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The maladaptive response of aged microglia to surgery and consequent neuroinflammation plays a key
pathogenic role in postoperative cognitive dysfunction (POCD). Here, we assessed the preventive effect of
resveratrol (RESV) for POCD in aged rats. The emulsified form of RESV (e-RESV) was selected to improve its
oral and brain bioavailability. Animals were assigned to one of four groups: e-RESV (80 mg/kg) versus
vehicle treatment by abdominal surgery versus isoflurane anesthesia alone (n = 8 in each group). The
dose-dependent effects of e-RESV were also assessed in dose range of 0—60 mg/kg. Either vehicle or e-
RESV was administered intragastrically 24 h before surgery. Seven days after procedure, cognitive function
was evaluated using a novel object recognition test, followed by measurement of hippocampal pro-
inflammatory cytokine levels. Our results showed that pre-treatment with e-RESV attenuated the
surgery-induced cognitive impairment and related hippocampal neuroinflammation at 40 mg/kg or
higher doses. Additionally, the ex-vivo experiments revealed that the preemptive e-RESV regimen reduced
the hippocampal microglial immune reactivity to lipopolysaccharide. Furthermore, e-RESV induced
neuroprotective benefits were inhibited by the concomitant administration of sirtinol, a specific SIRT1
inhibitor. Our findings imply the preventive potential of e-RESV for POCD via the SIRT1 signaling pathway.

© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of Japanese Pharmacological
Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

There is an emerging concern that surgery may trigger and
accelerate the age-related cognitive impairment, which is referred
as postoperative cognitive dysfunction (POCD).! The development of
POCD has been reported to be associated with long-term disability
and increased mortality.” Although some preventive strategies for
POCD have been proposed in preclinical studies, as well as small
exploratory clinical trials, no established interventions are currently
available>* Specifically, neuroinflammation, ie., a maladaptive
microglial activation and overproduction of cytokines, is a key in the
pathogenesis of neurodegenerative processes including Alzheimer's
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disease (AD) and POCD.">~® Our recent study reported that the
postoperative neuroinflammation may transit from acute to chronic
in an age- and hippocampal-specific manner, resulting in the
development of POCD.? Therefore, the acute neuroinflammation
during the early postoperative period may be critical therapeutic
target for POCD.

Resveratrol (RESV), a polyphenol present in red wine, is well-
known to have beneficial biochemical properties, including anti-
aging and anti-neuroinflammatory effects.'’~! Indeed, a preclinical
study reported the protective effects of 12 weeks oral RESV treatment
on aging-induced cognitive impairment.'? In addition, a clinical trial
for AD showed that chronic oral treatment with RESV for 53 weeks
reduces pro-neuroinflammatory factors in cerebrospinal fluid,
improving cognitive function.”>'* Differing from the long-term pro-
gression of normal aging and AD, POCD is a consequence of the acute
neuroinflammatory response triggered by the surgical procedure.’
Therefore, acute, high-dose regimen during perioperative period
may be appropriate for POCD prevention. However, our preliminary
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study indicated that a preemptive injection with a single high-dose of
free RESV, even at maximum administrable dose, failed to induce any
neuro-cognitive protection in aged rats (Supplementary data 1). One
plausible explanation for this may be due to the low bioavailability of
RESV, particularly in the brain.”® Alternatively, nanoemulsion based
drug delivery systems has recently emerged as a promising strategy
for overcome this issue, enhancing RESV solubility and improving
permeation across the blood brain barrier.'® 2 Consistently, we
hypothesized that nanoemulfised form of RESV can be effective for
preventing the development of POCD.

RESV-induced neuroprotection is thought to be mainly medi-
ated by allosteric activation of sirtuin-1 (silent mating type infor-
mation regulation 2 homolog 1; SIRT1), a major gene associated
with longevity.'®?! SIRT1 is an evolutionarily conserved mamma-
lian nicotinamide adenine dinucleotide-dependent protein deace-
tylase that is implicated in a wide range of aging-related diseases.??
As SIRT1 is also reported to regulate microglial activity,>> we
further hypothesized that preoperative RESV treatment can act as
an anti-neuroinflammatory agent via the SIRT1 pathway.

