive rating. Studies that failed to meet 

the reporting requirements for six or more of the quality criteria categories received a 

negative rating. All other studies received a neutral rating.

Results

A total of 1225 reports were identified through the initial search process. Titles were 

reviewed for eligibility, and 912 manuscripts were excluded at this stage. Abstracts were 

obtained for the remaining 313 reports. After reviewing the abstracts, 109 unique reports met 

the full inclusion criteria (Figure 3).

Included studies are summarized in Supplementary Table 1 (available online). The majority 

of the studies were classified as Class C (non-randomized trials, case-control studies, or time 

series; n=30, 28%) or D (cross-sectional, trend, case reports/series, or before-and-after 

studies; n=69, 63%). Ten of the included studies were randomized controlled trials (RCT, 

Class A), of which eight were of neutral quality and two were rated as negative quality. 

None of the included studies were cohort studies (Class B). Only two of the Class C and 

three of the Class D studies were found to be of positive quality. All positive quality studies 

were published after 1996, likely reflecting increasing reporting standards for publication.

Drugs that interfere with vitamin D absorption

Bile Acid Sequestrants

The bile acid sequestrants, colestipol and cholestyramine, reduce cholesterol by binding bile 

acids in the gastrointestinal tract and preventing reabsorption of the bile acids. Bile acid 

sequestrants may also bind fat-soluble vitamins including vitamin D. As vitamin D 

metabolites are also present in the bile, increased bile acid excretion could reduce body 

stores of vitamin D.

Three RCTs (Class A; two neutral quality 29, 30, one negative quality 31), one time series 

(Class C, negative quality 32), and one before-and-after study (Class D, negative quality33) 

evaluated the effect of bile acid sequestrants on vitamin D status. One of the RCTs reported 

a statistically significant decrease in serum 25(OH)D concentrations among children with 

familial hypercholesterolemia taking 8 g cholestyramine/day for one year compared to 

controls 30. In contrast, the time series and before-and-after studies reported no significant 

change from baseline circulating 25(OH)D levels among children taking colestipol for 2–24 

months 32, 33. Similarly, two of the RCTs both reported no significant differences in 

circulating 25(OH)D concentrations between adults taking 24 g cholestyramine/day and a 

control group after 24 weeks 31 or 7–10 years 29. Overall, these studies suggest that bile acid 

sequestrants do not alter vitamin D status.

Lipase inhibitors

Orlistat is used as a weight loss aid, and acts by binding the active sites of gastric and 

pancreatic lipases within the gastrointestinal tract to block absorption of dietary fats, and 
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thus calories 34. As vitamin D is fat soluble, orlistat may also inhibit dietary and 

supplemental vitamin D absorption 35.

Two RCTs (Class A, both neutral quality 36, 37) and one before-and-after study (Class D, 

negative quality 38) met the inclusion criteria for this drug category. All three studies 

reported decreases in 25(OH)D concentrations among participants receiving orlistat. 

However, in the RCTs, the control groups also experienced a decrease in 25(OH)D 

concentrations suggesting that the decrease in dietary fat intake may be the reason for the 

decrease in 25(OH)D concentrations rather than the orlistat itself.

Vitamin D status should be monitored for individuals taking orlistat. If deficient, it would be 

prudent to recommend that these individuals take vitamin D supplements several hours prior 

to their orlistat dose to maximize vitamin D absorption.

Drugs that interfere with vitamin D metabolism

Statins

Statins lower serum cholesterol concentrations by inhibiting the rate-limiting enzyme in 

cholesterol synthesis, HMG Co-A reductase 39. Vitamin D is derived from cholesterol, so by 

decreasing cholesterol synthesis, statins could also reduce vitamin D synthesis 40, 41. 

Another potential mechanism for vitamin D-statin interactions is competition for CYP3A4 

activity. Atorvastatin, lovastatin and simvastatin are primarily metabolized by 

CYP3A4 42, 43. Rosuvastatin and fluvastatin are primarily metabolized by CYP2C9 43, 44. 

Pitavastatin and pravastatin interact minimally with metabolizing enzymes, degrading in the 

stomach and excreted as parent compound 43, 44.

