Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations

Sekar Kathiresan, M.D.
Director, Center for Genomic Medicine, MGH
Director, Cardiovascular Disease Initiative, Broad

$$
\text { May 9, } 2018
$$

Health care scenario: 42 yo male with dizziness, profuse sweating

$42 y o$ male with cardiac arrest due to acute myocardial infarction (MI)

Anoxic brain injury Expired after 10 days in hospital

42yo male with fatal, early-onset MI

MI risk factors prior to event

Total cholesterol $198 \mathrm{mg} / \mathrm{dl}$
LDL cholesterol $124 \mathrm{mg} / \mathrm{dl}$
HDL cholesterol $40 \mathrm{mg} / \mathrm{dl}$
Triglycerides $\quad 170 \mathrm{mg} / \mathrm{dl}$
Blood pressure 122/78
Body mass index 26
Non-smoker
No type 2 diabetes
Family history: father with MI at 54

ACC/AHA 10y ASCVD risk calculator typically used for statin allocation decision: I.7\% ('low-risk')

Pooled Cohort Risk Assessment

Equations

Predicts 10-year risk for a first atherosclerotic cardiovascular disease (ASCVD) event

Risk Factors for ASCVD					
Gender	Male	Female	Systolic BP	122	mmHg
Age	42	years	Receiving treatment for high blood pressure (if SBP > 120 mmHg)	No	Yes
Race	White or other -				
			Diabetes	No	Yes
Total Cholesterol	198	mg/dL	Smoker	No	Yes
HDL Cholesterol	40	mg/dL			
		Reset	Calculate		

Why is the ACC/AHA pooled cohort equation not useful in young people?

Pooled Cohort Risk Assessment

Equations

Predicts 10-year risk for a first atherosclerotic cardiovascular disease (ASCVD) event
品 ClinCalc.com " Cardiology \# Pooled Cohort 10-Year ASCVD Risk Assessment Equations

Model almost entirely driven by 'age'

In population, older you are, more likely you are to have a heart attack!

Health care scenario

What is predicted?

Risk for heart attack

Intended target population
Men/women < 55yo

How

For what purpose

Gene variant(s)

Janssens, Martens, Prediction Research Manual http://www.cecilejanssens.org/wpcontent/uploads/2018/0 I/PredictionManual2.0.pdf

For early-onset disease, stratifying individuals based on inborn DNA variation an option

Most diseases inherited component

Stratify individuals based on inherited DNA variation

Inherited component to early heart attack

MI at age < 55 Age onset at MI

Traditional approach:
Genetic prediction focuses on rare, monogenic mutations

Traditional approach:
Genetic prediction focuses on rare, monogenic mutations

Familial
hypercholesterolemia

Cholesterol
Heart attack 3x increased risk

0.4% of the population

Traditional approach:
Genetic prediction focuses on rare, monogenic mutations

Familial

 hypercholesterolemia

Identify this risk group early in life Target statin intervention

Testing for familial hypercholesterolemia mutations: CDC Tier I Genomics Application

Tier 1

- FDA label requires use of test to inform choice or dose of a drug
- FDA cleared or approved companion diagnostic device
- CMS covers testing
- Clinical practice guidelines based on systematic review supports testing

Genomics Application General Information	
Tier Classification	Tier 1
Disease/Disorder:	Familial hypercholesterolemia (FH)
Test or Application:	DNA testing and LDL-C concentration measurement
Target Population:	
Intended Use:	Cascade testing of relatives of people diagnosed with FH
Application Type	Other
Basis:	Clinical Practice Guideline
Entered Date:	08/19/2015
Last Updated Date:	08/19/2015

Question: Can we identify additional patients with a polygenic risk model?