To test our hypothesis, we investigated the effects of a preop-
erative single dose of RESV-loaded nanoemulsion (emulsified
RESV; e-RESV) on the development of POCD in an aged rat model of
abdominal surgery. The effects of e-RESV on the microglial

A Experiment 1

e-RESV (mg/kg)

phenotype in the hippocampus were also assessed in ex-vivo
preparations.

2. Materials and methods
2.1. Animals and experimental designs

All experiments were approved by the Institutional Animal Care
and Use Committee of Kochi Medical School. Wistar male rats aged
19—22 months were purchased from Alfresa Shinohara Chemicals
Corporation (Kochi, Japan). The animals were divided into three
sets of experiments (Fig. 1). Experiment-1 assessed the effects of e-
RESV on POCD using a 2 x 2 experimental design: e-RESV
(maximum dose; 80 mg/kg) versus vehicle emulsion of e-RESV (e-
vehicle) treatment by abdominal surgery versus anesthesia alone
(n = 8 in each group). Experiment-2 was conducted to observe the
dose-dependent effects of e-RESV (0, 2.0, 20, 40, or 60 mg/kg; n =6
in each dose group). In Experiment-3, to perform the SIRT1-related
antagonist experiment using a specific SIRT1 inhibitor, sirtinol,
surgical animals were randomly assigned to four treatment groups
(n = 8 in each group): dimethyl sulfoxide (DMSO, a vehicle of sir-
tinol) with e-vehicle treated, sirtinol (5.0 mg/kg) with e-vehicle
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Fig. 1. Schematic diagram of the three different experimental protocols. (A) Experiment-1; Effects of emulsified resveratrol (e-RESV, 80 mg/kg) on postoperative cognitive
impairment and related neuroinflammation (n = 8 in each group). (B) Experiment-2; Dose-dependent effects of e-RESV (0—60 mg/kg, n = 6 in each group). (C) Experiment-3;

Antagonist study using sirtinol (n = 8 in each group).
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Fig. 2. Emulisified resveratrol. (A)Visual appearance. (B) Representative transmission
electron microscope image. Nanoemusision droplets appear as dark micelles. Scale bar:
100 nm. (C) Size-distribution histogram analyzed by Image] counting over 300 emu-
lisified resveratrol nanoparticles from a series of TEM images.

treated, DMSO with e-RESV (80 mg/kg) treated, and sirtinol
(5.0 mg/kg) with e-RESV (80 mg/kg) treated.

2.2. Experimental model of abdominal surgery

Abdominal surgery was performed as per our previous study.’
Briefly, laparotomy consisted in a 2.0-cm midline longitudinal
incision into the peritoneum, small intestine exteriorization and
manipulation for 3 min. During the inhalation period of 15 min,

Table 1
Physiological parameters.

pulse rate, arterial oxygen saturation, and mean arterial blood
pressure were measured noninvasively. Application of 0.2% ropiva-
caine (300 ul) was used for postoperative analgesia as our previous
study.”* Postoperative pain was rated by the rat grimace scale
(RGS).?> Locomotor activity was evaluated using the open-field test
on postoperative day 7 based on the total accumulated counts of
horizontal beam crosses for 60 min.