A total of five studies on statins and vitamin D status, including one RCT (Class A, negative 

quality 31), one nonrandomized trial (Class C, neutral quality 45) and two before-after 

studies (Class D, both negative quality 41, with data from one study published in two 

separate publications 46, 47), and one cross-sectional study (Class D, neutral quality 48) met 

the inclusion criteria. Three studies reported that atorvastatin therapy increased circulating 

25(OH)D 45, 46, 48. One study reported statistically significantly lower concentrations of 

atorvastatin and its metabolites among participants taking 800 IU/d supplemental vitamin D 

for 6 weeks compared to those who did not receive supplements (p<0.05) 45. However, 

cholesterol levels were also lower during vitamin D supplementation despite lower 

atorvastatin concentrations. The two studies evaluating the effect of pravastatin therapy on 

25(OH)D concentrations 31, 41 both reported no significant differences in 25(OH)D 

concentrations before and after treatment.

Although further study is needed, it appears that only the statins metabolized by CYP3A4 

have the potential to interact with vitamin D supplementation. Clinicians should consider 

whether it is appropriate to ask patients to discontinue vitamin D supplementation while 

taking atorvastatin, lovastatin or simvastatin, or whether patients should be switched to a 

different statin in order to continue vitamin D supplementation.
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Antimicrobials

Rifampin and isoniazid—Rifampin and isoniazid are used in treating tuberculosis (TB). 

The complex relationship between vitamin D and TB has long been recognized. Prior to the 

advent of antibiotics, sun exposure and vitamin D supplements formed the primary treatment 

for the disease 49. Vitamin D is a modulator of macrophage activity and enhances the 

production of the antimicrobial protein cathelicidin 50. Vitamin D deficiency has been 

associated with increased susceptibility to TB infection or reactivation of latent TB 

infections 51. Treatment with rifampin and isoniazid may also alter vitamin D status, as 

CYP3A4 is induced by rifampin and inhibited by isoniazid 52.

Six small time series studies (Class C, all negative quality 53–58), each with between 8 and 

27 participants, have evaluated the association between rifampin, isoniazid and vitamin D 

status. Four studies reported that 25(OH)D decreased 53–56, one reported no change 57, and 

one reported increased 25(OH)D 58 after rifampin and/or isoniazid treatment. Several of the 

studies noted that the individuals with TB had below normal 25(OH)D concentrations pre-

treatment 56, 57. While some of the studies considered the season in which vitamin D status 

was assessed, few considered dietary or supplemental vitamin D intake, and none assessed 

UV exposure or stratified by race/skin tone. Thus, it is prudent to monitor 25(OH)D 

concentrations during rifampin and isoniazid treatment, however if vitamin D deficiency is 

noted, it may be due to decreased vitamin D exposure rather than a true drug-nutrient 

interaction.

Hydroxychloroquine—Hydroxychloroquine is used in the treatment of malaria, as well 

as autoimmune disorders such as systemic lupus erythematosus (SLE). Because individuals 

with autoimmune diseases often also have photosensitivity and avoid sun exposure, there has 

been concern that vitamin D deficiency might be common in this population.

One cross-sectional study with comparison group (Class D, neutral quality 59) evaluated the 

prevalence and predictors of vitamin D deficiency (defined as serum 25(OH)D <10 ng/mL) 

among 92 adults with SLE. The researchers found that vitamin D deficiency is common 

among individuals with SLE (n=69, 75%), and individuals taking hydroxychloroquine had 

higher 25(OH)D concentrations compared to those who were not taking 

hydroxychloroquine, which the authors hypothesized may be due to a decreased rate of 

conversion of 25(OH)D to 1,25(OH)2D 59.

Antiepileptic drugs

Physicians have long noted a higher incidence of osteopenia and osteporosis among patients 

on antiepileptic drugs (AEDs), however the mechanism by which this occurs is not entirely 

clear. Cell culture studies have shown that phenobarbital (PB), phenytoin (PHT), primidone 

(PRM), carbamazepine (CBZ), oxcarbazepine and felbamate induce CYP3A4 expression, 

whereas ethosuximide (ETHS), valproic acid (VPA), and lamotrigine (LTG) have no effect 

on CYP3A4 activity 60, 61. PB and PHT have also been found to increase CYP24A 

expression 61, 62, which could result in decreased clearance of vitamin D metabolites and 

lower serum 25(OH)D levels.
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In total, 46 studies have evaluated the effect of AEDs on vitamin D status, however most 

were small single-institution reports, and only 4 of these studies included more than 100 

participants 63–66. The majority of included studies were cross-sectional with (Class D; one 

positive quality 67, 17 neutral quality 63, 68–83, and 13 negative quality 64–66, 84–93) or 

without a comparison group (Class D; three neutral quality 94–96, and two negative 

quality 97, 98). The ten remaining studies were seven time series studies with (Class C; three 

neutral quality 99–101, two negative quality 102, 103) or without comparison groups (Class C; 

two neutral quality 104, 105), and three before-and-after studies (Class D; one positive 

quality 106, one neutral quality 107, and one negative quality 108).

