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Abstract 

   Epidemiology has linked preeclampsia (PET) to vitamin D deficiency. To date, studies have focused 

upon serum 25-hydroxyvitamin D3 (25(OH)D3) alone as the marker of vitamin D status.  

   We provide strong evidence comprehensive analysis of vitamin D metabolites in pregnancy is 

highly informative, particularly within the context of PET. Uniquely, analysis of maternal urinary 

metabolites provides a novel insight into vitamin D and the kidney, with lower 25(OH)D3 and 

24,25(OH)2D3 excretion  early indicators of a predisposition towards PET. 

   Since vitamin D is a potent regulator of immune function, and the decidua appears a key extra-renal 

site for vitamin D metabolism, we investigated effects of 1,25(OH)2D3 upon decidual uterine natural 

killer cells and macrophages.  We show both express a functional vitamin-D system and demonstrate 

differential sensitivity to 1,25(OH)2D3 compared to their peripheral counterparts.  

   To understand the functional impact of vitamin D, whole transcriptomic analysis of 1,25(OH)2D3-

mediated effects upon uNK and macrophages was performed. We show the actions of vitamin D 

extend far beyond simple immuno-regulation, targeting major cellular functions including migration, 

adhesion and apoptosis. In particular, our data support effects highly relevant to decidualisation.  

   We anticipate these findings to be highly relevant within the context of vitamin D deficiency, 

malplacentation and PET. 
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1.2 Abbreviations 

  

Abbreviation Definition 

DMEQTAD [2-(6,7-dimethoxy-4-methyl-3-oxo-3,4-dihydroquinoxalyl)ethyl]-1,2,4-
triazoline-3,5-dione 

1,24,25(OH)2D3 1,24,25-trihydroxyvitamin D3 

1,25(OH)2D3 1,25-dihydroxyvitamin D3 

24, 25(OH)2D3 24,25 di-hydroxyvitamin D3 

25(OH)D3 25- hydroxy-vitamin D3 

1α-hydroxylase 25-hydroxyvitamin D-1α-hydroxylase 

CYP27B1 25-hydroxyvitamin D-1α-hydroxylase 

DAPTAD 4-(4′-dimethylaminophenyl)-1,2,4-triazoline-3,5-dione 

PTAD 4-phenyl-1,2,4-triazoline-3,5-dione 

APCs antigen presenting cells 

B cells B lymphocytes 

BD Becton Dickinson 

BWCFT Birmingham Women’s & Children’s Hospital Foundation Trust 

BP blood pressure 

BMI body mass index 

epi-1,25(OH)2D3 C3- epimer of 25-hydroxyvitamin D3 

classical monocyte CD14++CD16- 

Intermediate CD14++CD16+ 

non-classical CD14+CD16++ 

ChIP chromatin immunoprecipitation sequencing 

CD cluster of differentiation 

cDNA complementary DNA 

CI confidence interval 

CYC-1 cytochrome- c-1 

CK cytokines 

D day 

DCs Dendritic cells 
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DNA deoxyribonucleic acid 

ELCS elective caesarean section 

EDTA ethylenediaminetetraacetic acid 

EVT extravillous trophoblast 

CD16 Fcγ-III receptor 

FCS fetal calf serum 

FGF23 fibroblast-like growth factor-23 

FACS fluorescence-activated cell sorting 

FSC forward scatter 

LGALS9 galectin-9 

GA gestational age 

g grams 

HBSS hanks balanced salt solution 

h hours 

HGNC HUGO Gene Nomenclature Committee 

HLA human leukocyte antigen 

IFITs-5 IFN-induced protein with tetratricopeptide repeats 

Th17 IL-17-secreting T cells 

IVF in vitro fertilisation 

IDO indoleamine-pyrrole 2,3-dioxygenase 

ILCs innate lymphoid cells 

IOM Institute of Medicine 

IFN-γ interferon-gamma 

IL-2 interleukin-2 

IQR interquartile range 

KIRs killer immunoglobulin-like receptors 

KO knock out 

KO knockout 

LXN Latexin 

SERPINB1 leukocyte elastase inhibitor 
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LPS lipopolysaccharide 

CD14 lipopolysaccharide receptor 

LC MS-MS liquid chromatography-mass spectrometry 

LLE liquid–liquid extraction 

LNA-TSO locked nucleic acid template switching oligo 

MTA material transfer agreement 

MABP mean arterial blood pressure 

MFI median fluorescence intensity 

mRNA messenger ribonucleic acid 

Min minutes 

MPS mononuclear phagocyte system 

MRM multiple reaction monitoring 

M. Tb Mycobacterium tuberculosis 

NKRs natural killer cell receptors 

NKT natural killer T cells 

NO nitrous oxide 

NP1 normal first trimester 

NP3 normal third trimester 

PAMPs pathogen-associated molecular pattern 

PE paired-end 

PFA Paraformaldehyde 

PTH parathyroid hormone 

pNKs peripheral natural killer cells 

PPAR peroxisome proliferator-activated receptor 

PMA phorbol 12-myristate 13-acetate 

PBS phosphate-buffered saline 

PET pre-eclampsia 

PCA principal component analysis 

PI propidium iodide 

PTHrP PTH-related peptide 
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FSC-W pulse width 

QA quality assurance 

QC quality control 

qRT-PCR quantitative real-time polymerase chain reaction 

RSAD2 Radical S-Adenosyl Methionine Domain-Containing Protein 2 

RNS reactive nitrogen species 

ROS reactive oxygen species 

RELT Receptor Expressed in Lymphoid Tissues 

Treg regulatory T cells 

REC Research Ethics Committee 

RI resistance index  

RA retinoic acid 

RXRs retinoid-X receptors 

rpm revolutions per minute 

rRNA ribosomal RNA 

RR Risk ratio 

RIN RNA Integration Numbers 

RNA-seq RNA sequence analysis 

SACN Scientific Advisory Committee on Nutrition 

SCOPE Screening for Pregnancy Endpoints 

SSC side scatter 

SGA small for gestational age 

SPE solid phase extraction 

STAR Spliced Transcripts Alignment to a Reference 

SD standard deviation 

SEM standard error of the mean 

SLE supportive liquid-liquid extraction 

sTOP surgical termination of pregnancy 

SMART Switching Mechanism at the 5′ end of RNA Template 

Th T helper 
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T cells T lymphocytes 

TLR toll-like receptor 

TRIM35 tripartite motif-containing protein 35 

TNF-α tumour necrosis factor-alpha 

MAVIDOS UK Maternal Vitamin D Osteoporosis Study 

UVB ultraviolet radiation B 

Iu units 

UoB University of Birmingham 

US unstimulated 

uNKs uterine natural killer cells 

Vs versus 

DBP vitamin D binding protein 

VDDR vitamin D dependency rickets 

VDR vitamin D receptor 

DRIPs vitamin D receptor interacting proteins 

VDRE vitamin D response element 

24-hydroxylase vitamin D-24-hydroxylase 

CYP24A1 vitamin D-24-hydroxylase 

W weeks 

WP WikiPathways 

WT wild-type 

Y years 
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2 General Introduction 
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2.1 Introduction 

2.1.1 Vitamin D metabolism and signalling 

   Vitamin D is a secosteroid classically recognised for its endocrine role in bone metabolism and 

calcium homeostasis. In contrast to other members of the steroid family, vitamin D is produced in the 

skin provided there is sufficient exposure to sunlight and ultraviolet radiation B (UVB). Initially, 7-

dehydrocholesterol is converted to the pre-vitamin pre-cholecalciferol, which is then converted to the 

activated 7-dehydrocholesterol ‘vitamin D3’ form.  As summarised in Figure 2.0, vitamin D may also 

be obtained naturally via ingestion from the diet either as vitamin D2 (ergocalciferol) or D3 

(cholecalciferol), for example from milk, eggs, mushrooms and fatty fish. However, on average 

dietary vitamin D contributes only 10–20% of the total serum vitamin D concentrations; hence skin-

derived vitamin D3 is the primary circulating form of vitamin D for most individuals.   

   Regardless of source, vitamin D2 and D3 are subsequently rapidly metabolised to become 

physiologically active. Classical vitamin D metabolism involves rapid transport of both vitamin D2 

and D3 to the liver, bound to the serum globulin vitamin D binding protein (DBP), a specific binding 

protein for vitamin D and its metabolites in serum. Here, hydroxylation at C-25 by one or more 

cytochrome P450 25-hydroxylase results in the formation of inactive 25- hydroxy-vitamin D2 and D3, 

which shall collectively be referred to as 25(OH)D3 in relation to vitamin D ‘status’ (2, 3).  

   Inactive 25(OH)D3 is the major circulating form of vitamin D, with a half-life of  25 days (d) (4, 5).  

Classically, this is transported from the liver, primarily via circulatory DBP, to the kidney for 

conversion in the proximal renal tubules to the biologically active form of vitamin D, 1,25-

dihydroxyvitamin D (1,25(OH)2D2 and D3; denoted as 1,25(OH)2D3 for the remainder of this report). 

The hydroxylation of 25(OH)D3 is catalysed by 25-hydroxyvitamin D-1α-hydroxylase (1α-

hydroxylase; CYP27B1)(6).  
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Figure 2.0 Summary of vitamin D synthesis and metabolism. UVB Solar ultraviolet B radiation, 

25(OH)D3 25-hydroxyvitamin D3, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), 25-hydroxyvitamin D-

1α-hydroxylase (1α-hydroxylase), 24,25-dihydroxyvitamin D3 (24, 25(OH)2D3), 1,24,25 tri-

hydroxyvitamin D (1,24,25(OH)2D3), vitamin D receptor (VDR), half-life (½ life), C3- epimer of 25-

hydroxyvitamin D3 (epi-25(OH)D3) and C3- epimer of 1,25-hydroxyvitamin D3 (epi-1,25(OH)2D3). 

   1,25(OH)2D3 is the principal ligand for the nuclear vitamin D receptor (VDR), which mediates  

both non-transcriptional and transcriptional effects of 1,25(OH)2D3. Unlike its precursor 25(OH)D3, 

the half-life of 1,25(OH)2D3 is approximately 4-6 hours (h) (7, 8). Renal 1,25(OH)2D3 synthesis is 

however tightly regulated, principally via serum calcium, phosphate, parathyroid hormone (PTH) and 

fibroblast-like growth factor-23 (FGF23).  Low serum calcium and phosphate stimulate 1,25(OH)2D3  

production, whereas high serum levels of both inhibit active 1,25(OH)2D3  production . FGF23 is 

produced by osteocytes in response to high calcium, inhibiting 1α-hydroxylase activity (9). 1α-

hydroxylase activity is also regulated by 1,25(OH)2D3 via a direct  negative feedback signal. 1α-
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hydroxylase activity appears crucial, as in mice inactivating gene mutations result in vitamin D 

dependency rickets (VDDR) despite normal intake of vitamin D (10).  

   In addition to 1,25(OH)2D3, the kidney also produces 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) 

and 1,24,25-trihydroxyvitamin D3 (1,24,25(OH)2D3) from 25(OH)D3 and 1,25(OH)2D3 respectively. 

Generally, this is considered a regulatory ‘catabolic step’, catalysed by vitamin D-24-hydroxylase 

(24-hydroxylase, CYP24A1) and resulting in a five-step downstream inactivation pathway to 

calcitroic acid (11).  1,25(OH)2D3 also induces CYP24A1 to  produce 24-hydroxylase, which via a 

negative feedback mechanism drives catabolic degradation of 1,25(OH)2D3 to 1,24,25(OH)2D3.  The 

Cyp24a1 knockout (KO) (Cyp24a1−/−) mouse supports a crucial role for CYP24A1-mediated catabolic 

activity, with poor offspring viability (50% mortality prior to weaning) and hypercalcemia observed 

(7).  

   The intracellular vitamin D receptor (VDR) is a nuclear transcription factor belonging to the 

superfamily of transacting transcriptional regulatory factors; including steroid and thyroid hormone 

receptors, retinoid-X receptors (RXRs) and retinoic acid receptors (12). Upon binding 1,25(OH)2D3, 

VDR forms a heterodimer with RXR, which translocates to the nucleus and binds to vitamin D 

response element (VDRE) Deoxyribonucleic acid (DNA) sequences that are frequently found in the 

promoter region of target genes (20). In conjunction with several coactivators and corepressors 

including vitamin D receptor interacting proteins (DRIPs), this leads to both transcriptional activation 

and repression of genes and a successive cascade of cellular events.  

   As discussed throughout this paper, murine models with targeted deletion of the genes encoding the 

enzymes that metabolise vitamin D and its derivatives or of the genes through which vitamin D exerts 

its action have provided valuable insights into vitamin D biology, including the extra-skeletal effects 

of vitamin D function. Furthermore, these models permit investigation of the pathophysiology 

associated with active vitamin D deficiency and the role of treatment in the prevention and treatment 

of these disorders (13). In particular, murine studies have been effectively utilised to demonstrate the 

importance of VDR; “knock out” (KO) (Vdr−/−) models express a phenotype analogous to vitamin D-

deficient or -resistant rickets (14). Interestingly, bone pathology is normal in Cyp24a1−/− VDR−/− 
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double KO mice, which suggests that in the context of aberrantly elevated 1,25(OH)2D3,  non VDR-

mediated signal transduction may rescue bone development (14, 15).  The exact mechanisms 

underlying this are however not yet defined. Extrapolation of the insights from these murine models 

to human vitamin D metabolism is often more difficult, but certainly inform future studies defining 

the role of vitamin D deficiency and supplementation. 

2.1.2 DBP and vitamin D transport 

   DBP is a member of the albumin, α-fetoprotein, and α-albumin multigene family. The serum 

concentration is ~4–8 μΜ/ L and half-life 2.5–3 days. DBP has a high-affinity binding site for 

25(OH)D3 (5 × 108 M−1), and can also bind 1,25(OH)2D3 and parental vitamin D, albeit with lower 

affinity (4 × 107 M−1)(16). As alluded to, the differential binding affinity of DBP is considered a 

crucial factor influencing availability of substrate for 1α-hydroxylase conversion to 1,25(OH)2D3.  

   As vitamin D is lipid soluble the majority of circulating 25(OH)D3 and 1,25(OH)2D3 preferentially 

binds DBP, with 10–15% bound to albumin, and less than 1% of circulating vitamin D in an unbound 

‘free’ form.  A positive correlation between 25(OH)D3 and DBP in response to supplementation has 

been shown (17).As well as transporting vitamin D metabolites in the circulation, DBP facilitates the 

entry of 25(OH)D3 into some cells, including proximal convoluted tubule cells of the kidney. This 

requires target cell expression of megalin, a large transmembrane multi-ligand receptor and so called 

chaperone protein. Consistent with this, megalin KO mice, which are unable to recover DBP, develop 

vitamin D deficiency and bone disease (18). 

   Studies using mice deficient in DBP have provided a valuable insight into the role of DBP in 

vitamin D metabolism.  Albeit DBP null (−/−) mice demonstrate markedly lower total serum levels of 

25(OH)D3 comparative to wild-type (WT) mice, calcium and PTH levels remain normal with limited 

impact upon the extracellular pool of biologically active 1,25(OH)2D3. However, following exposure 

to a short duration vitamin D–deficient diet, DBP–/– mice were more susceptible to deficiency, thereby 

suggesting DBP prolongs 25(OH)D3 half-life, maintaining total 25(OH)D3 reserves  (19, 20).  

However, common genetic polymorphisms in the DBP gene produce variant proteins that differ in 

their affinity for vitamin D. Three common polymorphisms are encoded, but with over 124 variant 
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alleles described worldwide, the DBP locus is clearly highly polymorphic. The prevalence of these 

significantly differs between racial groups (21).    

   Although DBP is an effective transporter of vitamin D metabolites, its role in target cell acquisition 

of vitamin D is much less clear. For many extra-renal tissues megalin is not ubiquitously expressed; as  

such it is assumed that free vitamin D metabolites as opposed to those bound to DBP are acquired 

intracellularly. The ‘free hormone hypothesis’ assumes that the most biologically active forms of 

steroid hormones are those that are not bound to their serum binding globulins (22, 23). Recent 

studies suggest that the free hormone hypothesis may play a role in mediating some of the actions of 

vitamin D. ‘free’ vitamin D is the most biologically active metabolite and can rapidly and passively 

diffuse across the cell membrane to target intracellular VDR. Initial association studies indicate free 

25(OH)D3 to be a more reliable correlate of bone mineral density. However, only a small fraction is 

in an unbound, free form, and serum concentrations are significantly lower relative to their bound 

counterparts, albeit strongly correlated (24).   

2.1.3 Vitamin D epimerisation, an alternative pathway 

   When considering vitamin D metabolism, it is important to recognise an alternative parallel 

epimerization pathway exists (Figure 2.0).  This occurs at the third carbon atom of 25(OH)D3, which 

alters the hydroxyl group from an alpha to beta orientation. The structures of 25(OH)D3 and 3-epi-

25(OH)D3 remain otherwise the same. Since the action of 1α-hydroxylase appear unrestricted, 3-epi-

25(OH)D3 metabolites are hydroxylated to form 3-epi-1,25(OH)2D3. It appears all major vitamin D 

intermediate metabolites can be epimerized following the standard metabolic pathway.  