2.3. Preparation and administration of e-RESV

e-RESV was prepared by the low-energy emulsification technique
based on previous study.’® Briefly, two oils, orange oil and grape seed
oil, were mixed together for 1 h, and RESV (TCI Development Co., Ltd,
China) was then added to produce a final concentration of 0.5 g/ml.
Following overnight stirring, a nonionic surfactant, polyoxyethylene
sorbitan monooleate (Tween® 80, Sigma—Aldrich, St. Louis, MO), was
added to the solution. After another hour of mixing, the resulting
organic phase was added drop-wise to the aqueous phase (5.0 mM
phosphate buffer, pH = 7), while stirred at 500 rpm for 10-min. The
emulsion without RESV was used as the control e-vehicle. Either e-
vehicle or e-RESV was administered intragastrically by gavage 24 h
before surgery. Sirtinol (Sigma—Aldrich) was dissolved in DMSO
(Sigma—Aldrich) based on the previous study,>’ and administered by
an ip. injection 24 h before surgery. To confirm e-RESV establish-
ment, the emulsion was imaged with transmission electron micro-
scopy (TEM). Briefly, particles were mounted on a Cu grid with a
Formvar and carbon supporting film and stained with a 2% uranyl
acetate solution. After drying, the stained samples were observed
under a JEM-1400Plus electron microscope (JEOL, Japan). The
nanoparticle size distribution was determined by analyzing the ac-
quired images with the Image] software (version 1.51, National In-
stitutes of Health, Bethesda, MD, USA).

2.4. Novel object recognition task

One week after surgery, cognitive function was assessed using a
novel object recognition test, similar with our previous study.”> On
the testing day, during the familiarization phase, the animal was
allowed to freely explore the open-field arena containing two
identical objects for 5 min. After 1 h, in the testing phase, the rat
was placed into the experimental chamber again with a new set of
objects containing one identical and one novel for 5 min. Object

Group Mean arterial pressure (mmHg) Pulse rate (beats/min) Oxygen saturation (%) RGS Total exploration
Time 1 Time 2 Time 1 Time 2 Time 1 Time 2 time (seconds)
Experiment-1
e-vehicle/sham 985 +9.7 954 +10.0 369.2 +214 3775+ 26.7 975+ 1.7 976 £ 1.5 0.11 + 0.07 51.7 + 8.2
e-vehicle/surgery 99.7 + 104 97.2 £ 9.1 3854 +25.0 3853 + 254 98.0 + 1.1 982 + 1.6 0.17 + 0.02 487+ 7.0
e-RESV/sham 101.0 + 12,5 99.0 + 10.6 370.1 + 245 363.8 +30.6 98.1+1.2 98.1+14 0.12 + 0.03 52.0 + 6.8
e-RESV/surgery 103.6 + 10.3 100.7 + 9.4 381.6 +29.3 3709 + 288 984 + 1.0 985+ 1.5 0.21 + 0.06 50.6 + 9.1
Experiment-2
e-vehicle 96.4 + 11.5 98.4 +7.7 3752 +£246 364.5 £ 254 972+ 1.1 975+ 0.9 0.14 + 0.03 52.5+ 104
e-RESV 2 mg/kg 95.2 + 10.1 97.2 + 8.0 387.5+19.1 3703 +29.6 97.6 + 0.8 98.0 + 0.9 0.19 + 0.03 51.8 + 8.0
e-RESV 20 mg/kg 101.7 £ 9.0 102.1 + 8.8 3703 + 244 388.1 £ 27.1 98.1 + 1.6 983 +1.7 0.15 + 0.04 534 +71
e-RESV 40 mg/kg 953 + 129 96.4 + 10.6 381.0 253 3694 +30.2 98.0+1.2 98.1 + 1.1 0.14 + 0.05 496 + 6.6
e-RESV 60 mg/kg 946 +9.3 95.7 + 8.7 370.6 + 24.1 3742 £ 25.0 984 + 1.5 98.0+ 1.4 0.20 + 0.07 51.2+78
Experiment-3
DMSO/e-vehicle 974+ 85 99.5 +10.2 365.7 + 19.6 367.4 + 26.7 976 £ 1.5 97.8 £ 1.1 0.17 + 0.05 56.7 + 9.4
Sirtinol/e-vehicle 100.7 + 11.3 97.2 + 8.7 3749 +25.0 3715+ 315 973+ 1.0 98.0 +1.2 0.15 + 0.03 53.0 + 6.8
DMSO/e-RESV 93.1 +12.6 101.5+79 3710+ 214 380.3 + 25.1 979+ 1.5 982 +1.0 0.18 + 0.09 555+ 7.0
Sirtinol/e-RESV 955+ 9.0 96.2 + 8.4 381.6 +25.8 375.0 £ 276 982 +1.7 98.0 +0.8 0.14 + 0.05 514 +79