Study design limitations likely contributed to variation in the findings across the 46 studies. 

Most of the studies that compared AED users to non-AED users found AED use to be 

associated with lower serum 25(OH)D 

concentrations 63, 64, 66, 68–74, 76–78, 81, 84, 86, 88–90, 93, 99, 100, 102, 109, however two of these 

studies reported that the difference in 25(OH)D concentrations between AED users and 

controls occurred only in the winter months 76, 102. Seven studies reported no significant 

differences in 25(OH)D concentrations between AED users and non-

users 64, 65, 79, 80, 82, 85, 91, 101. Most of the participants in these studies were ambulatory 

rather than institutionalized AED users, and two of the studies were conducted in lower 

latitude countries 82, 85. Unexpectedly, one study reported that the individuals on AEDs had 

higher 25(OH)D concentrations compared to the controls 92, which the authors attributed to 

adequate sun exposure given that the study participants lived in Florida.

Many studies combined the data for individuals who were on a variety of different single or 

multidrug AED regimens, and did not adjust for dose or duration of AED use. Of the few 

studies that reported the effects of specific AEDs on 25(OH)D concentrations, no 

statistically significant differences in 25(OH)D concentrations were observed between those 

on the CYP3A4 inducing AEDs compared to normal controls 66, or within individuals over 

time 107. One study reported no statistically significant difference in 25(OH)D 

concentrations among individuals on CYP3A4-inducing AEDs compared to those on other 

AEDs 96. Overall, the literature suggests that the effect of AEDs on vitamin D status may 

only be evident among individuals with insufficient exposure to exogenous sources of 

vitamin D (diet, supplements or UV exposure).

Corticosteroids

Glucocorticoids, such as prednisone, hydrocortisone and dexamethasone, are used 

pharmacologically for a variety of clinical applications including adrenal replacement, 

immune suppression, and chemotherapy. However, osteoporosis is a well-known 

complication of corticosteroid therapy. Alterations in vitamin D metabolism have been 

investigated as a possible mechanism.

Two RCTs (Class A, both neutral quality 110, 111), four time-series (Class C; three neutral 

quality 112–114, one positive quality 115) and five cross-sectional studies (Class D; one 

negative 116, three neutral 117–119 and one positive quality 120) have evaluated the effect of 

prednisone therapy on 25(OH)D concentrations. The majority found no difference in 

25(OH)D concentrations in comparison to either pre-treatment concentrations or to a control 
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group 111–113, 116, 117, 119. Lems et al 114 reported that 25(OH)D concentrations decreased 

after low dose prednisone treatment among healthy controls, which they attributed to 

seasonal effects given that the study concluded in the fall. In a study of 50 adult rheumatoid 

arthritits (RA) patients on low dose prednisone, Lund et al 118 also found that 25(OH)D 

concentrations were significantly lower than the laboratory’s normal values, although none 

of the study participants were considered deficient. The decreased concentrations may be 

explained by the fact that the study participants were likely older than the subjects used to 

establish the laboratory norms. The authors also appropriately note that photosensitivity is a 

common complication of glucocorticoids and other RA treatments, and the study 

participants may have been more likely than the general population to avoid sun exposure.

Two studies of prednisolone, one RCT (Class A, neutral quality 121) and one time-series 

(Class C, neutral quality 122) both found no statistically significant differences in 25(OH)D 

concentrations pre- vs. post-treatment Six studies, all cross-sectional (Class D; one 

negative 123, five neutral quality 124–128) did not specify the type of glucocorticoid that the 

participant received. One study comparing 31 adult RA patients on corticosteroids for at 

least six months (2.5–10 mg prednisone equivalents/day) to 38 healthy controls found that 

the corticosteroid users had significantly lower 25(OH)D concentrations compared to 

healthy controls 124. Similarly, two studies of children and young adults found that 

individuals with low 25(OH)D concentrations had significantly higher lifetime cumulative 

glucocorticoid exposure compared to those with higher 25(OH)D concentrations 125, 126. 