   Little is known on the source of 3-epi-25(OH)D3, although age, season and dietary vitamin D may 

contribute (25). In infants, absolute concentrations appear markedly increased, with levels declining to 

adult concentrations in children around one year of age (26). The C-3 epimer is also detectable  in 

adult blood samples and overall appears positively correlated with 25(OH)D3 (27). In vitro, 3-epi-

25(OH)D demonstrates reduced binding affinity to DBP (36-46%) relative to 25(OH)D3, and 3-epi- 

1,25(OH)2D3 has reduced VDR binding affinity (2-3%) relative to 1,25(OH)2D3 (28, 29). Although 

3-epi-1,25(OH)2D3 appears similar to 1,25(OH)2D3 in relation to PTH suppression, significantly 
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reduced calcaemic effects are observed comparatively (30, 31).  This is important as serum 3-epi-

25(OH)D may be included when vitamin D status is assessed by measuring 25(OH)D3 by either 

immunoassays that display cross-reactivity, or liquid chromatography-mass spectrometry (LC MS-

MS) methods that do not resolve both compounds(32).   

2.1.4 Extra-renal vitamin D metabolism 

   Recent advances in our understanding of the ‘non-classical’ extra-renal functions of vitamin D have 

revealed a broad range of extra-skeletal targets beyond bone development and calcium homeostasis, 

including potent anti-proliferative, pro-differentiative and  immunomodulatory actions (33).  Broadly 

these may be categorised into: (1) regulation of hormone secretion, (2) regulation of immune function, 

and (3) regulation of cellular proliferation and differentiation, albeit a degree of functional overlap is 

evident(34). 

   A central feature of these is the autocrine/ intracrine metabolic mechanisms, which are highly 

distinct from the ‘classical’ endocrine renal generation of active 1,25(OH)2D3 characteristic of 

skeletal actions of vitamin D. As summarised in Figure 2.1, this involves local metabolism of 

precursor 25(OH)D3, with the resulting active 1,25(OH)2D3 acting via endogenous VDR (35).  Since 

most tissues in the body express VDR through which active 1,25(OH)2D3 subsequently acts, the 

scope of vitamin D function is wide-reaching. Extra-renal 1α-hydroxylase activity is also well 

evidenced, with both autocrine and paracrine substrate dependent modes of action defined (36).  

   Whilst 1α-hydroxylase is constitutively expressed, extra-renal expression of 24-hydroxylase appears 

to be part of a feedback control mechanism to attenuate 1,25(OH)2D3 activity. 
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Figure 2.1 Classical and non-classical actions of active 1,25-dihydroxyvitamin D3 

(1,25(OH)2D3): mechanisms of action (Image courtesy of Professor Martin Hewison). Vitamin D 

synthesis principally begins in the skin following direct sunlight exposure, with subsequent 

hydroxylation of vitamin D3 by 25-hydroxylase to inactive 25- hydroxy-vitamin D3 (25(OH)D3) in 

the liver. Following conversion from inactive 25-hydroxyvitamin D3 (25(OH)D3) via 25-

hydroxyvitamin D-1α-hydroxylase (1α-hydroxylase), 1,25(OH)2D3 may then bind the vitamin D 

receptor (VDR) forming a heterodimer with RXR, or undergo catabolic breakdown to less active 

1,24,25 di-hydroxyvitamin D (1,24,25(OH)2D3). The VDR-RXR complex subsequently translocates 

to the nucleus and binds to vitamin D response element (VDRE) DNA sequences. These regulate 

target messenger ribonucleic acid (mRNA) transcript expression, with a range of classical and non-

classical actions of vitamin D now recognised as summarised.  

   Control of 1,25(OH)2D3 production also differs, with PTH and FGF23 not required. For example, in 

peripheral human macrophages inflammatory cytokines (CK), including interferon-gamma (IFN-γ) 

significantly enhance the synthesis of 1,25(OH)2D3, whilst PTH has no observed effect (37). Instead, 

1,25(OH)2D3 production via 1α-hydroxylase appears to be more dependent on the availability of 

1,25(OH)2D3 

25(OH)D3 
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substrate 25(OH)D3 (38). Whilst this provides many potential advantages for localised tissue-specific 

regulation of vitamin D function, it is also likely to be more sensitive to variations in the circulating 

concentrations of 25(OH)D3, in other words vitamin D ‘status’.  How vitamin D sufficiency or 

deficiency affects tissues in which there is significant metabolism of 25(OH)D3 remains unclear. 

Furthermore, as evidenced by inflammatory disorders such as  sarcoidosis, in which there is aberrant 

macrophage-mediated 1,25(OH)2D3 production, failure to control extra-renal 1α-hydroxylase has 

serious clinical implications (39).  

2.1.5 Non-classical immune effects of vitamin D  

   Of particular interest are the potent immune-mediated effects of vitamin D influencing both the 

innate and adaptive arms of the immune system.  For most major immune subsets, including 

monocytes, macrophages, B lymphocytes (B cells), T lymphocytes (T cells) and dendritic cells  

(DCs), positive VDR and CYP27B1 expression is reported. As shall be outlined, these studies 

demonstrate the importance of localised intracrine 1,25(OH)2D3 production (40-42).  

   As discussed in detail in Chapter 5, the most well characterised extra-renal vitamin D system is 

within innate monocytes and macrophages. Both contain the metabolic apparatus required to 

synthesize and respond to active 1,25(OH)2D3, and this appears enhanced in response to immune 

challenge(43). These studies have highlighted the importance of localised production of 1,25(OH)2D3 

as a mechanism for maintaining antibacterial activity. Initial observations arose within the context of 

Mycobacterium tuberculosis (M. Tb) infection, where 1,25(OH)2D3 treatment significantly decreased 

mycobacterium growth, and was enhanced in the presence of IFN-γ stimulation. Later this was found 

to arise via toll-like receptor (TLR)-mediated activation, with concomitant upregulation of CYP27B1, 

and VDR (44, 45).  

   Regarding vitamin D and the adaptive immune system, T cells express VDR, with increased levels 

measured following proliferation (46). As such, initial studies of vitamin D focused upon anti-

proliferative responses (46, 47) with T helper (Th) cells the principal target. It is now clear vitamin D 

also influences T cell phenotype (48, 49).  Specifically, 1,25(OH)2D3 reportedly modulates T cell pro-

inflammatory CK production, limiting IFN-γ, interleukin-2 (IL-2), and tumour necrosis factor-alpha 
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(TNF-α) production, and inducing regulatory T cells (Treg) CK release, including IL-4, and IL-10. 

The effects of vitamin D on T cells in vivo may however be more complex, as in Vdr gene KO mice 

reduced levels of Th1 cells are reported (50).   

   Other T cell subsets, including Treg and inflammatory IL-17-secreting T cells (Th17 cells) are also 

now implicated. In the presence of 1,25(OH)2D3 a drive to Treg production is reported with their 

immuno-suppressive capacity also potently increased, thereby inhibiting cytotoxic cluster of 

differentiation (CD)4+ T cell production (51). For Th17 cells, which promote immune responses to 

some pathogens and are linked to inflammatory tissue damage(52), exposure to 1,25(OH)2D3 

suppresses both their development (53, 54) and IL-17 release (55).  

   Albeit the exact mechanisms by which vitamin D influences T-cell function remain less certain, it 

appears 1,25(OH)2D3-mediated effects can arise directly through intracrine 1,25(OH)2D3 synthesis, 

or indirectly via DCs and macrophages in a paracrine fashion (56-59).  

   Considering humoral responses, 1,25(OH)2D3 is also shown to inhibit B cell proliferation, 

differentiation and IgG production. Until recently this was considered an indirect T cell-mediated 

effect, however recent studies suggest direct effects upon B-cell homoeostasis can arise in a VDR 

dependent manner(60). Collectively, these observations suggest that non-classical metabolism in both 

innate and adaptive immune subsets has a significant immuno-modulatory role involving the 

coordinated actions of CYP27B1 and VDR in mediating intracrine and paracrine actions of vitamin D.  

2.1.6 Vitamin D status and assessment 

   The definition of what constitutes optimal or adequate vitamin D status remains a subject of intense 

debate.  At present serum total 25(OH)D3 remains the principal marker of vitamin D status with 

‘deficiency’ principally defined as 25(OH)D3 <20 ng/mL (50 nmol/L) and ‘insufficiency’ as 

25(OH)D3 <30 ng/mL (75 nmol/L). The Institute of Medicine (IOM)(61), the UK Scientific Advisory 

Committee on Nutrition (SACN)(62) and the International Consensus on Prevention of Nutritional 

Rickets (63) identified individuals with 25(OH)D concentrations < 25–30 nmol/L. The 14th 

Workshop Consensus on Vitamin D advised that although an absolute minimum 25(OH)D3 level 
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50nmol/L is recommended for the classic actions of vitamin D upon bone and mineral health, at least 

75–100nmol/L  is required when the disease data for non-classical actions of vitamin D are considered 

(64). Importantly, low serum levels of 25(OH)D3 have been associated with a range of extra-renal 

complications, including cancers, allergic disorders, infections, autoimmune disorders and 

cardiovascular disease(65-71). A recent meta-analysis, which assessed the association between 

25(OH)D3 with all-cause mortality found a steep increase for participants with 25(OH)D3 < 

40nmol/L eight independent prospective European consortium studies (72).  As the parameters of 

normal vitamin D function shift from being based solely upon parameters of skeletal integrity, 

defining ‘normal’ circulating levels for a healthy population presents a challenge.   

   With improved analytical methods, whether additional vitamin D metabolites should now be 

quantified to provide improved assessment of vitamin D status is of much current interest (73). LC 

MS-MS is now widely recognised as the gold standard technique for vitamin D analysis, reflecting its 

analytical flexibility, specificity and sensitivity comparative to immuno-based assays (74, 75).  This 

permits simultaneous measurement of separate 25-hydroxylated metabolites and downstream di-

hydroxylated metabolites, including 25(OH)D3, 3-epi-25(OH)D3, 24,25(OH)2D3, and 25(OH)D2 in 

remarkably low total serum volumes (76).  Importantly, this included measurement of active 

1,25(OH)2D3, for which accurate quantification is particularly  complex due to its 1000-fold lower 

concentrations (pmol/L), short half-life, and lipophilic nature (76) (77).    

2.1.7 Overall study aims and objectives 

   This project principally aimed to investigate the potential immunomodulatory role for vitamin D in 

human pregnancy. In preparation, the following objectives were initially defined:  

1. To perform a detailed vitamin D metabolite analysis across normal human pregnancy 

comparative to the non-pregnant state. 

2. To understand whether vitamin D metabolism becomes dysregulated within the context of 

abnormal pregnancy, specifically pre-eclampsia. 
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3. To delineate the extra-renal immune-mediated effects of vitamin D across normal human 

pregnancy, in particular the effects upon decidua-derived uterine natural killer (uNK) cells 

and macrophages.    

   Together we anticipate these studies will improve our understanding of the extra-renal role of 

vitamin D during pregnancy, and help provide a functional mechanistic rationale for future 

vitamin D supplementation trials in pregnant women. A ‘General Methods’ for this study are first 

outlined in Chapter 3.  In Chapter 7, the overall findings of the study are evaluated together to 

form the ‘Final Discussion’.    
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3 General Methods 
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3.1.1 Ethics  

West Midlands ethics 

   Ethical approval was obtained from the Local Research Ethics Committee (REC), West Midlands 

Health Authority. (NHS REC 06/Q2707/12 [2006]) (13/WM/0178 [2013]) (RG_14-194 [2014]).  This 

included first trimester surgical termination of pregnancy (sTOP), and third trimester postnatal 

samples, including those obtained from women diagnosed with pre-eclampsia (PET) booked at 

Birmingham Women’s & Children’s Hospital Foundation Trust (BWCFT) and Walsall Manor 

Hospital Trust. Written informed consent was subsequently obtained from all participants recruited to 

the study.  

SCOPE ethics  

   Samples were purchased from the SCOPE (Screening for Pregnancy Endpoints) Ireland study 

(Clinical Research Ethics Committee of the Cork Teaching Hospital: ECM5(10)05/02/08) following 

appropriate ethics amendment (14/WM/1146 - RG_14-194 2) and material transfer agreement (MTA) 

(15.04.2016 15-1386) approvals.   

3.1.2 Participant recruitment  

West Midlands recruitment 

   Women with uncomplicated pregnancies undergoing sTOP between 8-13 weeks (w) gestation (NP1; 

n=25), as determined by ultrasound measurement of crown rump length were recruited at Walsall 

Manor NHS Trust & BWCFT. Third trimester (>37 w) (NP3) and PET sera, decidua and placental 

samples were collected from pregnant women consented prior to delivery at BWCFT. All PET cases 

were diagnosed according to current International definitions (ISSHP, 2014) (78); new hypertension 

presenting after 20w with ≥1 of the following new onset conditions: 1: proteinuria (urinary protein: 

creatinine ratio > 30 mg/mmol or a validated 24-hour (h) urine collection > 300 mg protein); 2. other 

maternal organ dysfunction (renal insufficiency, liver involvement, neurological and/ or  

haematological complications); 3. uteroplacental dysfunction (fetal growth restriction). A healthy 
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non-pregnant female ‘control’ group was recruited to provide whole blood for comparative serum 

vitamin D analysis.    

SCOPE study recruitment 

   Samples utilised in this study were purchased from the SCOPE Ireland study biobank 

(www.anzctr.org.au; ACTRN12607000551493). As summarised in Figure 3.0, SCOPE Ireland 

participants were recruited as part of a larger prospective international pregnancy cohort study 

involving six research centres, located in Auckland, Adelaide, London, Leeds, Manchester, and Cork. 

The study aimed to develop screening tests for PET, small for gestational age (SGA), and spontaneous 

preterm birth. The main inclusion criteria were a low-risk pregnancy, a singleton pregnancy <15w 

gestation, and no previous pregnancy >20w gestation. PET was defined as a systolic blood pressure 

(BP) ≥ 140mmHg or diastolic BP ≥90mmHg on ≥ 2 occasions 4h apart after 20w but before the onset 

of labour or postpartum with either proteinuria (24h urinary protein ≥300mg or a spot urine protein: 

creatinine ratio ≥30mg/mmol creatinine or urine dipstick protein ≥ 2) or any multisystem 

complication of PET.  Specific exclusion criteria are outlined in Appendix 9.1.1 (79). Overall, n= 278 

(5%) pregnancies were complicated by PET, n=638 (11%) SGA, n=470 (8.4%) gestational 

hypertension and n=236 (4%) spontaneous preterm birth. 
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Figure 3.0 Summary of SCOPE (Screening for Pregnancy Endpoints) Ireland study recruitment 

across the 6 research centres (March 2008 to January 2011). Flow diagram summarising the serial 

stages of participant recruitment to the SCOPE study. The frequency and percentage as a proportion 

of those participants initially approached (%) is provided. Of the 5628 women included, 633 

pregnancies were complicated by small for gestational age (SGA), 470 gestational hypertension  

(Gest. Hypertension), 279 pre-eclampsia and 236 spontaneous preterm birth.   

   Overall, a total of n=1768 participants attending for antenatal care at Cork University Maternity 

Hospital, Cork, Ireland (528N), were recruited to the SCOPE Ireland cohort early in their second 

trimester between March 2008 and January 2011. For our study, matched urine and serum samples 

were purchased from the biobank for n=50 low-risk nulliparous pregnant women at 15w gestation. It 

was pre-specified that n= 25 had prospectively developed PET, and n=25 normotensive controls 

matched for maternal age, ethnicity and body mass index (BMI) were provided. Samples were 

anonymised by the Cork SCOPE study group, with the University of Birmingham (UoB) researchers 

blinded to the clinical outcome at the point of analysis. A healthy non-pregnant female ‘control’ group 

(n=9) was also recruited at UoB (Birmingham, UK) to provide whole blood and urine for comparative 

vitamin D metabolite analysis.    

3.1.3 Sample preparation  

West Midlands 

Peripheral blood & cord blood sample preparation 

   For all first and third trimester samples a matched peripheral maternal blood sample was obtained 

(~20mL) at the point of surgery / delivery. A matched cord blood sample (5-10mL total) was 

collected at delivery in all third trimester sample groups. Ethylenediaminetetraacetic acid (EDTA) 

coated sample tubes were used for all peripheral blood mononuclear cell (PBMC) extraction. Blood 

samples were diluted 1:1 with phosphate buffered solution (PBS) for PBMC isolation by density 

gradient centrifugation using Ficoll Plus (GE Healthcare Life Sciences, UK) at 1800 revolutions per 

minute (rpm), brake zero, for 25min. Since Ficoll is of greater density than the cell suspension, a layer 
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above the Ficoll with a distinct interface could subsequently be removed using a Pasteur pipette. The 

resultant cell fraction was washed three times with PBS at 1800, 1200 and 1500rpm  prior to re-

suspension in 2mL RPMI 1640 complete medium (1000 units [iu]/mL penicillin, 1mg/mL 

streptomycin, 2 mM L-glutamine, and 10% fetal bovine serum (Sigma, Poole, UK)], and subsequently 

counted using a haemocytometer.   

Placenta and decidua classification 

   Fetal placental and decidua samples were obtained from 1st and 3rd trimester whole placental 

samples. In preparation for this, formal training with Dr J Bulmer’s research group at the University 

of Newcastle (Newcastle, UK) was undertaken prior to human placental tissue sample collection at 

UoB. As summarised in Figure 3.1, the human placenta comprises both a fetal component formed by 

the chorion and a maternal portion formed by the decidua. The fetal trophoblast proliferates and form 

a syncitiotrophoblast and cytotrophoblast layer around the conceptus from week 2 gestation. 