Each parameter was recorded at Time 1 — after induction of anesthesia, before procedure, and at Time 2 — immediately after procedure, before termination of anesthesia. RGS:
rat grimace scale assessed 2 h after surgery. Total exploration time: total time spent exploring the two objects during the familiarization phase of novel object recognition test.
Data were expressed as the mean + standard deviation. Each group consisted of 8 animals.
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exploration was defined as time spent sniffing the object with nose
contact and/or within 1 cm. Recognition memory was expressed as
the preference index; the ratio of time spent exploring an object
during the familiarization phase or the novel object during the
testing phase, over the total object exploration time.

2.5. Tissue collection and enzyme-linked immunosorbent assay

After behavior testing, animals were transcardially perfused,
decapitated, and brains were harvested. The hippocampus was
dissected, and then homogenized in ice-cold lysis buffer containing a
protease inhibitor cocktail (P8340, Sigma—Aldrich). The hippocam-
pal levels of interleukin-18 (IL-18) and tumor necrosis factor-a.
(TNF-a) were analyzed using the ELISA kits for rat IL-1p (ER2IL1B,
Thermo Scientific, USA) and TNF-o (438207, Biolegend, USA) ac-
cording to the manufacturers’ instructions. The data were normal-
ized and expressed as pg TNF-a or IL-1f per mg tissue (pg/mg).

2.6. Isolation of hippocampal microglia

We further examined the effects of e-RESV on the pro-
inflammatory phenotype of hippocampal microglia as previously
described.” The hippocampus was digested with 0.1% trypsin and
Dispase I1 (3.6 U/ml) for 1 h at 37 °C with shaking (100 strokes/min).
The homogenates were centrifuged at 600 x g for 10 min at 4 °C.
The pellets were re-suspended in 4 ml of 70% isotonic Percoll. The
gradient was centrifuged at 2000 x g for 20 min. Microglial cells at
the interface between the 70 and 37% Percoll layers were collected,
and then plated at a density of 10 cells/100 pl in DMEM containing
10% FBS. Before cell treatment, the medium was replaced with fresh
serum-free medium followed by stimulation with lipopolysaccha-
ride (LPS) at a concentration of 0.1, 1, 10, or 100 ng/ml, or media
alone for 24 h at 37 °C in 5% CO,. The IL-1p and TNF-a. levels in the
culture medium were measured by ELISA.

2.7. Statistical analysis

All data were expressed as the mean + standard deviation (SD).
For each dependent variable, group and/or other main effect(s)
were tested with repeated measures ANOVA. Whenever ANOVA
demonstrated significance, post hoc comparisons between the
groups were performed in a pairwise manner by the Wilcox-
on—Mann—Whitney test with Bonferroni correction. All data were
analyzed using the statistical software SPSS (versions 11; SPSS Inc,
Chicago, IL). Correlations between variables were analyzed by
Pearson's correlation test. P < 0.05 was considered significant.

3. Results

The TEM images revealed that the e-RESV particles has a
spherical morphology (Fig. 2B). The histogram shows a size range
from 23 nm to 181 nm, and 62% of the total population was
<100 nm (Fig. 2C). The mean particle diameter was 86.4 + 12.7 nm
(339 particles form 16 TEM images). All TEM images show almost
an identical profile, indicating a high batch-to-batch reproduc-
ibility. In addition, no aggregations of e-RESV particles were visible
under the optical microscope. These physicochemical features are
largely consistent with a previous report.?® No differences between
groups in the physiological parameters during anesthesia and
the RGS 2 h after surgery were observed (Table 1). In addition, the
results of the open-field test conducted 6 days after surgery
demonstrated no significant difference in any of the parameters
measured within each treatment group (Supplementary data 2).
Furthermore, the preemptive e-RESV regimen had no effect on
blood coagulation parameters in aged rats (Supplementary data 3).