However, the remaining three studies, one in adults 123 and two in children 127, 128, found no 

significant differences in 25(OH)D concentrations between individuals receiving 

glucocorticoids and controls or laboratory normal values.

Overall, the studies evaluating the effect of glucocorticoids on vitamin D status suggest that 

25(OH)D concentrations are not significantly affected by glucocorticoids, and that the 

observed association with osteoporosis/osteopenia may be related to drug effects on other 

parameters of bone metabolism 113. Few of these studies considered potential differences in 

the glucocorticoid-vitamin D association by body composition, dietary or supplemental 

vitamin D intake, or UV exposure.

Immunosuppressive agents

Immunosuppressive agents, such as cyclosporine and tacrolimus inhibit T-cell activation, 

and are used to decrease the risk of rejection of the transplanted tissue following solid organ 

and hematopoietic cell transplantation. Lower doses of these drugs are also used to treat 

autoimmune disorders. Osteoporosis is a common long-term side effect, especially among 

transplant patients who often receive both immunosuppressive agents and steroids.

Cyclosporine—Data from cell culture and animal models indicate that cyclosporine 

inhibits CYP27A1 129–133 and decreases expression of the vitamin D receptor (VDR) and 

CYP24 133, which would suggest that cyclosporine could alter circulating 25(OH)D 

concentrations. One RCT (Class A, neutral quality 134) and five time series studies (Class C; 

one positive quality 135, one neutral quality 136, and three negative quality 137–139) evaluated 

the effect of cyclosporine on vitamin D status. None of the studies reported significant 

Robien et al. Page 9

Nutr Clin Pract. Author manuscript; available in PMC 2017 September 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



differences in 25(OH)D concentrations when comparing the effect of cyclosporine alone or 

in combination with prednisone.

Tacrolimus—Tacrolimus is metabolized by CYP3A4 and CYP3A5 140, and thus may also 

be associated with altered 25(OH)D concentrations. One time series study (Class C, negative 

quality) evaluated the effect of tacrolimus on vitamin D status in individuals who had 

undergone renal transplantation 139. Again, 25(OH)D concentrations were not significantly 

different than those of the healthy control group at any of the study time points.

While it does not appear that cyclosporine or tacrolimus alter vitamin D status, osteopenia 

and osteoporosis are common among this patient population. Thus, it is prudent to monitor 

vitamin D concentrations in individuals receiving these drugs, and provide supplements as 

needed to maintain adequate 25(OH)D concentrations. It is likely that the underlying disease 

state or factors associated with treatment may keep individuals from obtaining adequate 

vitamin D exposure from sunlight, diet or supplements, rather than a true effect of the 

immunosuppressant itself on vitamin D status.

Chemotherapeutic agents

A number of chemotherapeutic agents are metabolized by CYP3A4, including etoposide, 

epipodophyllotoxin, cyclosphosphamide, ifosfamide, vincristine, vinblastine, paclitasel, 

docetaxel, irinotecan, tamoxifen and imatinib 141, and thus may interact with vitamin D. 

However, few have been extensively studied with respect to their effect on vitamin D status 

to date.

Two time series studies (Class C; one neutral quality 142 and one negative quality 143) and 

one cross-sectional study (Class D, neutral quality 144) evaluated vitamin D status during 

chemotherapy. All three studies reported no significant changes in 25(OH)D concentrations 

during treatment of breast, ovarian, uterine, or colorectal cancers with a number of different 

chemotherapeutic agents (cisplatin, 5-fluorouracil, epirubicin, irinotecan, oxaliplatin, 

capecitabine, and several monoclonal antibodies). Given the small number of study 

participants in the studies to date, and the large number of different (often multi-agent) 

regimens used for cancer treatment, further research is needed. However, because of the high 

likelihood of vitamin D deficiency due to suboptimal dietary/supplemental intake and 

decreased UV exposure, vitamin D status should be monitored regularly for patients 

undergoing cancer treatment.