Decidualisation arises from initial implantation, characterised by transformation of endometrial 

stromal cells to decidual cells by steroid hormones (progesterone) and embryonic signals into the 

decidua. As illustrated, this may be divided into three regions: basalis, capsularis and parietalis. 
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Figure 3.1 Anatomy of human placenta. A. Schematic of fetal and maternal components of human 

placenta. B. Image of overall placenta structure, viewed from both the fetal and maternal sides at 

term. 5 cm scale bar. Images revised from Anatomy Of Human Placenta Pregnancy Medicinase Body, 

Dec 2017 (http://newhacks.info/anatomy-of-human-placenta/anatomy-of-human-placenta-pregnancy-

medicinase-body/). 

Placental tissue biopsies 

   Placental samples were identified macroscopically and washed thoroughly with Hanks Balanced 

Salt Solution (HBSS) 10x (ThermoFisher, USA). For the first trimester cohort, decidua samples were 

concomitantly identified with tissue biopsies approximately ~ 1cm x 1cm x 1cm obtained under 

sterile conditions following thorough re-washing with HBSS 10x. They were immediately stored at -

80°C until further use.  

   When ready for use, placental / decidual biopsies (~1g weight) were defrosted on ice and 

homogenised in 700µL ice-cold PBS using a gentle MACS tissue dissociator (Miltenyi Biotec, UK,) 

with M tubes using pre-set programs developed for total RNA or mRNA isolation from fresh or 

frozen samples. Homogenates were subsequently centrifuged at 10,000g for 5min and the clear 

homogenate was transferred to a separate eppendorf tube. Total protein content in the homogenate 

was immediately measured (ThermoFisher, USA).  

First trimester decidua tissue preparation 

   Decidua was identified macroscopically at the time of collection, and washed with HBSS 10x 

(Thermo Fisher Scientific) thoroughly, prior to shipment on ice to UoB. Samples were immediately 

stored at 4°C until ready for use.  

   Under sterile conditions the prepared decidua tissues were finely minced and in 15mL falcon tubes 

enzymatically digested in incomplete RPMI 1640 medium (containing 1000iu/mL penicillin, 1mg/mL 

streptomycin, 2 mM L-glutamine), 1mg/mL collagenase (Sigma Aldrich, Poole, UK) and 200iu/mL 

DNase (Sigma Aldrich, Poole, UK) (Digest mix) at 37°C. The incubation times were 40min and 

90min for the first and third trimester samples respectively. The resulting cell suspension was 
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centrifuged for 10min at 1800rpm, brake 3 following passage through a 40µm cell strainer. The 

residual first trimester decidual cell tissue was re-incubated under the same conditions using a fresh 

Digest mix, and similarly sieved and centrifuged prior to combination with the first digest sample.  

   Digested tissue was next washed and re-suspended in 20mL incomplete RPMI media. The 

mononuclear cells were isolated using density gradient medium as outlined for ‘Peripheral blood and 

cord blood sample preparation’, and subsequently counted using a haemocytometer.   

Third trimester decidua tissue preparation 

   The decidua parietalis layer was isolated from the fetal chorionic membrane by carefully scraping 

the cell layer with a scalpel blade. The cells were then washed with HBSS 10x over a 40nM cell 

strainer to remove any residual maternal blood. The decidua basalis layer was obtained by sharp 

dissection from the underlying villous chorion. This was washed thoroughly with HBSS 10x and all 

remaining contaminating fetal tissue and maternal blood carefully removed.  

   The decidua parietalis and basalis fractions were pooled for digestion. Under sterile conditions the 

prepared decidua tissue was finely minced and enzymatically digested in 30mL Digest mix at 37°C 

for 90min. The resulting cell suspension was centrifuged for 10min at 1800rpm, brake 3 following 

passage through a 40µm cell strainer. As outlined for first trimester decidua, digested tissue was 

washed and re-suspended in incomplete RPMI media for PBMC isolation by density gradient 

centrifugation. The resultant cell fraction was washed and cell counted.   

SCOPE  

   Paired serum (750µL) and urine (900µL) samples were obtained at 15w gestation from a cohort of 

50 pregnant women recruited to SCOPE (80). The samples were shipped on dry ice at -20°C from 

University of Cork, Ireland to UoB.    

3.1.4 Analysis of serum and urine vitamin D metabolites by LC MS-MS  

Reference Standards 

   Reference standards for the following vitamin D metabolites were utilised (Sigma, UK); 25(OH)D2, 

25(OH)D3, 24R,25(OH)2D3, 1,25(OH)2D3, 3-epi25(OH)D3, 24,25(OH)2D3, 1,25(OH)2D2. These 
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were purchased as stock solutions in ethanol and diluted in methanol to prepare standard curves 

ranging between 5–100ng/ml and quality controls by Dr C. Jenkinson. All solutions were stored at 

−20°C in amber salinized vials for subsequent use.  7αC4 Reference standard was purchased from 

LGC standards (Teddington, UK).  External vitamin D calibrators and quality controls were 

purchased from Chromsystems (Am Haag, Germany). 

Vitamin D metabolite analysis   

   Vitamin D analytes were extracted from 200µL patient serum and placental tissue (placenta and 

decidua [Section 3.1.3]).  20μL of internal standard was added containing 3-epi-25(OH)D3-d3 

(100ng/ml), 25(OH)D3-d3 (100ng/ml) and 1α,25(OH)2D3-d3 (50ng/ml) in methanol/water (50/50%) 

(Sigma, Poole, UK), the final internal standards in solution were 16, 16 and 8ng/ml respectively. 

    Proteins were precipitated using 80μL methanol, 50μL isopropanol and 80μL of water (all LC MS-

MS grade, Sigma, Poole, UK), with the solution vortexed at high speed for 30s and left for 7min, 

followed by centrifugation at 7516g for 5min. The supernatant was used for extraction. To extract the 

samples, a novel supportive liquid-liquid extraction (SLE) method, as opposed to liquid–liquid 

extraction (LLE) was utilised to permit faster sample preparation at a reduced cost, without 

compromising analyte recovery and avoid matrix affects (76). The supernatants were collected and 

transferred onto 96-well SLE plates (Phenomenex, Macclesfield, UK), which completely absorbed the 

sample into a sorbent by applying a vacuum (5Hg) for 10s. After 6min two consecutive 800μL 

volumes of MTBE/ethyl acetate (90/10%) (Sigma, Poole, UK) were added to each well. Samples were 

eluted under gravity initially into a 96-well collection plate, followed by applying a vacuum (5Hg) to 

elute final volume. The elution solvent was evaporated under nitrogen at 50°C after each 800μL 

addition. Samples were reconstituted in 125µL water/methanol (50/50%) (Sigma, Poole, UK) and 

stored at -80°C for LC MS-MS analysis.  

   LC MS-MS analysis was performed by C Jenkinson at the Phenome Centre University of 

Birmingham and the Biochemistry Clinical laboratory, University Hospital South Manchester, using 

an ACQUITY ultra performance liquid chromatography [uPLC] coupled to a Waters Xevo TQ-S 
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mass spectrometer [Waters, Manchester, UK])(76). This method has been validated previously based 

upon US Food and Drug Administration guidelines for analysis of these metabolites(76). 

   In brief, ionisation was performed in electrospray ionisation mode and the mass spectrometer was 

operated in positive ion mode. Multiple reaction monitoring (MRM) mode was used to monitor and 

quantify vitamin D analytes. The capillary voltage was 3.88kV and the desolvation temperature was 

500°C. Chromatography separation was carried out using a Lux Cellulose-3 chiral column (100mm, 

2mm, 3μm) (Phenomenex, Macclesfield, UK), which was maintained at 60°C in a column oven. A 

0.2μm inline filter (Waters, Manchester, UK) was added before the column to prevent blocking of the 

column and contamination. The mobile phase was LC MS–MS grade methanol/water/0.1% formic 

acid (Poole, UK) at a flow rate of 330μL/min, with a total run time of 8min per sample. Vitamin D 

depleted charcoal stripped serum (Golden West Biologicals Inc., Temecula, US), was ran as a 

negative control. Known concentrations of vitamin D metabolites and internal standards were added 

to 200μL charcoal stripped serum to prepare calibration and QC standards. Data analysis was 

subsequently performed by C Jenkinson with Waters Target Lynx.  

Urine method optimisation and SCOPE sample preparation 

   Quantitative analysis of urinary de-conjugated vitamin D metabolites was performed using a novel 

LC MS-MS quantification method. Optimization was performed using spot urine samples (≤1000µL) 

obtained from a cohort of healthy third trimester pregnant women at BWCFT (n=5; 28-39+2w 

gestation). This involved (i) evaluation of the minimum total urine volume, which ranged from 750-

1000µL, (ii) optimisation of the SPE method (iii) the effect of including a derivatisation agent PTAD 

(Sigma-Aldrich, Poole, UK), as compared to non-derivatised samples. Therefore, all urine samples 

(≤1000µL) were prepared in duplicate to permit direct comparison.  

   Calibration and QC controls were prepared using steroid and vitamin D depleted urine (Sigma 

Aldrich). Neither 25(OH)D3 nor 24,25(OH)2D3 was detected. This was used to prepare calibration 

curves, utilising the following standards; 25(OH)D3, 24,25(OH)2D3, 1,25(OH)2D3 to spike the 

vitamin D metabolite-free urine.  
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   Samples were vortexed gently and incubated with β-glucuronidase (1000iu /mL) (type IX-A; G7396 

Sigma-Aldrich, Poole, UK), in sodium acetate–acetic acid buffer (pH 5.0, 0.1M) (3mL) at 50°C for 

2h. To the reaction mixture, 1mL ice-cold LC MS-MS grade acetonitrile was added and samples were 

centrifuged at 1500g for 10min. The supernatants were passed through either an Oasis® HLB 

cartridge (60 mg; Waters Assoc., Milford, MA, USA) or Phenomenex Strate-XL cartridge (60mg; 

Phenomenex, Macclesfield, UK), which were first washed with ethyl acetate (2mL), methanol (2mL) 

and water (2mL) prior to sample loading. Sample was washed through the SPE column. The columns 

were subsequently washed with methanol-water (2mL)(7:3, v/v, 2mL), and hexane (1mL), and the 

metabolites then eluted with ethyl acetate (1mL) into a salinized glass tube. This was performed using 

a negative pressure vacuum collection chamber, in order to control flow rate throughout the 

purification procedure. The solvents were subsequently evaporated under a nitrogen gas stream prior 

to sample derivatisation.  
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Compound Abbreviation MRM transitions Collision 

energy 

(eV) 

Cone 

Voltage 

(V) 

25-hydroxyvitamin D3 25(OH)D3 558.3> 280.5 

558.3> 298.1 

22 

14 

26 

26 

24,25-dihydorxyvitamin D3 24,25(OH)2D3 574.3> 175.3 

574.3> 257.3 

574.3> 298.1 

20 

16 

20 

22 

26 

26 

25-dihydroxyvitamin D3-d3 25(OH)D3-d3 561.4> 283.1 

561.4> 301.3 

23 

15 

24 

24 
 

Table 3.0 Multiple-Reaction Monitoring (MRM) transitions for 4-phenyl-1,2,4-triazoline-3,5-

dione (PTAD)-derivatized vitamin D metabolites. The vitamin D metabolite compounds quantified, 

their abbreviated term, MRM transitions, collision energy (electronvolt [eV]) and cone voltage (V) are 

summarised. 

Urine derivatisation method 

   To improve ionisation and enhance the sensitivity and separation of individual low concentration 

metabolites (pg range) an additional derivatization procedure using PTAD was utilised (81). For this, 

0.5mg/mL PTAD in ethyl acetate (Sigma Aldrich) was added to samples incubated at room 

temperature in dark for 2h, before 20µL water was added to terminate the reaction.    

   The samples were assessed using a Waters Xevo-MS coupled to an AQUITY UPLC. The method 

utilised is as outlined in Section 3.1.4, with a Waters C18 column (2.1x50mm 1.7µm) used to separate 

PTAD derivatized metabolites. MRM transitions listed in the table above were optimized by running a 
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full scan, daughter scan and then measuring the intensity under a range of cone voltage and collision 

energies to determine optimal values. 

3.1.5 Analysis of serum DBP  

   Human DBP (R&D Biosystems, UK) was measured with Dr R Susarla (UoB) using a solid phase 

sandwich ELISA kit (assay range 15.6 – 250ng/mL) as per manufacturer’s instructions. Serum 

samples were diluted to 1:2000, and placenta homogenates 1:10 prior to measurement. DBP standard 

stock (100ng/mL) was prepared from Human DBP standard following reconstitution with calibrator 

diluent RD5P (1:5 dilution with distilled water). For the standard series, 200µL of calibrator diluent 

was added to each tube, with 200µL serial dilutions from 100ng/mL to 0ng/mL concentration 

prepared.  First, 50µL of assay diluent RD1-38 (buffered protein base with preservatives) was added 

per well of the 96-well plate. Then, 50µL of DBP standard or sample was added and incubated for 2h 

at room temperature using a horizontal orbital microplate shaker (500rpm). Each well was aspirated 

and washed 4 times with 400µL wash buffer (wash buffer concentrate diluted 1:24 in distilled water) 

ensuring all solution was fully removed. Next, 200µL human DBP conjugate was added per well and 

incubated for 1h at room temperature using a horizontal shaker (500rpm).  Each well was then 

aspirated and washed 4 times with 400µL wash buffer prior to adding 200µL of substrate solution 

(Colour reagents A and B; 1:1 ratio) which was covered and incubated for 30min. The reaction was 

terminated with 50µL Stop solution, and the optical density measured using a 450nM microplate 

reader, with wavelength correction at 570nM subtracted to improve test accuracy. For data-analysis, a 

standard curve with line of best fit was generated and the determined concentrations were multiplied 

by the dilution factor.  

3.1.6 Analysis of serum albumin 

   Human albumin (Abcam, Cambridge, UK) was measured with Dr R Susarla (IMSR, UoB) using an 

ELISA. The assay was performed at room temperature, with all reagents and standards prepared in 

advance. The albumin standards were prepared as serial dilutions (1-8), with 240µL total volume, and 

concentration range 200ng/mL – 0ng/mL). Serum samples were diluted at 1:10,000. Placenta 

homogenates were diluted 1:1000 prior to measurement, with all samples performed in duplicate.  
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   50μL of Albumin Standard or sample was added per well of the 96-well plate and incubated for 1h. 

The plate was washed 5 times with 1x wash buffer (1:20 with reagent grade water) ensuring all liquid 

was completely removed. Next, 50µL of prepared 1x biotinylated albumin antibody was added to 

each well and incubated for 30min, and subsequently washed 5 times with 1x wash buffer. 50µL of 1x 

streptavadin- peroxidase conjugate (1:100 with 1x diluent N [1:10 reagent grade water]) was added to 

each well and incubated for 30min, and re-washed as above with the wash buffer. Finally, 50μL of 

Chromogen Substrate was added per well and incubated until a visible blue colour was evident, which 

was at ~20min. The reaction was terminated with 50μL Stop solution, with the expected colour 

change to yellow confirmed.  The absorbance was immediately read on a microplate reader at 450nm 

wavelength, with absorbance readings acquired at 570nm subtracted from this to improve overall 

assay precision.  

3.1.7 Analysis of free serum 25(OH)D3 

   Serum concentrations of free (total minus DBP and albumin-bound) and bioavailable (total minus 

DBP bound) serum 25(OH)D3 were calculated by Dr R Chun (UCLA Department of Orthopaedic 

Surgery and Orthopaedic Hospital Research Center, Los Angeles, USA) utilising total 25(OH)D3 and 

DBP/albumin values (82, 83). 

3.1.8 Creatinine Jaffe reaction  

   Urinary creatinine was quantified using a parameter assay kit (R&D systems Inc, Abingdon, UK). 

This utilises a colorimetric Jaffe reaction between creatinine and picrate acid to permit accurate and 

rapid quantification(84). For this, 10µL test volumes of urine (n=50) were required, which were 

diluted 20-fold in distilled water and prepared in duplicate. Standard controls were prepared as 

directed, with an 8-point 20mg/dL–0 mg/dL concentration range utilised. Either 50µL of sample or 

standard was subsequently added per well of the 96-well plate, with 100µL of alkaline picrate solution 

added for 30min at room temperature to initiate the Jaffe reaction. Alkaline picrate solution reacts 

with the creatinine to form an orange –red complex, the optical density of which was measured with a 

microplate reader at 490nM. A standard curve was plotted as a log/log curve-fit to ascertain test well 

concentrations, following 20-fold multiplication of the dilution factor.  Urinary levels of vitamin D 
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metabolites were normalized to the creatinine content by dividing the concentration of the analyte of 

interest by the creatinine concentration obtained in the same urine sample, with the result reported as 

the concentration of target analyte per g of creatinine (ng/g).  

3.1.9 Positive selection immuno-magnetic isolation of immune cell subsets 

CD56+ cell isolation 

   Positive immune-magnetic bead selection was utilised to isolate CD56+ cells from decidua and 

maternal blood. For this, cells were washed and re-suspended in ice cold MACS buffer (80µL per 107 

cells) and incubated with primary anti-human CD56 (20µL per 107 cells) ) (Miltenyi Biotec) at 4°C 

for 20 min. This step was also performed for matched maternal peripheral PBMCs. The cells were 

washed once in MACS by centrifugation for 10 min at 300g, with the resulting cell pellet re-

suspended in 500µL MACS for separation using the Midi-MACS magnetic column separator with the 

un-bound non-CD56+cell fraction collected. Following three column washes with MACS buffer the 

CD56+ intra-column fraction was plunged in 1mL MACS buffer through the Midi-Macs columns in 

the absence of the magnet (Miltenyi Biotec). Both the unbound CD56 deplete and CD56+ fractions 

were collected. The resulting cell suspensions from both fractions were then counted and underwent 

purity analysis using flow cytometry (Section 3.1.13).  