3.1. Novel object recognition performance

During the familiarization phase, there was neither intrinsic
exploratory preference for either of the two objects nor significant
difference in exploratory preference for the two objects in all
groups. In addition, total exploration time did not differ within
each treatment group (Table 1). These results implied that task
motivation, curiosity, and ability during task performance were
comparable among groups.

During the testing phase, the non-surgical control rats had a
greater preference for the novel object compared with the familiar
one (Fig. 3A, preference index: 77.3 + 6.8%). The rats in the surgical
group exhibited significantly impaired novel object recognition
performance (Fig. 3A, preference index: 55.1 + 8.2%, p < 0.05 vs. non-
surgical control rats). However, pre-treatment with e-RESV

A

100 1 [J e-vehicle
B o-RESV (80 mg/kg)

80

* *
60
| -
40 -

Sham Sham

Exploratory Preference (%)

Surgery Surgery

Familiarization phase Testing phase

100

S
3
2
2 80
&
<
&
g
S 60
«
s
f=9
>
A
40
e-RESV (mg/kg) 0 2.0 20 40 60 0 20 20 40 60
Familiarization phase Testing phase
100 7 [ e-vehicle
Il c-RESV (80 mg/kg) . .

80

60

Exploratory Preference (%)

40
DMSO Sirtinol DMSO Sirtinol

DMSO Sirtinol DMSO Sirtinol

Familiarization phase Testing phase

Fig. 3. The results of the novel object recognition test. The preference between two
objects in the familiarization phase and testing phase of the novel object recognition
test performed 7 days after sham or surgery is shown. Each vertical bar represents the
mean + SD. (A) Experiment-1, n = 8 in each group, *p < 0.05. (B) Experiment-2, n = 6
in each group, *p < 0.05 vs. e-RESV/0 mg/kg group. (C) Experiment-3, n = 8 in each
group, *p < 0.05.
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significantly attenuated the surgery-induced cognitive impairment.
In the dose-dependent experiment (Experiment-2), e-RESV inhibited
surgery-induced memory deficit at 40 mg/kg or higher doses
(Fig. 3B). Furthermore, in Experiment-3, although the sirtinol alone
had no effect, it attenuated the effects of e-RESV (Fig. 3C). Neither e-
RESV nor the surgical procedure had any significant influence on
novel object recognition by adult rats (Supplementary data 4).

3.2. Levels of hippocampal cytokines
For the non-surgical rats, the average levels of hippocampal
IL-1B and TNF-o were comparable between vehicle and e-RESV

groups (Fig. 4A and Fig. 4B, respectively). However, for rats
treated with the vehicle, levels of both cytokines were
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significantly higher in the surgery group than in the non-surgery
group. These increases in both IL1- and TNF-a were inhibited in
the surgery with e-RESV group. The anti-neuroinflammatory ef-
fects of e-RESV were dose-dependent (Experiment-2; Fig. 4C and
D) and blocked by sirtinol (Experiment-3; Fig. 4E and F). Taking
all experimental groups in Experiment-1 together, novel object
recognition performance in the testing phase was inversely
correlated with the hippocampal levels of both IL-18 (Fig. 5A,
n =32; R2 = —0.692) and TNF-0. (Fig. 5B, n = 32; R2 = —0.709). In
another experiment using sentinel animals, plasma cytokine
levels increased after surgery, whereas these increases returned
to baseline levels within 3 days after surgery (Supplementary
data 5). In addition, e-RESV had no effect on plasma cytokine
levels after surgery.
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Fig. 4. The levels of proinflammatory cytokines in the hippocampus. The average levels of interleukin (IL)-1p and tumor necrosis factor (TNF)-¢, in each group in Experiment-1
(A and B, n = 8 in each group, *p < 0.05), Experiment-2 (C and D, n = 6 in each group, *p < 0.05 vs. e-RESV/0 mg/kg group), and Experiment-3 (E and F, n = 8 in each group, *p < 0.05)

are shown. Each vertical bar represents the mean + SD.
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3.3. Ex vivo microglial sensitivity to LPS