Highly active antiretroviral agents (HAART)

Highly active antiretroviral therapy (HAART) are a broad category of antiretroviral drugs 

that inhibit various stages of the human immunodeficiency virus (HIV) life-cycle, and 

include nucleoside reverse transcriptase inhibitors (NRTI), nucleotide reverse transcriptase 

inhibitors (NtRTI), non-nucleoside reverse transcriptase inhibitors (NNRTI), protease 

inhibitors (PI), and entry inhibitors 145. In vitro studies have indicated that HAARTs are 

metabolized by CYP3A4, and can either induce or inhibit CYP3A4 activity 146, and thus 

drug-induced induction or inhibition of CYP3A4 could alter rates of 25(OH)D synthesis and 

degradation. Cozzolino et al 147 reported that conversion of vitamin D3 to 25(OH)D and 
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1,25(OH)2D, and degradation of the 1,25(OH)2D metabolite was inhibited in human 

hepatocyte cell cultures exposed to PIs. However, evidence of HAART inhibiting vitamin D 

bioactivation in humans is currently limited, and inconclusive.

Three cross-sectional studies (Class D; two neutral quality 148, 149, one negative quality 150) 

met the inclusion criteria for this drug category. The two Spanish studies reported lower 

serum 25(OH)D concentrations among individuals on HAART compared to those who were 

not on HAART 148, 150, but the difference was only statistically significant in one study 148. 

The other study 149 reported that half of the 44 study participants on HAART had deficient 

25(OH)D levels (< 34 ng/dL), but this study did not include a non-HAART comparison 

group.

Given the in vitro data suggesting that vitamin D status might be effected by HAART 

medications, vitamin D status should be monitored in individuals receiving HAART. Future 

research in this area should consider body composition changes as a potential covariate 

effecting vitamin D status. Lipodystrophy, a well described side effect of HAART 

characterized by alterations in adipose tissue deposition, may also contribute to alterations in 

circulating 25(OH)D concentrations.

Histamine H2-receptor antagonists

The histamine H2-receptor antagonist, cimetidine, inhibits gastric acid secretion by 

inhibiting histamine stimulation of the gastric parietal cells. However, animal data shows 

that cimetidine also inhibits CYP enzymes, including the 25-hydroxylases 151, 152. One time 

series study (Class C, neutral quality) of nine adults with gastric ulcers found no significant 

change from baseline serum 25(OH)D concentrations while participants were taking 

cimetidine, yet serum 25(OH)D concentrations rose significantly once cimetidine was 

discontinued 153. Without a placebo control or other similar studies published, this finding 

must be interpreted with caution. Ranitidine, another histamine H2-receptor antagonist, has 

not been shown to interact with the CYP enzymes in animal models 154.

Drug-vitamin D interactions that induce side effects

Thiazides

Thiazide diuretics are prescribed to reduce blood pressure, treat edema or fluid retention, 

treat diabetes insipidus, or prevent kidney stones in patients with hypercalciuria. Thiazides 

reduce the reabsorption of electrolytes from the renal tubules, increase the excretion of 

electrolytes and fluid, and reduce the excretion of calcium. The combination of thiazide 

diuretics (decreases urinary calcium excretion) and vitamin D supplementation (enhances 

intestinal calcium absorption) may theoretically cause or exacerbate hypercalcemia 155.

Excluding reports of patients with altered calcium metabolism due to idiopathic osteoporosis 

or hyperparathyroidism156–159, three cases of hypercalcemia while on thiazides have been 

reported in two published manuscripts (Class D; one positive quality160, one negative 

quality161 ), including: a 78 year old woman taking vitamin D2 (50,000 IU/day), calcium 

carbonate (1.5 g elemental calcium/day) and hydrochlorothiazide (25 mg/day) 160; an 87 

year old woman taking vitamin D (dose not specified), calcium carbonate antacids (1.9 g 
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elemental calcium/day) along with hydrochlorothiazide (50 mg/day) 161; and an 88 year old 

woman taking vitamin D (1000 IU/day) and calcium carbonate antacids (3.8 g elemental 

calcium/day) along with hydrochlorothiazide (50 mg/day) 161. These cases were reversible 

after rehydration and withdrawing the calcium and vitamin D supplementation and the 

thiazide diuretic. Clinicians should be aware that the combination of thiazide diuretics and 

vitamin D supplementation may cause hypercalcemia, especially in at-risk individuals, such 

as the elderly, and individuals with compromised renal function or hyperparathyroidism.