Concept: polygenic risk scores

Kathiresan, N Engl J Med (2008) Ripatti, Lancet (2010) Khera, N Engl J Med (2016)

Polygenic risk scores: move from top SNPs to a genome-wide set of 6.6 M for prediction

Khera*, Chaffin*, bioRxiv 2017

Amit V. Khera

Hypothesis: a polygenic score including a genomewide set of SNPs can identify individuals with risk equivalent to a monogenic mutation

Genotypes: from arrays + imputation
Khera*, Chaffin*, bioRxiv (2017)

Hypothesis: a polygenic score including a genomewide set of SNPs can identify individuals with risk equivalent to a monogenic mutation

Genotypes: from arrays + imputation
Khera*, Chaffin*, bioRxiv (2017)

Hypothesis: a polygenic score including a genomewide set of SNPs can identify individuals with risk equivalent to a monogenic mutation

Genotypes: from arrays + imputation
Khera*, Chaffin*, bioRxiv (2017)

A new quantitative metric of genetic liability to heart attack

Khera*, Chaffin*, bioRxiv (2017)

>20-fold risk gradient across percentile bins of score

Khera*, Chaffin*, bioRxiv (2017)

Genome-wide polygenic score: little correlation with currently measured MI risk factors

Khera*, Chaffin*, bioRxiv (2017)

Using polygenic model, can we identify group with risk for MI equivalent to monogenic mutations?

What if we label top 5\% tail of distribution as
 'carriers' and remainder as 'non-carriers'?

Polygenic score of
6.6 million common variants

Khera*, Chaffin*, bioRxiv (2017)

Top 5\% of polygenic MI score: risk equivalent to monogenic mutations

Polygenic score of
6.6 million common variants

High polygenic score definition	Odds ratio
Top 5\%	3.3
Top 1\%	4.7

Khera*, Chaffin*, bioRxiv (2017)

In UK Biobank, top 5\% of polygenic score risk equivalent to monogenic mutations but what about external validation?

Polygenic score of
6.6 million common variants

| High |
| :--- | ---: |
| polygenic |
| score |
| definition |\quad| Odds |
| :--- |
| ratio |

Khera*, Chaffin*, bioRxiv (2017)

2,08 I Early-onset MI patients | 3,76I Controls

MI Cases:

- VIRGO: Patients hospitalized across US with first Ml at age ≤ 55 years

Controls:

- MESA: Multiethnic population free of cardiovascular disease

Contributions of monogenic and polygenic models to early MI

Khera*, Chaffin*, under review

Monogenic familial hypercholesterolemia mutation identified in I．7\％patients－＞3．8－fold increased risk

100 patients with myocardial infarction
勿市市T
方市市市市市市
TTNTNTNT
勿市市方市云
TTTNT方T
TiTit
TTTTNTT

个Risk
$\uparrow \pi$
Monogenic

Carriers of familial hypercholesterolemia mutations can be distinguished by high LDL cholesterol

Mean LDL Cholesterol
Carriers: 206 mg/dl
Non-carriers: $124 \mathrm{mg} / \mathrm{dl}$

High polygenic score identified in 17\％of patients and confers a $\mathbf{3 . 7 - f o l d}$ increase in risk

100 patients with myocardial infarction			\uparrow Risk
Tititititi	Ti	Monogenic	3．8－f
かられかtititi 			
tintintiti			
itititititi	Trint	High polygenic	3.7 －fold
$\pi \pi t \pi t \pi \pi t \pi$ かtititititi	巾巾巾巾		

High polygenic score individuals can NOT be distinguished by high LDL cholesterol

Mean LDL Cholesterol

High polygenic: $132 \mathrm{mg} / \mathrm{dl}$
Non-carriers: $124 \mathrm{mg} / \mathrm{d} \mid$

High polygenic score individuals can NOT be distinguished by clinical risk factors