CD14+ cell isolation 

   Positive immune-magnetic bead selection was also utilised to isolate CD14+ cells from decidua, 

maternal and cord blood. This was performed as above, using primary anti-human CD14 (20µL per 

107 cells) (Miltenyi Biotec) for 20min at 4°C. The cells were washed once in MACS buffer by 

centrifugation for 10min at 300g, with the resulting cell pellet re-suspended in 500µL MACS buffer in 

preparation for separation using the Midi-MACS magnetic column (Miltenyi Biotec) as described. 

Both unbound CD14 deplete and CD14+ fractions were collected and counted, with 100,000 cells/ 

sample similarly subjected to purity analysis.  
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3.1.10 Cell culture 

NK Cell Culture 

   Matched isolated CD56+ cells were plated at 1.25 x 106/mL in a 96 well round bottom cell culture 

plate under aseptic conditions in complete RPMI cell culture medium (penstrep 100µg/mL [Sigma], l-

glutamine 2 mM [Sigma], RPMI 1640, fetal calf serum) at 37°C in a humidified incubator containing 

5% CO2 for 24h. A range of CK treatments were used as summarised in Table 3.1, including: IL-2, 

IL-12, TNF-α and IL-15 in the presence and absence of 1,25(OH)2D3 (10nM)(Enzo Lifesciences, 

Exeter, UK). Stimulation with IL-2 (50iu/mL), IL-12 (10 ng/ mL), and IL-15 (10 ng/mL) CK for 24h 

in the presence and absence of 1,25(OH)2D3 (10nM) was used for all subsequent assays. 

Cytokine 

 

Concentration Functional Role 

IL-2 50units/ mL Augment NK cell cytotoxicity (85) 

IL-15 10ng/ Ml Promotes proliferating NK cell accumulation and survival (86) 

IL-12 10ng/ mL Promotes NK cell IFN-у production (86) 

TNF-α 10ng/ mL Promotes NK cell IFN-у production (87) 

 

Table 3.1 Summary of the individual cytokines (CK), the dose and mode of action assessed for 

NK cell stimulation.  

Macrophage / monocyte cell culture 

   Matched isolated CD14+ cells were plated at 2.0 x 106/mL in a 96-well round bottom cell culture 

plate under aseptic conditions in complete RPMI cell culture medium at 37°C in a humidified 

incubator containing 5% CO2 for 24h.  Lipopolysaccharide (LPS) (1µg/mL), a recognised stimulant of 

monocytes and macrophages via TLR-4 binding, was added in the presence and absence of 

1,25(OH)2D3 (10nM) to selected wells. To maximise the total cell yield, at the point of cell harvest  

the cell plate was cooled on ice at 4°C and the well contents re-pipetted 10 times to release highly 

adherent cells. 
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3.1.11 LC MS-MS conversion assay 

   In collaboration with C Jenkinson, vitamin D metabolites were measured using LC MS-MS.  For 

this, uNK and pNK isolates were cultured in the presence and absence of CK stimulation as outlined 

in Section 3.1.10  in the presence and absence of inactive 25(OH)D3 (100nM) for 24h. NK culture 

supernatants were gently aspirated from 96 well plate and centrifuged in 500μL sterile eppendorfs at 

1800rpm for 5 min to separate the culture supernatant for storage at -80°C until LC MS-MS analysis, 

as outlined in Section 3.1.11.   

3.1.12 Flow cytometry  

   For all experiments detailed, a multi-channel Dako Cyan flow cytometer, with the capability of 

analysing up to 9 colours plus forward and side scatter was utilised. The results were analysed in the 

form of scatter plots, histograms and dot plots using FlowJo Software version X (Tree star, Inc., 

Ashland, USA). Spectral overlap refers to the wavelengths emitted by one fluorochrome, but detected 

by the filter designated to another fluorochrome. This was factored into the data analysis by auto-

calculating compensation values derived from experimental single-stain control samples. As a result 

of multi-panels employed, additional manual compensation was required in certain instances.  

   Gating was performed sequentially, with the first step using a forward/ side scatter plot, which 

provides an approximate measure of cell size and individual cells ‘complexity’.  Pulse wave analysis 

was utilised to identify and exclude aggregates and damaged cells, prior to gating the viable ‘live’ 

immune cell population (88). Isotype matched controls were used to account for non-specific antibody 

binding.  Biological experimental controls were also used to validate the success of the method. For 

example, for the VDR and activation assays, whole PBMC experimental controls were used. 

Cell preparation for flow cytometry  

   All preparations were performed in 5mL round bottom polystyrene tubes (Becton Dickinson [BD] 

Biosciences, UK). All washes were performed in 1mL PBS unless otherwise stated, and 

centrifugation at 1500rpm for 5min. Wash solutions were removed by brief tube inversion to remove 

the excess supernatant, with the remaining pellet vortexed gently to re-suspend in 100-150µL. All 
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staining incubation steps were performed in the dark, to avoid direct light exposure to the 

fluorophores which are summarised in Table 3.2. Cells were stored in the dark until flow cytometry 

analysis.   

Antibody Company Catalogue Number 
CD3- FITC BD Biosciences 345763 
CD4- APC BD Biosciences 555349 
CD3-PE BD Biosciences 555340 
CD3- PerCP BD Biosciences 345766 
CD4-FITC BD Biosciences 555346 
CD4-PE BD Biosciences 555347 
CD4 -PerCP BD Biosciences 345770 
CD8-PeCF594 BD Biosciences 562282 
CD56-PE Ebioscience 12-0567-42 
CD56 PE Vio770 MACS Miltenyi Biotec 130-096-831 
CD10-vioblue MACS Miltenyi Biotec 130-099-670 
CD25-APC BD Biosciences 555434 
CD14-Percp BD Biosciences 345786 
CD25-PE BD Biosciences 555432 
CD20-Viogreen MACS Miltenyi Biotec 130-096-904 
CD45-RO FITC BD Biosciences 555492 
CD45-RA PE BD Biosciences 555489 
CD45-APC  Ebioscience 17-0459-41 
CD45-viogreen MACS Miltenyi Biotec 130-096-906 
CD69-APC  BD Biosciences 555533 
CD69-FITC BD Biosciences 555530 
NKp46 APC MACS Miltenyi Biotec 130-092-609 
NKp30-PE Ebioscience 12-3379-41 
TNF-α E450 Ebioscience 48-7349-42 
TNFα FITC Ebioscience 11-7349-81 
IFN-у e450 Ebioscience 48-7319-42 
IL-10-PE BD Biosciences 559337 
CD4-e450 Ebioscience 48-0048-42 
VDR-APC Santa Cruz Biotechnology sc-13133 

 

Table 3.2 Summary of primary surface and intracellular antibodies utilised for flow cytometry. 

The antibody, fluorescent dye, company and catalogue serial number are provided 
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Surface staining protocol for cell surface antigens 

   Live cells were first washed in PBS and then centrifuged, with the supernatant subsequently 

discarded. A live/ dead fixable discrimination dye, prepared as per manufacturer’s instructions 

(Molecular Probes Life Technologies), was added to the cells and incubated for 20min on ice. The 

cells were re-washed and centrifuged with the supernatants discarded. Directly conjugated antibodies 

were then added to the appropriate samples for 30min and incubated in the dark on ice. Optimum 

staining concentrations were determined for each antibody by titration previously.  The cells were 

subsequently washed and centrifuged with PBS and the supernatant discarded. Following staining, 

cells were either washed once with PBS and re-suspended in PBS for immediate flow cytometry 

analysis, or fixed with 3% paraformaldehyde (PFA). When surface staining PBMCs, non-specific 

antibody binding was reduced by adding 2% goat serum (Sigma-Aldrich) with the surface staining 

panel. 

Paraformaldehyde (PFA) fixation 

   Cells were re-suspended in 300µL 3% PFA by gentle vortexing and were incubated at room 

temperature for 12min. Cells were pelleted and washed once with 1mL PBS, then re-suspended in 

200µL PBS and stored at 4°C. 

Intracellular staining for granzyme B, perforin and cytokines 

   Following PFA fixation, cells were permeabilised by first washing with 1mL 0.1% saponin in PBS 

for 5min. The supernatant was removed, and primary intracellular antibodies added and incubated in 

the dark for 30min at room temperature. Excess antibody was removed by one wash with 0.1% 

saponin-PBS followed by one PBS wash. Cells were re-suspended in 200µL PBS and collected by 

flow cytometry.  

Intracellular staining protocols for VDR analysis assay  

   To optimise the VDR analysis assay different permeabilisation methods were utilised and 

compared. An optimised Bendix protocol was utilised for on-going VDR analysis. This protocol was 

initially used to measure VDR in peripheral CD8+ T cells within the context of Crohn’s disease (89). 
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Cells were washed once with PBS prior to incubation for 20min at room temperature in 100μL 4% 

PFA. Cells were washed twice in 2mL 2% fetal calf serum (FCS) in PBS and then incubated for 

30min on ice in 75μL 5% FCS 0.5% Triton X solution (Sigma Aldrich, Poole, UK). The primary 

VDR-APC antibody or concentration matched isotype control (purified mouse IgG2a) was directly 

added to this and incubated for a further 30min at 4°C. Cells were subsequently washed once in 1mL 

2% FCS PBS solution, and then incubated with 1µL/ sample anti-mouse IgG2a APC-conjugated 

secondary antibody for a further 30min at 4°C. The cells were re-washed in 1mL 2% FCS-PBS, 

followed by 1mL PBS, and re-suspended in 200µL PBS for collection by flow cytometry. 

3.1.13 Cytotoxicity assay 

   To assess the functional effects of 1,25(OH)2D3 upon NKs, the expression of a range of recognised 

pro-inflammatory and regulatory NK cell markers were measured.  For this, isolated NK cells were 

cultured as described in Section 3.1.10 in the presence or absence of 1,25(OH)2D3 (10nM, ENZO Life 

Sciences). CD107a (LAMP1) is a characterised marker of NK cell degranulation. It is required for 

efficient delivery of perforin to lytic granules and the delivery of cytotoxic granules to target 

cells(90).  CD107a transit to the cell surface during a 6hr culture period with the MHC-devoid k562 

cell line was used as a measure of NK cell cytotoxicity(91). Expression of IFN-γ and TNF-α was 

measured as an indication of NK cell activity. Specifically, k562 cells were added to NK cells at 1:5 

ratios along with anti-human CD107a (BD Biosciences, California, USA). After 1h, cells were treated 

with protein trafficking inhibitors, Brefeldin A (5µg/mL, Sigma-Aldrich, UK) and monensin (golgi 

stop BD Biosciences, USA) to prevent CD107a degradation by re-internalisation and to block 

cytokine export. At 6h, cells were transferred to FACs tubes, dead cell labelled, surface stained and 

fixed with PFA. Intracellular cytokines were stained according to the intracellular staining protocol in 

Section 3.1.10.    

   Matched PBMCs that had been cultured overnight at 37°C, 5% CO2 in complete RPMI medium at 

2x106/mL (2x105/well) were used as a positive control for CK expression and vitamin D response. 

PBMCs were stimulated with phorbol 12-myristate 13-acetate (PMA) (25ng/mL) and ionomycin 

(0.5μM) for 5-6h. After 1h, they were treated with Brefeldin A (5µg/mL). At 6h, cells were dead cell 
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stained, surface labelled, fixed and intracellularly stained for cytokines and CTLA-4, a known 

1,25(OH)2D3 target (56).    

3.1.14 RNA extraction, reverse transcription and quantitative real-time polymerase 

chain reaction (qRT-PCR) 

RNA extraction 

   Total RNA was extracted using TRI-reagent (800µL) (Sigma-Aldrich, Dorset, U.K.) following NK 

isolation and 24h culture in the presence and absence of CK stimulation and 1,25(OH)2D3. Following 

dissociation of the nucleoprotein complexes, 0.1mL 1-bromo-3-chloropropane (Sigma-Aldrich, Poole, 

UK) was added and samples were centrifuged (12,000g for 15min at 4˚C) to separate the cell lysate 

into 3 distinct layers; lower organic DNA phase, middle protein interface, and upper aqueous RNA 

phase. The RNA layer was subsequently obtained and precipitated with 0.5mL isopropanol (Sigma-

Aldrich, Dorset). Samples were incubated at room temperature and centrifuged for 10min at 12,000g 

to obtain the RNA pellet. The RNA pellet was washed with 1mL 75% ethanol and centrifuged for 

5min at 12,000g with the supernatant discarded. RNA was re-suspended in 20µL nuclease free water 

(ThermoFisher Scientific, MA, USA). The purity and quantification of RNA extraction was checked 

by measuring the A260/A280 and A260 by Nanodrop spectrometry in preparation for complementary 

DNA (cDNA) synthesis. From the A260 value, RNA is quantified using the relationship 40µg/mL 

RNA = 1 unit of A260 in a 1cm path length. Concentration of RNA in the samples (µg /µL) = A260 x 

40x dilution factor. 

Preparation for qRT-PCR 

   cDNA synthesis was performed using 100ng-1µg of total RNA which was reverse transcribed using 

Applied Biosystems Taqman Reverse Transcription Reagents Kit following the manufacturer's 

guidelines (Roche, New Jersey). This was performed by diluting in 2.5µL of 10X RT buffer, 5.5µL of 

25mM MgCl2, 5µL of 10mM dNTP mix, 0.5µL of 20 iu/µL recombinant RNase inhibitor, 1.25µL of 

50µM of random hexamer primers and 1.6µL of 50 iu/mL of multiscribe reverse transcriptase made 

up to a total volume of 20µL with RNAse-free water. The reaction was incubated at 25˚C for 10min 
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and at 37˚C for 60 min, prior to heating to 48˚C for 30min and 95˚C for 5min. Samples were then 

cooled to 4˚C prior to cycle completion and cDNA collection. 

qRT-PCR 

   qRT-PCR was subsequently performed on either 96 well plates in 20µL reactions containing 1x 

Taqman Universal PCR Master Mix, 1x  Taqman 6-carboxy fluorescein (FAM)-labelled Gene 

Expression assay mix (Applied Biosystems, CA, USA) and 1µL cDNA per sample, diluted in 

nuclease free water. Expression of gene specific mRNAs encoding CYP27B1, CYP24A1, and VDR 

were determined (Table 3.3). All reactions were multiplexed with the VIC-labelled 18S rRNA 

housekeeping control assay (Applied Biosystems, CA, USA). The reactions were performed on ABI 

7500 qPCR machine (Applied Biosystems, CA, USA), with the progress of DNA amplification 

monitored continuously by measuring the release of fluorescent dyes which are conjugated to the 

probes. The thermal cycling conditions utilised were 50°C for 2min, 95°C for 10min followed by 40 

cycles of 95°C for 15s and 60°C for 1min.  Quantification of gene expression was determined using 

the ΔΔCt method and stated relative to a fixed unstimulated immune cell population. 

   All reactions were performed in at least duplicate and expressed as a mean of these values. Ct values 

were obtained as the cycle number at which logarithmic PCR plots crossed a calculated threshold line. 

The ΔΔCt value is the difference in the ΔCt value of a sample, with reference to the control, and the 

fold change is subsequently calculated using 2_ ̭ΔΔCt. 
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Gene Taqman Gene Expression 
Assay 

Label 

18S  4319413E VIC 
CYP27B1 Hs01096154_m1 FAM 
CYP24A1 Hs00167999_m1 FAM 
VDR Hs00172113_m1 FAM 
CYC-1 Hs00357717_m1 VIC 
IL-6 Hs00174131_m1 FAM 
TNF-α Hs00174128_m1 FAM 
Cathelicidin Hs01011707_g1 FAM 
IFN-γ Hs00989291_m1 FAM 

 

Table 3.3 Summary of gene specific mRNAs utilised for qRT-PCR. The Taqman gene expression 

code and dye label are provided for each gene target analysed.  

3.1.15 Fluorescence-activated cell sorting (FACS) 

   Paired decidua, maternal and cord blood (third trimester only) samples were prepared as outlined in 

Section 3.1.3 as per gestation, with subsequent Ficoll separation and washing.  

NK cell isolation and FACS 

   Whole immune cell populations from decidua and maternal blood were washed in PBS prior to 

incubation for 30 min at 4°C with the following murine monoclonal antibodies (mAbs), anti-CD45 

anti-CD56 and anti-NKp46 from MACS Miltenyi (Miltenyi Biotec, UK), and anti-CD3, and anti-

CD14, from BD Biosciences (CA, USA), directly conjugated with FITC, PE, PerCP, PE-Cy7, Pe-Vio 

770, VioGreen, and APC. Cells were washed with 1mL MACS and re-suspended in 500µL PBS for 

FACS. Immediately prior to sorting, 1µL propidium iodide (PI) was added to assess cell viability. As 

summarised in Figure 3.2, live CD45+ CD56+ NKp46+ cells, negative for CD14 and CD3 were 

selected for separation into sterile collection tubes containing 2mL complete RPMI and stored 

immediately at 4°C.  This was performed using a BD Biosciences FACSAria Fusion at UoB. The 

cells were centrifuged for 5min at 1500rpm, counted with a haemocytometer and re-suspended in 

complete RMPI (1.25 x 106 cells/mL) for cell culture. As detailed in Section 3.1.10, uNK and pNKs 
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were cultured with CK stimulation (IL-2, IL-12 and IL-15) in the presence and absence of 

1,25(OH)2D3 co-treatment. 