Four additional reports evaluated the effect of thiazide diuretics on serum 25(OH)D 

concentrations, including one RCT (Class A, negative quality 162), one non-randomized 

crossover trial (Class C, negative quality 163), and one before-after study 164 and one cross-

sectional study 165 (both Class D, negative quality). None of the studies reported significant 

alterations in 25(OH)D concentrations as a result of thiazide treatment.

Discussion

This systematic review found insufficient evidence to determine whether lipase inhibitors, 

antimicrobial agents, antiepileptic drugs, HAART or H2 receptor antagonists alter serum 

25(OH)D concentrations. Atorvastatin appears to increase 25(OH)D concentrations, while 

concurrent vitamin D supplementation decreases concentrations of atorvastatin. Use of 

thiazide diruetics in combination with calcium and vitamin D supplements may induce 

hypercalcemia in the elderly, or those with compromised renal function or 

hyperparathyroidism.

The area of drug-vitamin D interactions is a clear example of a situation where lack of 

evidence does not equate to “no harm”. The available research to date has primarily focused 

on drugs that are commonly associated with osteoporosis (suggesting a potential effect on 

vitamin D metabolism), or where case reports of adverse outcomes have been reported in the 

medical literature. Recent advances in understanding the mechanistic details of CYP3A4 

mediated drug metabolism, and a growing appreciation of the role of vitamin D in CYP3A4 

expression will likely lead to a systematic evaluation of potential interactions among drugs 

that are metabolized by CYP3A4, as well as those metabolized by CYP2R1, CYP27A, 

CYP27B and CYP24.

There is also a need for further research to understand the impact of drugs that inhibit CYP 

enzyme activity related to vitamin D status. For example, synthetic azole drugs, such as the 

antimicrobial agent ketoconazole and proton pump inhibitor omeprazole, have been shown 

to inhibit both CYP3A4 166, 167 and CYP24 168 in vitro, yet no studies to date have 

evaluated the effect of these drugs on human vitamin D status.

The currently available literature on drug-vitamin D interactions has a number of limitations, 

as reflected in the number of neutral and negative quality ratings assigned in this review. 

Much of the literature to date is based on small case-control studies, case studies, or 

secondary analyses of clinical data collected for other reasons. Many of the studies were 

hospital-based and lacked relevant comparison groups. Most studies failed to evaluate 

dietary or supplemental vitamin D intake and sun exposure, as potential effect modifiers. 
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And very few studies considered body weight or composition as a potential confounder 

effecting both vitamin D concentrations and drug response. The majority of studies also 

lacked statistical power to adjust for appropriate covariates or rule out false negative 

findings. For many of the studies where individuals taking a drug were found to have lower 

25(OH)D levels than a non-drug comparison group, the lack of data collection on vitamin D 

intake and UV exposure makes it difficult to determine whether the observed vitamin D 

deficiency is due to insufficient intake or due to the drug itself.

Because vitamin D is highly hydrophobic and has several metabolites, serum vitamin D 

determinations are technically challenging. Methodology for assessing vitamin D status has 

improved significantly in recent years, and the older data reported in many of the studies 

included in this systematic review may not be accurate or comparable to more current data. 

Currently, high performance liquid chromatography (HPLC) or liquid chromatography 

coupled with tandem mass spectrometry (LC-MS/MS) is considered the gold standard 

technique, although when performed by experienced users, radioimmunoassay (RIA) 

techniques correlate very closely with LC-MS/MS 169. Commercially available testing kits 

have been found to produce highly variable results when performed by inexperienced 

users 170. As a result of regional surveys revealing significant variation between laboratories, 

an international standardization group, the vitamin D External Quality Assessment Scheme 

(DEQAS), was started in 1989 171. In 2009, the US National Institute of Standards and 

Technology (NIST) developed a vitamin D standard (standard reference material 972, 

Vitamin D in Human Serum) with certified and reference values for 25(OH)D2, 25(OH)D3, 

and 3-epi-25(OH)D3 172. Supplies of this standard quickly sold out, and NIST does not plan 

to continue producing this standard due to difficulties in formulating the product. A 

companion NIST product, SRM 2972, is a set of ethanol-based calibration solutions and has 

certified values for 25(OH)D2 and 25(OH)D3 which is currently available. NIST has also 

established a Vitamin D Metabolites Quality Assurance Program (VitDQAP, http://

www.nist.gov/mml/analytical/vitdqap.cfm) in collaboration with the National Institutes of 

Health (NIH) Office of Dietary Supplements (ODS).