	Neither	High Polygenic Score	FH Mutation
N	1690	355	32
Race, N (\%)			
White	$1232(72.9)$	$281(79.2)$	$20(62.5)$
Black	$296(17.5)$	$35(9.9)$	$5(15.6)$
Hispanic	$129(7.6)$	$32(9.0)$	$7(21.9)$
Asian	$33(2.0)$	$7(2.0)$	$0(0.0)$
Male sex, N (\%)	$563(33.3)$	$123(34.6)$	$21(65.6)$
Age, years; Mean (SD)	$47.6(5.9)$	$47.8(5.7)$	$46.8(6.5)$
Hypertension, N (\%)	$1075(63.9)$	$243(68.5)$	$24(75.0)$
Diabetes, N (\%)	$593(35.3)$	$134(37.7)$	$6(18.8)$
Current Smoking, N (\%)	$848(50.4)$	$190(53.5)$	$14(43.8)$
Statin Use, N (\%)	$445(26.5)$	$113(31.8)$	$15(46.9)$
Lipid Levels, mg/dl			$201.5(82.0)$
LDL Cholesterol; Mean (SD)*	$122.1(45.75)$	$130.4(51.0)$	$37.6(8.1)$
HDL Cholesterol; Mean (SD)	$40.7(13.75)$	$38.9(13.0)$	$162(91-246)$
Triglycerides; Median (IQR)	$133(91-205)$	$155(105-222)$	

Some traditional risk factors are slightly elevated, but not enough to be useful

Polygenic score identifies I0x than monogenic mutations

	Monogenic	Polygenic
Prevalence among early MI cases	1.7%	17%
Odd ratio for MI	3.8	3.7
Mode of detection	个 LDL cholesterol	Currently UNAWARE
Mechanism of risk	apoB lipoproteins	'Gemish'

Monogenic, polygenic contributions to early MI

	Monogenic	Polygenic
Prevalence among early MI cases	1.7%	17%
Odd ratio for MI	3.8	3.7
Mode of detection	个 LDL cholesterol	Currently UNAWARE
Mechanism of risk	apoB lipoproteins	'Gemish'
Intervention	Lifestyle Medications	$\boxed{?}$

Is polygenic risk for MI modifiable? Yes

Lifestyle

$\downarrow 48 \%$

Khera, N Engl J Med (2016)

Medicines

$\downarrow 44 \%$

Mega*, Stitziel*, Lancet (2015)
Natarajan, Circulation (2017)

Do those at high polygenic risk derive greater benefit from statin therapy?

Determined polygenic risk score for participants of three statin RCTs to prevent first heart attack

The New England
Journal of Medicine

©Copyright, 1995, by the Massachusetts Medical Society

Volume 333	NOVEMBER 16, 1995	Number 20

PREVENTION OF CORONARY HEART DISEASE WITH PRAVASTATIN IN MEN WITH
HYPERCHOLESTEROLEMIA HYPERCHOLESTEROLEMIA

Abstract

Articles © © Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial

Peter S Sever, Björn DahiWr, Neï R Pouiter, Hans Wedel, Gareth Beevers, Mark Cauffield, Ray Collins, Sverre E Kjeldsen, Arni Kristinsson, Gordon T Mclnnes, Jesper Mehlsen, Markku Nieminen, Eoin O'Brien, Jan Östergren, for the ASCOT investigators*

Rosuvastatin to Prevent Vascular Events in Men and Women with Elevated C-Reactive Protein

Evaluate clinical benefit of statin therapy in genetic risk subgroups: High genetic risk versus all others

Mega*, Stitziel*, Lancet (2015)
Natarajan*, Young*, Circulation (2017)

Among those at high polygenic risk, statins confer greater benefit (to prevent first MI)

Pradeep Natarajan

$\mathbf{R R} \mathbf{R}=44 \%$

Natarajan*, Young*, Circulation (20I7)

Approach works for other common diseases. . . including those without monogenic risk factors

Why much better prediction now?

- Larger genome-wide association studies, more precise effect estimate for each variant
- Better computational methods to create genome-wide polygenic scores
- Larger cohorts to validate and test genome-wide polygenic scores (e.g., UK Biobank, 500K participants with GWAS data)

Conclusions:

- Now possible to score polygenic component to any complex trait (from genotyping array data, simultaneous for many diseases, at birth)
- Those in extremes of score: at risk for disease approaching or exceeding monogenic mutations
- For MI , top 5% tail of polygenic score equivalent risk to monogenic mutations and this risk modifiable by lifestyle, statin also consider polygenic risk score

What is predicted?	Risk for heart attack
Intended target population	Men/women < 55yo
How?	Genome-wide polygenic score (top 5\%)
For what purpose?	Statin initiation at early age