 

Figure 3.2 Representative FACS analysis plots for NK cells. The maternal (A) and decidua (B) 

FACS strategy gating is illustrated. Initially, forward scatter (FSC), side scatter (SSC), pulse width 

(FSC-W) were used to identify lymphocytes singlets. Propidium iodide (PI)-Dead identified live cells 

with CD45+ CD56+ NKp46+ cells, negative for CD14 and CD3 subsequently identified for FACS.  

Monocyte and macrophage isolation 

   Following Ficoll separation, paired decidua, maternal and cord blood samples were first subjected to 

a CD14+ positive selection step (Section 3.1.9) to debulk the sample and reduce its cellular 

complexity allowing for faster sorting and reduced rejection rate.  The cells were then washed with 

PBS and surface antigen stained at 4°C with the following primary mAbs, anti-HLA-DR, -CD14, -

CD66, -CD56, -CD3, CD19, and CD45, directly conjugated with FITC, PerCP, PE-Cy7, Pe-Vio 770, 

and VioGreen. Experimental single colours were prepared alongside this to calculate compensation 

values. Cells were washed with 1mL MACS buffer and re-suspended in 500µL PBS for immediate 

FACS. Immediately prior to sorting, 1µL PI was added to assess cell viability. As summarised in 

Figure 3.3, The following gating strategy was applied to obtain live CD45+ CD14+ HLA-DR + cells, 

negative for CD66, -CD56, -CD3, CD19. This was similarly performed using a BD Biosciences 
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FACSAria Fusion at UoB. Cells were collected under sterile conditions into FACS tubes containing 

2mL complete RMPI media, washed and re-suspended at 2.0 x 106 cells/mL at 4 °C for culture. 

 

Figure 3.3 Representative FACS analysis plots for maternal blood, cord blood and decidua 

monocyte/ macrophage subsets. The maternal blood, cord blood and decidua (B) FACS gating is 

illustrated. Initially, forward scatter (FSC), side scatter (SSC), pulse width (FSC-W) were used to 

identify lymphocytes singlets. Propidium iodide (PI)-Dead identified live cells with CD45+ CD14+ 

HLA-DR+ cells, negative for CD66, CD56, CD3, CD19 subsequently identified for FACS.  

3.1.16 RNA extraction  

   Cultured cells were harvested at 24h and immediately underwent total RNA extraction and clean-up 

using the RNeasy Micro Kit (QIAGEN, Germany), as per manufacturer’s instructions using RNeasy 

MiniElute spin columns. This combines the selective binding properties of a silica-based method with 

the speed of microspin technology to obtain reproducible yields of total RNA from small sample 

numbers (<5x105 cells).   
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   Due to the high content of RNases in placental tissue, 10μL β-mercaptoethanol was added per 1mL 

Buffer RLT prior to cell lysis and homogenization.  Next, 70% ethanol was added to the lysate to 

optimise RNA binding conditions prior to loading onto RNeasy MiniElute spin column (QIAGEN, 

Germany). The RNA (≤45µg) binds to the silica membrane, with the column flow-through discarded. 

On-column digestion of genomic DNA was performed by adding 10µL RNase-free DNase I diluted in 

70µL RDD buffer for 15min at room temperature. The DNase I was then fully removed with washing. 

Pure, concentrated RNA was eluted in 14µL RNase free water. 2µL was transferred to a fresh 

nuclease free tube for subsequent purity and integrity analysis. Both tubes were stored immediately at 

-80°C.   

   Prior to cDNA library preparation, evaluation of RNA quality was essential, as degraded samples 

can significantly influence the interpretation of expression levels of RNA-seq data. ‘Integrity’ reflects 

the pattern of total RNA ribosomal units 28S and 18S, and mRNA length. ‘Stability’ reflects the 

distribution of stable housekeeping genes across heterogeneous sample conditions. Factors such as 

delay time, tissue hypoxia, mode of tissue handling can all effect both properties. As such, a RNA 

Integration Number (RIN) scale is recommended to assess RNA quality prior to further analysis. This 

digital readout ranges from 1 to 10 with 1 being the most degraded profile and 10 the most intact. In 

solid tissue, 6–8 RIN values are considered reliable RNA, however between 8- 10 is indicative of high 

quality RNA(92).  Initial Integrity estimates were estimated for sample aliquots through Louise Teed 

(MDS Technology Hub, UoB) and samples that met RIN criteria for sequencing were shipped for 

cDNA library preparation and RNA seq analysis at Source Bioscience, Nottingham, UK. MTA and 

local ethics amendment approval (14/WM/1146 RG_14-194 (3); 2016) were obtained in advance for 

this. After arrival, QC checks were re-run on the samples using the Agilent BioAnalyzer 2100 

(Agilent, CA, USA), with the concentration and RIN score determined. 
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3.1.17 cDNA library preparation  

First trimester NK cell cDNA library preparation 

   All 16 samples of first trimester NK RNA` were suitable for cDNA library preparation by Source 

Bioscience, Nottingham, UK, as summarised in Table 3.4 (concentration 0.67-13.0 ng/µL, RIN 7.5-

10). 
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ID Sample Concentration (ng/µL) RIN 

40-3  uNK CK 4.535 9.6 

40-4  uNK CK + vit D 4.144 10 

40-1  pNK CK 3.285 10 

40-2  pNK CK + vit D 2.832 10 

41-7  uNK CK 12.076 9.4 

41-8  uNK CK + vit D 13.023 9.6 

41-3  pNK CK 3.753 10 

41-4  pNK CK + vit D 3.007 10 

42 -3  uNK CK 7.076 7.5 

42- 4  uNK CK + vit D 5.302 7.7 

42- 1  pNK CK 0.841 8.2 

42- 2  pNK CK + vit D 0.67 8 

43- 7  uNK CK 10.163 9.8 

43- 8  uNK CK + vit D 9.414 9.7 

43- 5  pNK CK 3.293 9.6 

43- 6  pNK CK + vit D 2.332 8.5 

 

Table 3.4 Summary of the concentration and RIN scores measured prior to cDNA library 

preparation for first trimester uNK and pNK subsets. Initial concentrations (ng/µL) and RIN 

scores are summarised for first trimester paired uNK and pNK following 24h culture CK +/- vitamin 

D (Vit D) in preparation for cDNA library preparation. Individual sample and treatment identification 

(ID) numbers are also shown.  
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Third trimester monocyte and macrophage cDNA library preparation  

   Initial QC checks were re-validated using the Agilent BioAnalyzer 2100 (Agilent, CA, USA) for all 

third trimester monocyte and macrophage samples, with the concentration and RIN score determined 

as summarised in Table 3.5 (concentration 0.2 - 12.8, RIN 6.5 – 9.5).  

Sample ID Site / treatment Concentration 

(ng/µL) 

RIN 

672 -5 Decidua Mø LPS 0.234 7.5 

672-6 Decidua Mø LPS + VD 0.174 7.2 

672-1 Mat Mø LPS  1.833 9.4 

672-2 Mat Mø LPS + VD 8.693 8.3 

672-3 Cord Mø LPS 5.648 8.6 

672-4 Cord Mø LPS + VD 4.93 8.7 

676-5 Decidua Mø LPS 0.556 8.1 

676-6 Decidua Mø LPS + VD 0.508 8.4 

676-1 Mat Mø LPS  7.775 8.6 

676-2 Mat Mø LPS + VD 7.882 8.5 

676-3 Cord Mø LPS 4.029 8.4 

676-4 Cord Mø LPS + VD 4.613 7.6 

687-5 Decidua Mø LPS 0.457 7.4 

687-6 Decidua Mø LPS + VD 0.607 7.7 

687 -1 Mat Mø LPS  10.134 7.8 
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687-2 Mat Mø LPS + VD 10.228 7.7 

687-3 Cord Mø LPS 12.573 6.7 

687-4 Cord Mø LPS + VD 10.46 6.7 

669-9 Decidua Mø LPS 0.227 6.8 

669-10 Decidua Mø LPS + VD 0.318 6.5 

669-3 Mat Mø LPS  2.792 8.7 

669-4 Mat Mø LPS + VD 2.341 6.7 

669-7 Cord Mø LPS 4.089 9.5 

669-8 Cord Mø LPS + VD 5.551 9.5 

 

Table 3.5 Summary of the concentration and RIN scores measured for paired third trimester 

decidua, maternal blood and cord blood monocyte/ macrophage subsets. Initial concentration 

(ng/µL) and RIN score summary for third trimester decidua, maternal and cord monocytes / 

macrophages (Mø) treated with LPS +/- vitamin D (VD) in preparation for cDNA library preparation 

are summarised. Individual sample and treatment identification (ID) numbers are also shown.  

cDNA library preparation - Switching Mechanism at the 5′ end of RNA Template 

(SMART)er Stranded Total RNA Seq  

   cDNA library preparation was performed using the  Switching Mechanism at the 5′ end of RNA 

Template (SMART)er Stranded Total RNA Seq Kit – Pico (Clontech, USA) (RNA range pg). 

SMARTer technology is designed to account for variations in both RNA ‘integrity’ and ‘stability’ (93, 

94).  

    For this, library sequencing preparation is performed in a different order to traditional methods to 

avoid initial RNA selection via the mRNA poly-A-tail which may not be intact in degraded RNA 

samples. Alternatively, a modifiable integrated RNA shearing ‘fragmentation’ step is performed to 
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reduce RNA fragments for sequencing. The method used was selected according to the RIN score. 

Unlike cDNA fragmentation, RNA fragmentation has little bias over the transcript body. However, as 

a potential loss of transcript ends is reported, random hexamer oligonucleotide priming and locked 

nucleic acid template switching oligo (LNA-TSO)  technology were also utilised to  maximise the 

pre-amplification yield and length transcriptome coverage (95). Specifically, LNA-TSO stabilises a 

non-templated ‘stretch’ of nucleotides to the 3’ end of the cDNA, thereby creating an extended 

template which ensures reverse transcription extends to the 5’ end (96).  Random primers ‘hexamers’, 

which are oligonucleotides with random base sequences often six nucleotides long facilitate 

processing of poorer quality RNA samples as they are not reliant upon the presence of a poly-A-tail. 

Furthermore, they permit the production of shorter cDNA fragments and increase the probability that 

the whole 5' ends are converted to cDNA.  

   Only then was the first round of PCR amplification performed, which added full- length Illumina 

adapters with barcodes (forward adapter AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC, 

reverse adapter AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTA) to both short DNA 

fragment ends (75 base paired-end [75bp PE] sequencing) for sequencing to generate reads typically 

30–400bp in length. The Forward PCR primer binds the LNA-TSO sequence, while the reverse PCR 

primer binds to sequence associated with the random hexamer.  The reaction utilises fluorescently 

labelled nucleotide analogs, which are incorporated into the oligonucleotide chain by DNA 

polymerases. This uses bridge amplification, a solid-phase reaction, generating clusters of identical 

DNA molecules on the Illumina flow cell for sequencing. By utilising this PE sequencing approach, 

the overall quality and quantity of sequence data identified was improved, thereby facilitating 

detection of genomic rearrangements, repetitive sequence elements, gene fusions and novel 

transcripts. Ribosomal cDNA (originating from ribosomal RNA [rRNA] – 18S and 28S) was also 

cleaved at this stage by ZapR in the presence of the mammalian-specific R-Probes. Non- rRNA was 

avoided with further PCR2 amplification and enrichment performed using universal primers.  Finally, 

the amplified RNA-seq libraries were purified by immobilization onto AMPure beads, which were 

washed with 80% ethanol and the cDNA eluted in Nuclease-Free Water.  All libraries were QC 
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validated using the Agilent BioAnalyzer 2100 (Santa Clara, USA) to confirm index samples amplified 

concentration and size distribution (Table 3.4 and 3.5).  

3.1.18 RNA sequence analysis 

   Following cDNA library construction, the samples were pooled and re-validated to assess molarity 

and size distribution.  Following this, the DNA was loaded (1.8pM concentration) onto a High Output 

NextSeq 500 Flow Cell pv2. (Illumina, Inc. San Diego, USA), across 4 lanes for RNA sequencing 

(RNA-seq). Raw data was returned by Source Bioscience (Nottingham) in the FastQ Phred+33 

(Illumina 1.9) format and bioinformatics analysis subsequently performed at UoB, using Partek Flow 

Software (Partek, Missouri, USA) in close collaboration with Dr K Knoblich and Dr A Fletcher 

(Institute of Immunology and Immunotherapy, UoB), both of whom have significant expertise in 

transcriptomic analysis(97).  

First trimester NK cell RNA-seq analysis 

   Overall, ~800 million total reads were generated, with an average 25 million per sample. A genome 

guided transcriptome approach was used to assign raw sequence reads, including those reads that 

cover non-continuous portions of the reference genome. Data was mapped (aligned) using Spliced 

Transcripts Alignment to a Reference (STAR)-2.4.1d (98). Post-alignment quality assurance (QA) 

/QC was performed with a coverage report generated (Table 3.6). This includes the average number of 

reads that align to known reference bases and the average coverage depth, which details number of 

aligned sequence reads, thereby increasing the confidence of detection. Reads were quantified to 

transcriptome hg38_RefSeq (Genome Reference Consortium GRCh38) using Cufflinks(99), and 

normalised using quantile normalisation (Figure 3.4) to ensure the samples were comparable by 

reducing sources of experimental ‘obscuring’ variability, such as differences in sample preparation or 

processing. This was calculated on a per sample basis, using rank-based quantile normalisation. In 

brief, the distribution of probe intensities is made the same for each sample, based upon the 

assumption that each sample has the same distribution by taking the mean quantile and substituting it 

as the value of the data item in the original dataset (274). The highest value in all cases becomes the 

mean of the highest values the second highest value becomes the mean of the second highest values, 
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and so on. Box-whisker expression signal plots before and after normalisation are summarised in 

Table 3.6, which summarises the descriptive statistics across each sample. Overall, the minimum 

value was 0, maximum 2.59E+06, mean 364.58, median 0, quartile (Q)1 0 and Q3 84.75. 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 uNK and pNK cell pre and post normalisation box plots. The signal distribution for 

each sample, before and after normalisation, is provided for all samples sequenced. The study ID as 

summarised in Table 3.4 is used for NK cell site and treatment identification.  
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Sample  Locus Treatment Min Max Mean Median Q1 Q3 

40-1_S3 Mat Blood CK 0 2.59E+06 364.6 0 0 84.8 

40-2_S4 Mat Blood CK+VD 0 2.59E+06 364.6 0.00 0 84.8 

40-3_S1 Decidua CK 0 2.59E+06 364.6 0.00 0 84.6 

40-4_S2 Decidua CK+VD 0 2.59E+06 364.6 0.00 0 84.5 

41-3_S7 Mat Blood CK 0 2.59E+06 364.6 0.00 0 84.8 

41-4_S8 Mat Blood CK+VD 0 2.59E+06 364.6 0.00 0 84.8 

41-7_S5 Decidua CK 0 2.59E+06 364.6 0.19 0 84.8 

41-8_S6 Decidua CK+VD 0 2.59E+06 364.6 0.25 0 84.8 

42-1_S15 Mat Blood CK 0 2.59E+06 364.5 0.00 0 84.8 

42-2_S16 Mat Blood CK+VD 0 2.59E+06 364.5 0.00 0 84.8 

42-3_S13 Decidua CK 0 2.59E+06 364.5 0.25 0 84.3 

42-4_S14 Decidua CK+VD 0 2.59E+06 364.5 0.00 0 84.3 

43-5_S11 Mat Blood CK 0 2.59E+06 364.5 0.00 0 84.8 

43-6_S12 Mat Blood CK+VD 0 2.59E+06 364.5 0.00 0 83.9 

43-7_S9 Decidua CK 0 2.59E+06 364.6 0.19 0 84.8 

43-8_S10 Decidua CK+VD 0 2.59E+06 364.6 0.06 0 84.8 

 

Table 3.6 Feature distribution for each NK sample utilised for RNA-seq analysis. Sample ID 

(sample), locus and treatment (CK +/- 1,25(OH)2D3 [VD]), the minimum (min), maximum (max), 

mean, median, quartile (Q)1 and Q3 data information is provided for all NK subsets (n=16).  

   The median total aligned reads was 71567649 (interquartile range [IQR] 64250828–74820738), 

which represented 85.7% (84.5 – 87.5%) coverage (Table 3.7 and Figure 3.5). Differential gene 

expression analysis was performed with a cut-off fold-change of < -1.5 and > 1.5, and p-value ≤ 0.05 

applied. The p-value was calculated using F-statistics, which calculates the variance within samples.   

   Three comparative analyses were assessed; (i) uNK CK versus (vs) pNK CK, (ii) uNK CK vs uNK 

CK + 1,25(OH)2D3, and (iii) pNK CK vs pNK CK + 1,25(OH)2D3 with expression levels represented 

by read counts. As summarised in Figure 3.5 and Table 3.6 overall the mean total reads was 

18710400, with 58.9% fully within a coding exon, and 1.99% partly within an exon.  
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Figure 3.5 Quantification coverage breakdown for all NK cell RNA-seq samples. Each bar 

corresponds to an NK cell sample (n=16; Table 3.3). The fraction (%) of reads which were either fully 

within an exon, partly within an exon, fully within an intron, fully intergenic or incompatible paired-

ends is represented as per legend.   