As the primary source for cytokines, microglia play as mediators
of neuroinflammation.?® Therefore, to investigate whether e-RESV
influences microglial immunosensitivity, we measured the LPS
sensitivity of hippocampal microglia isolated from animals in each
group. In Experiment-1, there was no difference in baseline levels of
IL-1B (Fig. 6A) and TNF-o (Fig. 6B) in all experimental groups.
In microglia isolated from non-surgical groups, the LPS-induced
increase in IL-1B was greatly attenuated in the e-RESV group
compared with that in the vehicle group (Fig. 6A). On the other
hand, the LPS-induced increase in IL-1B in the non-surgery with
vehicle group was significantly exaggerated in the surgery with
vehicle group. With respect to TNF-a. levels, we found similar main
effects among groups as those observed for IL-1f. Furthermore, the
e-RESV-induced microglial anti-neuroinflammatory phenotype
change was dose-dependent (Experiment-2; Fig. 6C and D), and
attenuated by sirtinol (Experiment-3; Fig. 6E and F).

4. Discussion
In this study, we demonstrated that a prophylactic dose of e-RESV

can prevent the development of cognitive deficits and related
neuroinflammation in aged rats. The preoperative e-RESV regimen
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Fig. 5. The relationship between the levels of proinflammatory cytokines and
cognitive function after surgery. Correlation of the levels of interleukin (IL)-1f (A) or
tumor necrosis factor (TNF)-o (B) in the hippocampus of aged rats with the novel
object recognition performance of each donor rat at the testing phase, demonstrating
an inverse relationship. Data points are classified into four experimental groups in
Experiment-1 (n = 8 in each group).

had no effect on surgery-induced systemic inflammatory responses,
indicating that directly acts on the brain. Furthermore, our ex-vivo
experiments confirmed that in-vivo e-RESV treatment leads to a
reduction in microglial immune sensitivity. The neuroprotective
benefits of e-RESV are almost completely inhibited by the concom-
itant administration of sirtinol, a specific SIRT1 inhibitor, suggesting
involvement of the SIRT1 signaling pathway. These findings imply
that a single preoperative dose of e-RESV provides effective peri-
operative neuro-cognitive tolerance, especially in vulnerable brains,
via microglia-based anti-neuroinflammation.

Although there is promising in-vitro biopharmacological data
for RESV, its therapeutic use is limited due to low bioavailability.?
Many strategies have been applied to overcome this issue, and the
self-nanoemulsifying drug delivery system is currently attracting
the most attention.'® In practice, e-RESV has been reported to
increase oral bioavailability and enhance in-vivo pharmacological
efficiency.'”'92% Furthermore, our TEM analysis show that the
majority of e-RESV nanoparticles achieved a sub-100 nm diameter
(Fig. 2C), which is reported to be able to cross the blood—brain
barrier.?® Indeed, systematic injection regimen (i.p.) of RESV failed
to induce neuro-cognitive protection (Supplementary data 1).
Therefore, e-RESV may be an efficient nano-carrier that enhances
both oral and brain bioavailability. In addition, the low-energy
emulsification technique used in this study can be produced
without specialized equipment, reducing production costs.?® As
such, e-RESV provides novel translational therapeutic options for
neuroinflammation associated with the central nervous system.

Previous studies suggest that neuroinflammation plays a pivotal
role in the underlying mechanism of POCD.">~7 The surgery-
induced peripheral inflammation may be transmitted to the brain
through humoral and neural pathways, leading to microglial acti-
vation and neuroinflammatory response.>' Moreover, we previously
reported that aged microglia exaggerated pro-inflammatory cyto-
kines release in response to immune stimulation, compared with
young microglia.”?® This age-related phenotype change may explain
why elderly patients are at a greater risk for POCD. Indeed, POCD did
not develop in adult rats when they were subjected to our surgical
model (Supplementary data 4). Therefore, the preemptive optimi-
zation of the age-related microglial pro-inflammatory phenotype
may be beneficial for preventing the development of POCD. In this
context, we provide the first preclinical evidence that e-RESV can be
used as a mechanism-based preventive strategy against POCD,
especially for elderly patients.