Given the increasing prevalence of vitamin D supplementation in the general population, 

continued evaluation of potential drug-vitamin D interactions is warranted. Larger studies 

with stronger study designs are needed to clarify potential drug-vitamin D interactions. 

Future research in this area should address the limitations identified in this review, 

specifically with prospective data collection including assessment of vitamin D exposure and 

potential confounding factors such as body weight/composition and seasonality/UV 

exposure. Future studies should also use standardized vitamin D assay methodologies in a 

laboratory that participates in external quality assessment protocols specific to vitamin D. 

Until further research is available, health care professionals should be aware of the potential 

for drug-vitamin D interactions, assess their clients’ use of dietary supplements, and monitor 

serum 25(OH)D concentrations where indicated with the ultimate goal of achieving 

adequate serum 25(OH)D concentrations while optimizing drug efficacy and minimizing 

drug toxicity.
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Figure 1. Vitamin D metabolism
Ovals denote metabolic enzymes, rectangles denote substrates.
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Figure 2. Vitamin D intracellular signaling pathways
As a steroid hormone, 1,25(OH)2D is involved in intracellular signaling through both rapid 

responses (initiation of membrane-associated signal transduction as a result of 1,25(OH)2D 

binding to membrane-bound vitamin D receptors (mVDR)) and genomic responses 

(initiation/inhibition of transcription for genes containing a vitamin D response element 

(VDRE)). In the slower genomic responses, vitamin D metabolites can enter the cell either 

as 25(OH)D (through carrier-mediated endocytosis with megalin or cubilin as the primary 

carriers, and subsequent intracellular conversion to 1,25(OH)2D), or directly as the active 

1,25(OH)2D. Binding of 1,25(OH)2D to the vitamin D receptor (VDR) in the cytoplasm 

forms a heterodimer with the retinoid X receptor (RXR), which is then translocated into the 

nucleus where it binds to VDREs in the promoter region of certain genes and either activates 

or inhibits gene transcription in complex with RNA polymerase (RNA Pol).
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Figure 3. 
Flow chart of manuscript identification and inclusion
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Table 1

Examples of drugs that are activated by, inhibit or induce CYP3A4

Substrate for CYP3A4 23, 173 Inhibits CYP3A4 23, 173, 174 Induces CYP3A4 23, 166, 167, 173

Analgesics:

Acetaminphen

Celecoxib

Codeine

Fentanyl

Antimicrobial agents:

Dapsone

Sulfamethoxazole

Calcium-channel blockers:

Nifedipine

Chemotherapeutic agents:

Cyclophosphamide

Docetaxel

Etoposide

Ifosfamide

Paclitaxel

Vinblastine

Vinorelbine

Erectile dysfunction:

Sildenafil

Gastrointestinal motility:

Cisapride

Immunosuppressive agents:

Cyclosporine A

Sirolimus

Tacrolimus

Antidiabetics:

Rosiglitazone *

Antidepressants:

Fluoxetine *

Antifungal agents:

Clotrimazole

Itraconazole

Ketoconazole

Antimicrobial agents:

Clarithromycin

Doxycycline

Erythromycin

Isoniazid *

Primaquine

Tetracycline

Antihypertensives:

Amlodipine *

Dihydralazine

Diltiazem *

Nicardipine

Verapamil *

Chemotherapeutic agents:

Irinotecan

Tamoxifen *

Erectile dysfunction:

Tadalafil *

Immunosuppressive agents:

Cyclosporine A *

Proton-pump inhibitors:

Omeprazole

Statins:

Atorvastatin

Anticonvulsants

Carbamazepine †

Phenobarbital

Phenytoin †

Primidone

Antimicrobial agents:

Erythromycin

Quinine †

Rifampin †

Diuretics:

Spironolactone †

Chemotherapeutic agents:

Cyclophosphamide †

Ifosfamide †

Paclitaxel

Glucocorticoids:

Dexamethasone

Vitamins:

1,25(OH)2D (calcitriol)

*
Indicates drugs that are reversible inhibitors of CYP3A4

†
indicates drugs that are able to induce their own metabolism
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