Third trimester monocyte and macrophage RNA-seq analysis 

   Sequencing depth was pre-specified as 16.6 million unique clusters per sample & 33.3 million reads 

per sample with the total number of genes generated recorded (library size). As outlined, data was 

mapped using STAR-2.4.1d (98) with post-alignment QA/ QC performed as summarised in Table 3.8. 

The median total aligned reads was 58393797 (IQR; 50799109- 67428216), which represented 88.4% 

(83.1 – 88.9%) (Table 3.9).   

   Reads were quantified to transcriptome hg38_RefSeq, with rank-based quantile normalisation again 

performed on a per sample basis (Figure 3.6). Overall the minimum was 0, maximum 3.24E+06, 

mean 269.16, median 0.00, Q1 and Q3 19.96.   
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Sample ID Locus Treatment Min Max Mean Median Q1 Q3 

669-10_S20 Decidua LPS VD 0 3.24E+06 269.17 0.00 0.00 20.18 

669-3_S21 Maternal LPS 0 3.24E+06 268.89 0.00 0.00 17.57 

669-4_S22 Maternal LPS VD 0 3.24E+06 268.90 0.00 0.00 19.96 

669-7_S23 Cord LPS 0 3.24E+06 269.23 0.00 0.00 20.20 

669-8_S24 Cord LPS VD 0 3.24E+06 269.23 0.00 0.00 19.96 

669-9_S19 Decidua LPS 0 3.24E+06 269.21 0.25 0.00 19.70 

672-1_S3 Maternal LPS 0 3.24E+06 269.18 0.00 0.00 19.61 

672-2_S4 Maternal LPS VD 0 3.24E+06 269.18 0.00 0.00 20.20 

672-3_S5 Cord LPS 0 3.24E+06 269.07 0.00 0.00 20.24 

672-4_S6 Cord LPS VD 0 3.24E+06 269.12 0.00 0.00 19.96 

672-5_S1 Decidua LPS 0 3.24E+06 269.04 0.00 0.00 18.75 

672-6_S2 Decidua LPS VD 0 3.24E+06 269.09 0.00 0.00 20.29 

676-1_S9 Maternal LPS 0 3.24E+06 269.20 0.00 0.00 19.96 

676-2_S10 Maternal LPS VD 0 3.24E+06 269.21 0.00 0.00 19.98 

676-3_S11 Cord LPS 0 3.24E+06 269.20 0.00 0.00 20.30 

676-4_S12 Cord LPS VD 0 3.24E+06 269.23 0.00 0.00 20.27 

676-5_S7 Decidua LPS 0 3.24E+06 269.24 0.17 0.00 20.05 

676-6_S8 Decidua LPS VD 0 3.24E+06 269.21 0.29 0.00 19.96 

687-1_S15 Maternal LPS 0 3.24E+06 269.20 0.00 0.00 20.30 

687-2_S16 Maternal LPS VD 0 3.24E+06 269.20 0.00 0.00 20.20 

687-3_S17 Cord LPS 0 3.24E+06 269.20 0.00 0.00 19.99 

687-4_S18 Cord LPS VD 0 3.24E+06 269.21 0.00 0.00 20.18 

687-5_S13 Decidua LPS 0 3.24E+06 269.23 0.13 0.00 20.30 

687-6_S14 Decidua LPS VD 0 3.24E+06 269.25 0.25 0.00 20.30 

All samples 

  

0 3.24E+06 269.16 0.00 0.00 19.96 

 

Table 3.8 Feature distribution for each monocyte / macrophage sample utilised for RNA-seq 

analysis. Sample ID (sample), locus and treatment (LPS +/- 1,25(OH)2D3 [VD]), the minimum (min), 

maximum (max), mean, median, quartile (Q)1 and Q3 data information is provided for all maternal 

blood, cord blood and decidua subsets (n=24).  

   Overall the mean total reads was 12155275, with 67.2% fully within an exon and 1.28% partly 

within an exon 1.28%.  
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3.1.19 Pathway analysis 

   Pathway analysis was performed using PathVisio (Version 3.2.4), a biological data analysis 

software tool which enables integration, and interpretation of complex data derived from RNA-seq.  

NK cell pathway analysis  

   Analysis was performed using the 11164 raw gene counts obtained, with corresponding ENTREZ 

ID (100) and symbol from the HUGO Gene Nomenclature Committee (HGNC) (101) identifiers and 

their corresponding log2fold change values were imported to PathVisio for pathway analysis.   

   Statistical analysis was performed with the total number of genes measured in the dataset (N) and 

the number of genes meeting the criterion (R) measured. A p-value ≤ 0.05 was applied to determine 

those differentially expressed genes. The Z-Score, which estimates the significance of the grouping, 

was also calculated for each pathway by subtracting the expected number of genes meeting the 

criterion from the observed number, divided by the standard deviation of the observed number of 

genes. All genes in N and R were present in at least one pathway. The Z-score cut-off > 1.96 was 

utilised, representing those genes which were differentially expressed two standard deviations above 

the average.  

 

   The curated human pathway collection from the online-pathway repository WikiPathways (WP) 

(102), including the Reactome (103) collection (downloaded May 2017) were used. Data analysis was 

performed in collaboration with Professor S Steinbusch-Coort (BiGCaT- Maastricht University). 

Assistance with the data import, analysis and visualisation was obtained through attendance at a 

workshop training day at UoB, online tutorial material, and direct communication with BiGCaT. 

Biological interpretation of the pathway analysis was conducted in conjunction with RNA-seq 

differential gene expression analysis.  
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Monocyte and macrophage pathway analysis 

   The principal aim here was to gain an insight into the underlying biology of those differentially 

expressed genes identified in cord and maternal LPS treated subsets compared to those from decidua. 

For this, a p-value ≤0.05 was applied and fold-change 2.0. The Z-score cut-off > 1.96 was again 

utilised, representing those genes which were differentially expressed two standard deviations above 

the average. The curated human pathway collection from WP (102), including the Reactome (103) 

collection (downloaded May 2017) were again utilised, with analysis performed as outlined for the 

NK pathway analysis.  

3.1.20 Statistics 

   Unless otherwise stated, in Chapter 4, data are shown as median values with IQR. Where mean 

values are reported, the standard error of the mean (SEM) is reported. Multifactorial data were 

compared using one-way ANOVA based on ranks, with Dunn’s method as a post hoc multiple-

comparison procedure. 

   Unless otherwise stated, in Chapter 5 and 6 statistical analyses for non-parametric data was 

performed primarily with one-way ANOVA and Friedman’s post hoc test analysis. For parametric 

data, two-way ANOVA may have been utilised, with either Tukey’s test utilised if population 

variances are similar, and if unequal F test. Student’s T test was used when comparing only 2 

parametric groups and Wilcoxon tests when the data was non-parametric. A p-value < 0.05 was set to 

determine statistical significance for all datasets, with Q-Q plots to help ascertain whether residuals 

from the mean followed a normal distribution.   

   All statistical analyses were carried out using GraphPad Prism (version 7.0) (California, USA). 
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4 Analysis of Vitamin D Metabolism in 

Pregnancy and Malplacentation 
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4.1 Introduction 

4.1.1 Defining vitamin D status in pregnancy 

   A vitamin D-deficiency (25(OH)D3<50 nmol/L) epidemic exists, with those living at high latitude 

with reduced sunlight exposure, dark skin pigmentation, a high BMI, and poor dietary intake at 

greatest risk (18, 19).  One group at particular risk of vitamin D deficiency are pregnant women(106), 

with those with reduced sunlight exposure, poor dietary intake and with high BMI at greatest risk 

(107, 108). At present, no separate consensus regarding optimum vitamin D levels has been reached 

and general IOM standard cut-off values remain in use(109). In the UK, serum 25(OH)D3 

concentrations <50 nmol/L were found in 49.5% of pregnant women in a prospective cohort study 

(110).  

   Black women appear at particular risk of vitamin D-deficiency during pregnancy; with recent 

reports that 29% and 54% of black women, and 45.6% and 46.8% black neonates at delivery were 

vitamin D deficient (25(OH)D3 <37.5nmol/L) or insufficient (37.5-80nmol/L) respectively. For the 

white women in this study cohort, 5% and 42% of mothers and 9.7% and 56.4% of neonates were 

vitamin D deficient or insufficient, respectively (111).  

   Adequate levels of vitamin D are important for the health of the fetus and the newborn. Classically, 

severe vitamin D deficiency is recognised for its negative effect on bone mineralisation, as manifested 

by rickets in children and osteomalacia in adults (112, 113).  This is manifested in the newborn as 

congenital rickets, osteopenia or craniotabes (114). Since breastmilk is a relatively poor source of 

vitamin D, maternal vitamin D status during pregnancy is also important for vitamin D status during 

early infancy.  

   Utilising this definition, vitamin D deficiency has also been linked to a range of non-classical 

adverse pregnancy outcomes. Accumulating evidence from animal studies, with some supportive 

human evidence, indicates reproductive function and fertility may be impaired in women with low 

vitamin D, with links to subfertility, in vitro fertilisation (IVF) outcome, endometriosis and polycystic 

ovary syndrome (115).  
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   Vitamin D deficiency is also linked to a range of pregnancy complications, including preeclampsia 

(PET), gestational diabetes, miscarriage, bacterial vaginosis and caesarean section (116-119).  A large 

Dutch multi-ethnic cohort study of 3730 mothers also found infants born to women with serum 

25(OH)D3< 29.9nmol/L at 12–14 w were more likely to be small-for-gestational age (SGA) (OR 2.4, 

95% CI 1.9 to 3.2) than those born to mothers with 25(OH)D3 ≥50nmol/L (120). Considering human 

studies, women with PET, have provided the basis of most available evidence as shall be discussed in 

detail in Section 3.1.5. 

   In utero and postnatal observation data indicates deficiency is also associated with fetal 

complications including fetal reprogramming, acute lower respiratory tract infections and recurrent 

wheeze (121).  

   At present the mechanisms for this remain unclear, with the appropriateness of comparing 

25(OH)D3 concentrations in pregnant women with thresholds established in non-pregnant adults 

disputed(104). As such, the evidence base at present remains insufficient to support definite clinical 

recommendations regarding vitamin D supplementation in pregnancy(122).  

4.1.2 Vitamin D supplementation in pregnancy 

   Vitamin D supplementation was first recommended for pregnant women in World War II, with 

overt childhood rickets greatly reduced as a consequence (123). However, due to poor implementation 

of vitamin D fortification policies (intake > 100μg/day (d) [4000iu/d]) iatrogenic infantile 

hypercalcaemia ensued, and dietary fortification was withdrawn (11). As a result a resurgence of 

rickets and vitamin D deficiency arose in the 1960s, with immigrant Asian populations identified as at 

greatest risk because of decreased capacity for epidermal synthesis of vitamin D associated with 

darker skin pigmentation. Subsequently in the UK low-dose vitamin D supplementation with 10μg 

daily (400iu/d) was reintroduced, and continues to be recommended at this dose, which appears both 

safe and effective in preventing classical rickets in children and osteomalacia in adults(123).  

   However, there continues to be no clear consensus on what constitutes optimal or adequate vitamin 

D status in pregnancy. In light of evidence supporting non-classical vitamin D activity, in 2010 the 
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IOM recommended an increase in the minimal daily intake of vitamin D to ≥600 iu/d, with 25(OH)D3 

levels >30 ng/mL recommended. It is recognised ≥ 1500–2000 iu/d may be required, with up to 

4000 iu/d considered safe for adults, including pregnant women (109, 124). This is consistent with 

recommendations from the Nordic Council of Ministers and European Food Safety. However, in the 

UK, the SACN recommends only 10µg/d (125, 126), which does not account for an increased 

metabolic demand for vitamin D in pregnancy  (125).    

   The UK Maternal Vitamin D Osteoporosis Study (MAVIDOS) multicentre, double-blind, 

randomised, placebo-controlled trial assessed whether maternal vitamin D repletion with 1000iu 

cholecalciferol (n=569) or placebo (n=565) from 14w improved offspring bone mass within 2w of 

birth.  Albeit no overall significant improvement in offspring whole-body bone mineral content was 

measured, secondary analyses demonstrated a significant interaction between treatment and season, 

with a beneficial treatment effect for deliveries during winter months (127). Randomised control trials 

with large sample sizes are still required to assess the effect of maternal vitamin D supplementation 

on fetal bone development. 

   Recent systematic review and meta-analyses have concluded that new studies provide more 

evidence on the effects of supplementing pregnant women with vitamin D upon pregnancy outcomes 

and may reduce the risk of PET, SGA preterm birth and gestational diabetes (128, 129). 

4.1.3 Vitamin D metabolism in human pregnancy 

   Human pregnancy is associated with major changes in vitamin D metabolism (71). From early 

gestation  a dramatic increase in maternal circulating 1,25(OH)2D3 is observed (130), and by  12w 

appears 2-fold higher, reaching a peak in the third trimester and returning to normal during lactation 

(124). This phenomenon occurs in part to support increased fetal bone mineralisation requirements, 

with 2-3mg/d skeletal calcium accumulating from the first trimester, and doubling by the third.   

   It appears, enhanced vitamin D synthesis as opposed to decreased metabolic clearance and/ or 

altered half-life drives this process (131, 132), Increased maternal serum 1,25(OH)2D3 during 

pregnancy appears to be due to elevated  maternal renal synthesis of the hormone. In a single case 
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report of a pregnant woman with renal failure only mildly elevated circulating concentrations of 

1,25(OH)2D3 relative to pre-pregnancy were measured, with levels markedly lower than those for 

normal pregnant women(133, 134). Conversely, maternal 25(OH)D3 levels do not appear to change 

significantly across pregnancy(135). Pregnant women receiving 4000iu (risk ratio [RR]=1.60, 95% CI 

1.32-1.95) and 2000iu (RR=1.52, 95% CI 1.24-1.86) vitamin D daily demonstrated significantly 

higher  25(OH)D3 concentrations (≥ 80nmol/L) within 1 month of delivery compared to those 

receiving 400iu daily, with maximal production in those receiving 4000iu (124).  

   In pregnant women higher plasma DBP concentrations have also been reported compared to non-

pregnant controls, with a 2-fold increase from the first trimester. This was not however measured in 

the third trimester,  indicating increased levels of free 1,25(OH)2D3 may arise with advancing 

gestation (132). However, the measurements of both total and free 25(OH)D3 is relatively 

inconsistent, and whether total free 25(OH)D3 is reduced as a result of increased DBP remains 

uncertain (136) (132).   

   There has also been much recent research interest in 3-epi-25(OH)D3 since this appears increased in 

pregnant women. Inclusion of 3-epi-25(OH)D3 within the measurement of vitamin D status ‘serum 

25(OH)D3’ may significantly influence the reported prevalence of sufficiency and  deficiency in 

pregnant women. Further research to delineate the function and source of 3-epi-25(OH)D3 in 

pregnancy is warranted.   

4.1.4 Vitamin D, the placenta and pregnancy 

   The placenta plays a fundamental role in pregnancy by connecting the developing fetus to the 

maternal uterine wall to allow nutrient uptake, thermo-regulation, waste elimination, and gas 

exchange via the mother's blood supply. These main functions may be broadly termed as transport and 

metabolism, protection and endocrine(137).  

   Crucially, the placenta is of dual origin, with maternal- decidua and fetal-placental components.  

From initial implantation of the conceptus, the maternal uterine endometrium undergoes 

‘decidualisation’ to support placental development and function. The resulting decidua is a tissue 
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formed from the maternal endometrium, originating from epithelial and stromal cells, and 

characterised by invasion from the extraembryonic fetal-derived trophoblasts and close cell–cell 

juxtaposition of these  two distinct tissues (Figure 4.0) (71) (138).  

 

 

 

 

 

 

 

 

Figure 4.0 Summary of the heterogeneous decidua cell population present at the materno-fetal 

interface (A). As illustrated in (B), the maternal decidua tissue is highly diverse, including 

syncytium, invasive fetal cytotrophoblast (CTB), natural killer cells (NK cell), decidual cells, 

epithelial cells, dendritic cells, macrophages and endothelial cells. Image revised from Waisblum et al 

2011 (139).  

   The principal function of the decidua is to facilitate early fetal–maternal exchange of nutrients, 

gases and waste, whilst also acting as a secretory source of an array of hormones, CK and growth 

factors. (140, 141).The decidua also plays a key role in protecting pregnancy against maternal 

immune surveillance, with the hallmark of this decidua during pregnancy the high proportion of 

resident leukocytes which display unique phenotypes and specific functions in a gestation-dependent 

manner. 

   The fundamental functional unit of the placenta, the chorionic villus, plays a major role in 

transfusion of oxygen from the maternal blood to the fetal blood vessels. Successful development 

Decidua 
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requires invasion of fetal trophoblast cells into the maternal decidua to facilitate maternal-fetal blood 

supply. Controlled early invasion of fetal cytotrophoblast and differentiated extravillous trophoblast 

(EVT) cells into the maternal decidua is a key process in placentation.  A complex network of 

communications amongst trophoblast, decidual stromal, and immune cells facilitates implantation and 

pregnancy maintenance, with key roles in tissue remodelling, cell trafficking, and immune tolerance 

evident (142).  