In the present study, the surgical procedure itself did not in-
fluence microglial reactivity in response to immune challenge with
LPS (Fig. 6A). In contrast, the pre-treatment with e-RESV reduced
the microglial immune sensitivity regardless surgical treatment
in a SIRT1-dependent manner. Taken together, a single high-dose of
e-RESV may induce microglial rejuvenation, making the vulnerable
brain more tolerant against POCD development. Consistent with
this, a previous study demonstrated that SIRT1 activation reduced
inflammatory processes in mice microglia cell lines N9 and Bv2.>3
Nevertheless, the preemptive effects of e-RESV may be transient
in nature, and the accurate administration window remains un-
known. However, the present findings indicate that our single dose
regimen may be sufficient during the perioperative period.

Elderly patients are more susceptible to adverse drug reactions
due to altered pharmacokinetics and pharmacodynamics.>? RESV at
therapeutic dose levels is not known to be toxic or cause significant
adverse effects. Furthermore, some clinical trials presented a good
safety profile of RESV in elderly patients with AD."*'* Accordingly,
RESV may be well tolerated even in elderly patients. However, some
in-vitro experiments have reported anticoagulant activity of RESV,
suggesting an increased risk of hemorrhage during surgery.>> Pre-
emptive e-RESV may minimize this due to its rapid metabolism and
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Fig. 6. Concentration—response effects of ex vivo stimulation with lipopolysaccharide (LPS) on the production of interleukin (IL)-18 and tumor necrosis factor (TNF)-a in
cultured microglia. Hippocampal microglia were isolated from rats after the completion of cognitive testing in Experiment-1 (A and B, n = 8 in each group), Experiment-2 (C and D,
n = 6 in each group), and Experiment-3 (E and F, n = 8 in each group). Cultured microglia were stimulated with 0.1, 1, 10, or 100 ng/ml, or media alone, and levels of IL-1p and TNF-a
were measured from supernatants collected 24 h later. Each vertical bar represents the mean + SD.

elimination from blood. Indeed, we found neither signs of bleeding
nor changes in blood coagulation parameters in the e-RESV-treated
surgical animals (Supplementary data 3). In addition, the e-RESV
ingredients are widely used in cosmetics, food products, and
pharmaceutical formulations. Nevertheless, the safety profile of
e-RESV drug delivery system in human remains under investigated.

There are some limitations that should be addressed. First, we
previously reported that neuroinflammation associated with POCD
was found mainly in the hippocampus, and thus the present study
focused on this brain region. However, e-RESV may interact with
other brain regions. Second, since both TNF-o and IL-1B has been
shown to play pivotal roles in neuroinflammation, we assessed

these two cytokines. However, other molecules are reported to be
constitutively expressed in activated microglia. Third, previous
studies reported that nanoemulsion drug delivery system could
increase the brain bioavailability of RESV,'®~2% while actual in vivo
pharmacokinetic data of e-RESV is currently lacking. In addition,
our TEM analysis showed a positive dark staining of e-RESV parti-
cles despite the standard negative staining method (Fig. 2A).
Indeed, mixed results, ie., dark and light staining, has been re-
ported using similar technique, suggesting that the staining
outcomes may depend on each chemical condition.**>° Further-
more, we cannot rule out the possibility for the oil phase to crys-
tallize and form solid particles, increasing contrast in TEM. If that's
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the case, the in vivo pharmacokinetics of e-RESV may be affected.>’
Therefore, future pharmacology and preclinical studies are needed
before our findings can be translated into clinical practice.

In the present study, the hippocampal neuroinflammation-
associated POCD was attenuated by a preemptive dose of e-RESV,
but not by the free form of RESV. The e-RESV drug delivery system
may enhance the brain bioavailability, and reduce the microglial
immune sensitivity via the SIRT1 pathway. As the safety profile of
RESV has been well-established, our approach warrants further
study with respect to the translational potential for POCD clinical
management.
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