Vitamin D and placental metabolism 

   The observation that nephrectomised vitamin D deficient pregnant rats retain the ability to convert 

25(OH)D3 to 1,25(OH)2D3 first raised the possibility of extra-renal 1,25(OH)2D3 synthesis during 

pregnancy. Subsequent evidence has confirmed the potential for local 1,25(OH)2D3 generation in 

both placenta and decidua tissues (133, 143), with positive CYP27B1 and VDR expression (144)  from 

the first trimester (133, 143). By contrast, CYP24A1 mRNA expression decreases in placental/ 

decidual tissue across gestation (18, 19) which has the potential to enhance accumulation and 

1,25(OH)2D3 at this site by decreasing catabolic 24-hydroxylase activity. Within the trophoblastic 

component of the placenta, this appears to be due to epigenetic silencing of CYP24A1 (145). 

   Nevertheless, placental production of 1,25(OH)2D3 does not appear to make a major contribution to 

the elevated maternal serum 1,25(OH)2D3 levels associated with pregnancy. Instead it seems more 

likely that placental/ decidual synthesised 1,25(OH)2D3 plays a more localised role by promoting 

tissue-specific effects of 1,25(OH)2D3. In contrast to many other extra-renal sites of 1α-hydroxylase, 

placental synthesis of 1,25(OH)2D3 may be facilitated by the same machinery involved in renal 

production of 1,25(OH)2D3.  Expression of the DBP-binding receptor megalin in placental tissue 

means that tissue uptake of maternal 25(OH)D3 may occur by active receptor-mediated endocytosis 

of DBP and its 25(OH)D3 cargo.  The role of megalin in placental transport of vitamin D metabolites 

has still to be fully defined, but it is interesting to note that in megalin-KO mice, fetuses at mid-

gestation appear significantly smaller compared to WT controls (146).  

   The function of placental VDR remains poorly defined. Using a VDR gene (-/-) KO model, no 

significant effects upon skeletal morphology or bone mineral content in fetal offspring was measured. 
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Serum 1,25(OH)2D3 levels were however significantly increased,  which appeared  renal  1α-

hydroxylase mediated.  However maternal fertility was impaired; VDR null mice showed conception 

rates at 5–10% frequency with significantly fewer viable fetuses in utero. Furthermore, those born 

were significantly smaller and of lower birthweight.  As such, VDR may not be essential for fetal 

mineral homeostasis, but may have significant implications for maternal fertility and reproductive 

outcomes (147, 148).  

4.1.5 Vitamin D and pre-eclampsia (PET) 

   PET is a pregnancy-specific disease typically characterised by the development of hypertension and 

proteinuria. Complicating up to 8% of pregnancies, PET represents a leading cause of perinatal 

morbidity and mortality. Worldwide, the burden of PET and eclampsia is approximately 4 million 

births, with approximately 50,000 maternal deaths per year anticipated (149). 

   Certain groups of women appear at particular risk of PET, including those with chronic 

hypertension, diabetes, underlying renal disease, previous PET, and a raised BMI. However, despite 

much research interest, PET has remained a ‘morbid condition’, reflecting its insidious presentation 

and  often complicates otherwise uncomplicated nulliparous pregnancies with potentially severe life-

threatening consequences for both mother and fetus (150).  

   Although the pathogenesis is not fully understood, PET is considered a placental-dependent 

disorder, characterised by abnormal invasion of myometrium by trophoblast. The key predisposing 

event is aberrant utero-placental development with abnormal decidual maternal spiral artery 

remodelling by invading fetal EVT in the late first and second trimester.  This often precedes the 

onset of clinical disease, which ensues in the third trimester secondary to tissue hypoxia, oxidative 

stress and release of anti-angiogenic and pro-inflammatory factors into the maternal circulation, which 

result in generalised systemic endothelial dysfunction (151). As summarised in Figure 4.1, this may 

be classified into 3 distinct stages (152).  
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Figure 4.1 Three distinct stages of PET; (1) failure of maternal tolerance ensues from the point of 

implantation, (2) abnormal decidual maternal spiral artery remodelling by invading fetal EVT and (3) 

clinical stage of PET, generated by a maternal systemic inflammatory response. Revised from 

Redman et al 2010 (152). 

   Although new onset of proteinuria or hypertension has been relied upon for both the detection and 

diagnosis of PET, the degree of proteinuria does not correlate with the severity of PET, and may be 

absent in 10% of women. Furthermore, as PET ensues from the first trimester recent attention has 

been ascribed to potential circulating “early biomarkers” of PET (153).  Since abnormal decidual 

maternal spiral artery remodelling and fetal EVT cell invasion underpin placental development (151), 

early makers of dysregulation including anti-angiogenic factors, such as placental soluble fms-like 

tyrosine kinase and endoglin, adhesion molecules such as placental protein 13, and vasodilators have 

previously been explored (154, 155).   

   The kidneys are among the main organs affected by PET, as inferred from the importance of 

proteinuria in the disease definition. In response to normal pregnancy significant renal adaptations 
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develop, including marked glomerular hyperfiltration and increased effective renal plasma flow. In 

contrast, in PET these functional changes differ with a significantly lower glomerular filtration rate 

secondary to altered blood flow, surface area and transfer co-efficient evident (156). Changes in 

basement membrane size-selectively also appear directly relevant, reflecting progressive glomerular 

injury and the development of proteinuria. The mechanisms by which this arises are less clearly 

defined with both structural alterations and renal haemodynamic mechanisms reported. Consequently, 

potential earlier pre-clinical markers of renal injury, such as urinary podocytes, podocyte specific 

proteinuria nephrin, and urinary albumin, are now being sought (157, 158).  

PET and vitamin D deficiency 

   Maternal 25(OH)D3-deficiency has also been linked to adverse pregnancy outcomes associated with 

malplacentation, including PET and SGA (116, 118, 129, 159-162). A recent systematic review and 

meta-analysis, which included 11 observational studies, found a significant inverse relationship 

between maternal 25(OH)D3 and risk of PET in 5 of the studies. Meta-analyses similarly suggested 

an inverse relationship between maternal 25(OH)D3 and PET risk, but could not infer causality (128, 

163). 

   Considering first trimester vitamin D levels and pregnancy outcome, a systematic review, which 

included only two US-based studies evaluating PET risk were inconsistent. In one, which assessed the 

association with PET in a cohort of 49 PET women comparative to 216 normotensive controls, a five-

fold increased PET risk was measured in those with levels <37.5nmol/L (116), whilst a Boston-based 

study reported no significant association between vitamin D levels <37.5nmol/L and PET risk (164).  

   A recent Cochrane review of vitamin D supplementation from early pregnancy found only one trial, 

including 400 women reported on PET. The data suggested that women receiving vitamin D and 

calcium supplementation combined were as likely to have PET as women who do not receive 

supplementation or placebo (relative risk 0.67; 95% CI 0.33 to 1.35). However, due to low quality, 

absent reporting of adverse effects and a high risk of bias in most studies, uncertainty regarding the 

validity of these conclusions was implied (128).  Given there are at least 23 ongoing or unpublished 
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studies, current evidence regarding the potential value upon vitamin D supplementation in pregnancy 

remains indefinite (128).  

   However, we anticipate the significant heterogeneity observed in supplementation outcomes reflects 

our limited understanding of the mechanistic effects of vitamin D during pregnancy, and thus PET. 

Moreover, almost all studies to date have relied upon maternal serum  25(OH)D3 as the determinant 

of vitamin D status and function, despite the potential importance of other vitamin D metabolites 

including 1,25(OH)2D3(165), 3-epi-25(OH)D3(166), and 24,25(OH)2D3(167). Furthermore, placental 

expression of 1α-hydroxylase may suggest tissue-specific concentrations of 25(OH)D3 and other 

vitamin D metabolites are likely to be pivotal determinants of local vitamin D function across 

gestation (168). The relative impact of each of these facets of vitamin D metabolism and transport on 

normal and PET pregnancies remains unknown. With more than 50 vitamin D metabolites now 

recognised, the pathogenic role of altered metabolism in PET is gaining increased attention. Albeit 

epidemiology has linked PET to decreased maternal serum 25(OH)D3,   alterations in systemic and 

placental/ decidual transport and metabolism of 25(OH)D3 during pregnancy suggest that other forms 

of vitamin D may also contribute to the pathophysiology of PET. 

4.1.6 Urinary vitamin D clearance 

   Whilst placental vitamin D analysis offers the novel opportunity to delineate metabolism directly at 

the materno-fetal interface, the clinical applications of this are limited due to the inaccessibility of 

tissue throughout normal pregnancy.  Given the prominent alterations in circulating vitamin D 

physiology across pregnancy, additional methods to ascertain vitamin D metabolism may be 

informative.  

   Considering vitamin D catabolism and clearance, a five-step inactivation pathway from 

1,25(OH)2D3 to calcitroic acid is characterised, mediated via 24-α hydroxylase. An alternative 26,23-

lactone pathway for converting both 25(OH)D3 and 1,25(OH)2D3 to lactone products also exists, 

similarly catalysed by 24-hydroxylase (11). Both these metabolites have mild antagonist activity 

toward 1,25(OH)2D3 action, serving to control activity. Vitamin D is subsequently excreted, with the 
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primary route of via the bile into the faeces.  The remainder is excreted via the kidney in urine, which 

occurs in the proximal renal tubules via the endocytic cubilin–megalin receptor system (169).  

   Studies exploring vitamin D urinary excretion have otherwise been limited to date. 23,25(OH)2D3 

and 24,25(OH)2D3 appear the major metabolites in the urine samples, with equal proportions of both. 

Albeit modest (pg) in human health, mice unable to re-uptake vitamin D metabolites from the renal 

glomerular filtrate develop vitamin D deficiency and bone disease.  Furthermore, partial nephrectomy 

of rats with reduced megalin expression results in significant upregulation of renal CYP27B1 mRNA 

as a compensatory mechanism (170). Entry of 25(OH)D3 into the proximal tubule cells occurs via 

receptor-mediated uptake of DBP, which appears crucial for the maintenance of serum vitamin D 

stores (16).  

   In 2002, Ogawa et al developed an LC-MS-MS method to detect urinary 25(OH)D3, 

23,25(OH)2D3, 24,25(OH)2D3, 3-epi-24,25(OH)2D3 (6mL total volume). This utilised the 

derivatization reagent [2-(6,7-dimethoxy-4-methyl-3-oxo-3,4-dihydroquinoxalyl)ethyl]-1,2,4-

triazoline-3,5-dione (DMEQTAD), which permitted detection of metabolites excreted in the pg range. 

A spot-urine LC MS-MS based quantification method was subsequently developed, which utilised the 

derivatization adduct, DAPTAD, to permit measurement of 25(OH)D3 and 24,25(OH)2D3 (1mL). In 

contrast to serum, the concentration of 24,25(OH)2D3 was >2-fold higher than urinary 25(OH)D3, 

indicating this is the major excreted metabolite. A significant increase in both metabolites was also 

measured in response to vitamin D3 supplementation, indicating urinary 25(OH)D3 and 

24,25(OH)2D3 levels may be a useful indicators of vitamin D3 status (81). Whether urinary vitamin D 

metabolism is altered within the context of pregnancy or disease is not known.  
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4.2 Results  

4.2.1 Participant demographics – West Midlands cohort 

   All samples were obtained from cohorts of women from the West Midlands, UK (n=88). Patient 

demographics and baseline clinical data are summarised in Table 4.0:  individually for the non-

pregnant and pregnant cohorts; non-pregnant (n =20), NP1 (n=25), NP3 (n=21), PET (n=22). As 

anticipated, in the PET group mean arterial blood pressure (MABP) was significantly raised 

(p<0.0001) and fetal birthweight was reduced (p<0.01) comparative to NP3. There was also no 

significant difference in gestational age (GA) at delivery, which was important given the significant 

gestation-dependent changes in vitamin D status observed in pregnancy (171). Concerning vitamin D 

intake, supplementation intake was increased in the NP3 cohort (33.3%) comparative to those with 

PET (4.5%) (p>0.05). Smoking was low in both cohorts, with only 2 (9.1%) in the PET group 

reporting on-going use in the third trimester.   
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Table 4.0 Summary of participant demographics for non-pregnant female controls, normal 

pregnant women (n=20) at first (NP1, n=25) and third trimester (NP3, n=21) and women with 

PET (n=22) in the West Midlands cohort. Total frequency (n) with percentage of total group (%), 

and median values with 25th-75th interquartile range (IQR) values were calculated as stated. 

Statistically significant variations and post hoc test analyses are summarised; A ANOVA; T T-test * 

p<0.05, ** p<0.01, *** p<0.001, **** p< 0.0001.  

  

Non-

pregnant 

(n=20) 

NP1  

(n=25) 

NP3  

(n=21) 

PET  

(n=22) p value  

Post-hoc  

analysis 

Parity: nulliparous, 

total (%); multiparous, 

total (%) - - 

3 (14.3%); 

18 (85.7%) 

18 (81.8%); 

4 (18.2%) - - 

Maternal age,  median 

(25th-75th interquartile 

range [IQR]), year 

36.5 

(23.0-

47.8) 

27.0 

(21-33) 

33.0 

(31.0-36.0) 

30.0 

(22.0-33.3) 0.003 

A Non-pregnant & 

NP1 (**); Non-

pregnant & PET 

(*) 

BMI, median (25th-

75th IQ range), unit - 

24.4 

(21.3-33.8) 

27.0 

(24.8-31.2) 

27.4 

(21.8-33.1) 0.2 ns 

Mean arterial blood 

pressure (MABP), 

median (25th-75th 

IQR), unit - 

87.7 

(82.2-94.2) 

85.3 

(80-91.5) 

112.2 

(104.8-

117.4) 0.7 

A NP1 & PET 

(****); NP3 & 

PET (****) 

Vitamin D 

supplementation 

(400iu daily), total (%) 0 (0%) - 7 (33.3%) 1 (4.55%) >0.05 ns 

Positive smoking 

status, total (%)  0 (0%) - 0 (0%) 2 (9.1%) >0.05 ns 

Gestational age at 

delivery,  median 

(25th-75th IQR ), week - 

10.6 

(8.70-11.4) 

39.1 

(39.0-39.3) 

37.4 

(33.1-40.5) 0.2479 ns 

Birthweight, median 

(25th-75th IQR), grams - 

 

3540 

(3253-

3820) 

2715 

(1763-4210) 0.0032 T NP3 & PET (**) 
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   As detailed in Table 4.1, most women were white (n=70; 79.5%), with only 5 (5.7%) black and 13 

(14.8%) Asian women recruited. This preponderance was relatively consistent across the 4 cohorts, 

other than the NP1 group which was entirely white.  

Ethnicity Non-pregnant NP1 NP3 PET 
 
White 15 25 16 14 
Black  2 0 1 2 
Asian 3 0 4 6 
     
Table 4.1 Summary of ethnicity for the West Midlands cohort; non-pregnant, normal first 

trimester (NP1), third trimester (NP3) and pre-eclampsia (PET) sub-groups.  

 

4.2.2 Serum vitamin D metabolites in pregnant and non-pregnant women 

   Four serum vitamin D metabolites were consistently quantifiable in both pregnant and non-pregnant 

women; 25(OH)D3, 1,25(OH)2D3, 24,25(OH)2D3, 3-epi-25(OH)D3.  In non-pregnant women 

25(OH)D3 concentrations (median 33.4, IQR 20.8 – 44.3 nmol/L), were similar to healthy first 

trimester (NP1, 28.8, 20.3 – 46.9nmol/L) and third trimester (NP3, 45.2, 32.5 – 59.2nmol/L) 

pregnancies, as well as women diagnosed with PET (35.3, 17.7 – 54.7 nmol/L) (Figure 4.2).  No 

significant difference in median 25(OH) D3 concentrations was measured. Of the 88 women included, 

only 19 (21.6%) had levels ≥50nmol/L and 5 ≥ 75nmol/L (5.7%), with 69 (78.4%) defined as 

‘deficient’ and 83 (94.3%) ‘insufficient’(109).  

   By contrast, serum 1,25(OH)2D3 concentrations in NP women (34.2, 29.3 – 55.0 pmol/L), were 

significantly lower than in pregnant women, including NP1 (113.7, 82.7 – 198.3 pmol/L, p<0.0001), 

NP3 (254.7, 195.7 – 310.1 pmol/L, P<0.0001), and PET (171.2, 113.0 – 236.3 pmol/L, p<0.0001) 

groups. Consistent with previous studies(136), NP3 levels of 1,25(OH)2D3 were >2-fold higher than 

NP1 (p<0.0001), and significantly lower concentrations of 1,25(OH)2D3 (p<0.01) were observed in 

the PET cohort compared to NP3 (Figure 4.2).  

   Serum concentrations of 24,25(OH)2D3 in non-pregnant women (3.3, 1.6 – 4.7 nmol/L) were higher 

than  NP1 (1.8, 0.8 - 3.7 nmol/L), but lower than NP3 (7.6, 5.6 - 10.0 nmol/L, p<0.05) and PET (10.9, 
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7.3 - 22.5 nmol/L, p<0.001) (Figure  4.2). Both NP3 and PET samples showed significantly higher 

24,25(OH)2D3 concentrations than NP1 (both p<0.0001).  

   Concentrations of 3-epi-25(OH)D3 were lowest in non-pregnant women (5.1, 3.9 - 6.4 nmol/L). 

Both NP1 (7.6, 6.0 - 9.2 nmol/L) and NP3 (7.5, 5.9 - 8.6 nmol/L) had higher levels of 3-epi-

25(OH)D3 but this was not significant. Highest 3-epi-25(OH)D3 levels were observed with PET (8.8, 

5.9 - 11.8 nmol/L), with significant differences compared to  non-pregnant (p<0.001), NP1 (p<0.05) 

and NP3 groups (p<0.05) (Figure 4.2).  

 

Figure 4.2 Simultaneous measurement of vitamin D metabolites in pregnant and non-pregnant 

women reveals significant gestational and disease-dependent changes in serum metabolite 

concentrations. Serum concentrations of: A) 25(OH)D3 nmol/L; B) 1,25(OH)2D3 pmol/L; C) 

24,25(OH)2D3 nmol/L; D) 3-epi-25(OH)D3 nmol/L. Samples groups were: non-pregnant women; 

first trimester (NP1); third trimester (NP3); pre-eclampsia third trimester (PET). Statistically 

significant variations are indicated, * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 
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   Simple linear regression analysis was performed to establish the impact of GA upon vitamin D 

metabolite serum measurements (Figure 4.3). For each metabolite, 25(OH)D3, 1,25(OH)2D3, 

24,25(OH)2D3 and epi-25(OH)D3, gestation was shown not to significantly affect serum vitamin D 

metabolite concentrations in the NP3 and PET groups, for which differences in metabolite 

concentrations were identified.  

 

Figure 4.3 Linear regression analysis confirms gestational age at delivery did not significantly 

impact serum vitamin D metabolite concentrations in NP3 and PET groups. Simple linear 

regression analysis of serum concentrations of: A) 25(OH)D3 nmol/L; B) 1,25(OH)2D3 pmol/L; C) 

24,25(OH)2D3 nmol/L; D) 3-epi-25(OH)D3 nmol/L and gestational age (GA) at delivery. Samples 

groups were compiled to include first trimester (NP1); healthy third trimester (NP3) and pre-

eclampsia third trimester (PET) groups. The graphs denote the line of best fit, with R2 and p-values 

calculated. No statistically significant variations were detected 
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4.2.3 Effect of maternal vitamin D status (serum 25(OH)D3) on other serum vitamin D 

metabolites in pregnant and non-pregnant women 

   In non-pregnant women serum 25(OH)D3 was strongly correlated with 1,25(OH)2D3 (p=0.013), 

24,25(OH)2D3 (p<0.0001) and 3-epi-25(OH)D3 (p=0.012) (Figure 4.4). However, similar correlations 

were not consistently observed in pregnancy, in the NP1 group only a significant correlation with 

24,25(OH)2D3 (p<0.0001) was evident, which was lost for 1,25(OH)2D3 (p=0.105) and 3-epi-

25(OH)D3 (p=0.102). In the NP3 and PET groups, no significant correlation between 25(OH)D3 and 

1,25(OH)2D3, 24,25(OH)2D3 or 3-epi-25(OH)D3 was measured, as summarised in Figure 4.4. 

Comparing the NP3 and PET groups, the correlation between 25(OH)D3 and the other serum 

metabolites, no clear difference was evident, particularly for 1,25(OH)2D3, 24,25(OH)2D3.  
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Figure 4.4 Effect of maternal vitamin D status upon other serum vitamin D metabolites in non-

pregnant and pregnant women. Serum concentrations 25(OH)D3 were correlated with 

1,25(OH)2D3, 24,25(OH)2D3 and 3-epi-25(OH)D3. All nmol/L for non-pregnant women; healthy 

third trimester (NP3); pre-eclampsia third trimester (PET). Statistically significant correlations are 

indicated as p values, with the correlation co-efficient ‘r’ value stated. 

4.2.4 DBP, albumin and 25(OH)D3 bioavailability in pregnant and non-pregnant 

women. 

   Since no difference in 25(OH)D3 was measured between the non-pregnant and pregnant groups, we 

assessed free and bioavailable 25(OH)D3 serum concentrations compared across the different groups.  

As summarised in Figure 4.5A, albeit a trend towards increased serum DBP in NP1 (1.93; 1.24-3.08 
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µmol/L) and NP3 (1.97; 1.52-3.75 µmol/L) pregnancies relative to non-pregnant women was evident, 

no significant difference in DBP was measured between NP3 (1.97; 1.52-3.75 µmol/L) and PET 

(2.212; 1.63-3.16 µmol/L), or non-pregnant controls (1.55; 1.05-2.02 µmol/L).  

   As anticipated, serum albumin was significantly lower in NP3 (315.4; 265.2- 400.5 µmol/L) and 

PET (391.9; 324.3-557 µmol/ L) pregnancies relative to non-pregnant women (557.5; 458.5- 613.2 

µmol/ L) (p<0.001 and p<0.05 respectively) and NP1 pregnancies (538.4; 471.8-635.2 µmol/ L) 

(p<0.001 and p<0.05 respectively) (Figure 4.5B).   

   The concentrations of DBP and albumin, together with total serum 25(OH)D3 levels were used to 

calculate bioavailable, and free serum 25(OH)D3 (Figure 4.5C and D). Consistent with total serum 

25(OH)D3, no significant change across pregnancy, including those with PET, was again measured.  
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Figure 4.5 Comparative analysis of DBP, albumin and 25(OH)D3 bioavailability and free serum 

concentrations revealed no significant difference between pregnant and non-pregnant women, 

or within the context of PET. Serum concentrations of: A) DBP (μmol/L); B) albumin (μmol/L); C) 

bioavailable 25(OH)D3; D) free 25(OH)D3. Samples groups were: non-pregnant women; first 

trimester (NP1); third trimester (NP3); and pre-eclampsia (PET). Statistically significant variations 

are indicated, * p<0.05, ** p<0.01, *** p<0.001, **** p< 0.0001. 

 

   Ratios of DBP-bound 25(OH)D3 to total 25(OH)D3 were also unaffected by pregnancy or PET as 

shown in Figure 4.6. However, the suppression of serum albumin with increasing GA did significantly 

decrease the ratio of ‘bioavailable’ 25(OH)D3 (25(OH)D3 bound to albumin but not DBP) to ‘total’ 

serum 25(OH)D3 consistently in the NP3 and PET  groups. The modestly elevated DBP levels in 

pregnant women also resulted in decreased ratios of ‘free’ 25(OH)D3 to total 25(OH)D3, with this 

effect being more pronounced in PET pregnancies (Figure 4.6) 
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4.2.5 Placental and decidual tissue vitamin D metabolites in pregnant women across 

gestation 

   Utilising matched placenta and decidua samples, tissue concentrations of 24,25(OH)2D3, 

25(OH)D3, and 3-epi-25(OH)D3 were quantified. 1,25(OH)2D3 was only quantifiable in decidual 

tissue (17.6, 11.0 – 23.4 pmol/mg protein), and this paralleled increased decidual concentrations of 

25(OH)D3 (21.0, 9.3 – 60.5 nmol/mg protein) relative to paired NP1 placentae (1.2, 0.7 - 2.2 

nmol/mg protein, p<0.001) (Figure 4.7).  

   This paralleled increased decidual concentrations of 25(OH)D3 (21.0, 9.3 – 60.5 nmol/mg protein) 

relative to paired NP1 placentae (1.2, 0.7 - 2.2 nmol/mg protein, p<0.001), which were markedly 

lower (Figure 4.7). By contrast no difference in tissue levels of 24,25(OH)2D3  were observed 

between decidua (0.3, 0.2 – 0.4 nmol/mg) and placenta (0.2, 0.1 – 0.3 nmol/mg). Similarly, decidual 

concentrations of 3-epi-25(OH)D3 (0.1, 0.1 – 0.3 nmol/mg) were not significantly different to NP1 

placental concentrations (0.2, 0.1 – 0.3 nmol/mg) (Figure 4.7).  Furthermore, decidual 25(OH)D3, 3-

epi-25(OH)D3 and 24,25(OH)2D3 showed no correlation with serum or placenta concentrations. 

  

 

Figure 4.7 Significant differences in first trimester maternal decidua and fetal placenta tissue 

concentrations of active (1,25(OH)2D3) and inactive (25(OH)D3) vitamin D. Comparison of 

decidual and placental concentrations of 1,25(OH)2D3, 25(OH)D3, 24,25(OH)2D3, and 3-epi-

25(OH)D3 in first trimester pregnancies. All nmol/mg decidual protein. 
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4.2.6 Effect of gestation upon placental vitamin D metabolite concentrations in 

pregnancy and PET 

   Unlike serum concentrations of 25(OH)D3 a significant increase from NP1 (1.2; 0.7-2.2 nmol/mg) 

to NP3 (5.0; 4.0-6.6 nmol/mg) was measured (P<0.0001)(Figure 4.8). Furthermore, within the context 

of PET (2.5 nmol/mg) this was significantly lower comparative to NP3 (p<0.01). Interestingly, 

although placental 24,25(OH)2D3 concentrations increased marginally with advancing GA from NP1 

(0.2; 0.1-0.4 nmol/ mg) to NP3 (0.3; 0.2-0.5 nmol/mg), this appeared more pronounced in the PET 

cohort (0.4; 0.3-0.6 nmol/mg (p<0.01 comparative to NP1). Placental 3-epi-25(OH)D3 also increased 

from NP1 (0.2; 0.1-0.3 nmol/mg) to NP3 (0.3; 0.2-0.4 nmol/ mg), and similarly was significantly 

increased in those women with PET (0.4; 0.3-0.7 nmol/ mg) comparative to both the NP1 (p<0.001) 

and NP3 (p<0.05) cohorts (Figure 4.8).  

   Placental 25(OH)D3 positively correlated with 24,25(OH)2D3 in NP1 (p = 0.009, r = 0.55) and NP3 

(p=0.008, r= 0.6). This was not observed in the PET group (p=0.4; r= -0.2). Interestingly, placental 

25(OH)D3  did not correlate with 3-epi-25(OH)D3 in any of the cohorts.  
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Figure 4.8 Significant effect of gestation upon placental vitamin D metabolism in pregnancy and 

pre-eclampsia. Comparison of placental concentrations of 25(OH)D3, 24,25(OH)2D3, and 3-epi-

25(OH)D3 in first trimester (NP1), third trimester (NP3) and pre-eclampsia (PET) pregnancies. All 

nmol/mg decidual protein, with mean and standard error of the mean (SEM). Statistically significant 

variations are indicated, * p<0.05, ** p<0.01, *** p<0.001, **** p< 0.0001. 
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4.2.7 Effect of maternal 25(OH)D3 upon placental 25(OH)D3 in normal pregnancy 

and PET 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Effect of maternal 25(OH)D3 upon placental 25(OH)D3 in normal pregnancy and 

pre-eclampsia. Comparison of total placental 25(OH)D3 (nmol/mg protein) with serum total, DBP-

bound, bioavailable and  free 25(OH)D3 (nmol/L) for  third trimester (NP3) and pre-eclampsia (PET) 

pregnancies.  Statistically significant correlations are indicated as p values, with correlation co-

efficient ‘r’ value stated. 

0 20 40 60 80 100 120

0

2

4

6

8

10

0 5 10 15 20 25 30

0

2

4

6

8

10

R=0.457 
P=0.056 

2
5
(O

H
)D

3
 

(n
m

o
l/
m

g
 p

ro
te

in
) 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0

2

4

6

8

10

R=0.567 
P=0.014 

0 20 40 60 80 100 120

0

2

4

6

8

10

2
5
(O

H
)D

3
 

(n
m

o
l/
m

g
 p

ro
te

in
) 

0 20 40 60 80 100 120

0

2

4

6

8

10

R=0.638 
P=0.004 

2
5
(O

H
)D

3
 

(n
m

o
l/
m

g
 p

ro
te

in
) 

NP3 

0 20 40 60 80 100 120

0

2

4

6

8

10

R=0.071 
P=0.786 

PET 

R=0.632 
P=0.005 

     Total serum 25(OH)D3 (nmol/L) 

R=0.114 
P=0.662 

0 2 4 6 8 10 12 14

0

2

4

6

8

10

DBP-bound serum 25(OH)D3 (nmol/L) 

R=0.248 
P=0.337 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0

2

4

6

8

10

R=0.213 
P=0.412 

     Free serum 25(OH)D3 (nmol/L) 

Bioavailable serum 25(OH)D3 (nmol/L) 

2
5
(O

H
)D

3
 

(n
m

o
l/
m

g
 p

ro
te

in
) 



104 
 

   In third trimester pregnancies placental concentrations of 25(OH)D3 correlated with maternal serum 

concentrations of total, DBP-bound, bioavailable and free 25(OH)D3. By contrast, placental 

concentrations of 25(OH)D3 in PET pregnancies showed no association with any form of maternal 

serum 25(OH)D3 (Figure 4.9).   

4.2.8 SCOPE Participant demographics 

   Comparative analysis of the two sub-groups of the SCOPE cohort is presented in Table 4.2. All 

participants were white Caucasian with a mean age of 30.5years (y) (22-38y), and were matched for 

age, ethnicity and BMI. Pregnant women were recruited across the calendar year, 21 in summer (June 

through October) and 29 in winter (November through May). Median GA at recruitment was 16w 

(15.0 -16w) and 15 w (15.0 -16.0w) for the pregnant normotensive and PET groups respectively. The 

time of urine specimen collection was not uniform, with median 10.00am (range 9.00 -14.00) and 

12.00pm (range 9.00 – 15.00) collection in normotensive and PET pregnant groups respectively. 

Concerning dietary intake of vitamin D, 15 (10 normotensive and 5 PET women) reported intake of 

the recommended daily dose of vitamin D (400iu/d) as a multi-vitamin pre-pregnancy. In the first 

trimester (≤ 12w), 12 participants (9 normotensive and 3 PET) took daily low-dose (400iu) vitamin D 

supplementation, of which 9 (7 normotensive and 2 PET) had continued from pre-conception.  

Dietary intake of oily fish pre-pregnancy was modestly higher in the PET group, with 12 reporting 

‘moderate – often intake’, compared to 8 in the normotensive pregnant group (data not shown).  

   Of the 25 women who developed PET, the mean GA at diagnosis was 37w (range 31–41); with 14 

(56.0%) developing the disease at term (GA ≥ 37w), 11 (44.0 %) pre-term (GA < 37w) and only 1 

patient (4.0%) early-onset PET (GA < 34w). In total, 7 (28.0%) women were diagnosed with severe 

PET and 6 (24.0%) developed multi-system disease. The MABP was 117.3mmHg (IQR 113.8-124.8) 

in the PET group compared to 92.7mmHg (89.0-96.7) in normotensive women (p<0.0001). The mean 

GA at delivery was 39.0w (37.0-40w) in the PET group, compared to 41w (40-41w) in those with 

normotensive pregnancies (p<0.0001). Median fetal birthweight at 3030grams (g) (2580- 3525g) in 

the PET group was significantly lower than the uncomplicated cohort (3650g; 3275– 4040g)(p <0.05). 

There were 3 (12.0 %) pregnancies with a SGA fetus  in the PET cohort, with none (0%) in the 
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uncomplicated pregnancy group. In the PET group there was one stillbirth at 41w (intrauterine death 

> 20w) (4.0%). A healthy non-pregnant female group (n= 9) was also recruited for comparison. 

 Control 

n=25 

PET  

n=25 

Maternal age, years (range) 30.5  
(24.0 – 38.0 ) 

31  
(22.0 – 36.0) 

Body mass index , median (25th-75th IQR), unit 26.2  
(22.9-29.2) 

25.5  
(22.9- 29.7) 

Ethnicity, white Caucasian, frequency (%)  25 (100) 25 (100) 

Mean arterial blood pressure, median (25th-75th 
IQR), unit 

92.7  
(89.3 – 96.7) 

117.3****  
(113.8 – 124.8) 

Vitamin D supplementation (400iu daily); pre-
pregnancy total (%), 1

st
 trimester total (%) 

10 (40.0) 
9 (36.0) 

5 (20.0) 
3 (12.0) 

Season at recruitment (15 weeks): summer, total (%); 
winter, total (%) 

10 (40.0) 
15 (60.0) 

11 (44.0) 
14 (56.0) 

Positive smoking status at 15w, total (%)  2 (8.0) 4 (16.0%) 

Gestation at PET diagnosis, mean (range), week - 37  
(31-41) 

Term PET (gestation ≥ 37w), frequency (%) - 14 (56.0 %)  

Preterm PET (gestation < 37w), frequency (%) - 11 (44.0) 

Severe preterm PET (gestation < 34w), frequency 
(%) - 1 (4.0) 

Gestation at delivery, mean (25
th
-75

th
 IQR), weeks 41.0 

 (40.0-41.0) 
39.0 **** 
(37.0-40.0) 

Fetal birthweight, median (25th-75th IQR), grams:  3650  
(3275 – 4040) 

3030 ** 
(2580 – 3535) 

Fetal small for gestational age, frequency (%) 0 (0) 3 (12.0) 

Stillbirth, frequency (%) 0 (0) 1 (4.0) 
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Table 4.2 Demographic summary and analysis of the participant sub-group assessed from the 

SCOPE, Ireland cohort. Comparison of baseline clinical demographics in healthy pregnant 

‘controls’ (n=25) and those cases who prospectively developed pre-eclampsia (PET; n=25).  Cases 

were matched for age, ethnicity and body mass index (BMI). Statistically significant variations are 

summarised; * p<0.05, ** p<0.01, *** p<0.001, **** p< 0.0001.  

 

4.2.9 Serum vitamin D metabolite analysis 

   In serum, five serum vitamin D metabolites were consistently quantifiable in both the pregnant 

(normotensive and PET women) and non-pregnant groups; 25(OH)D3, 25(OH)D2, 1,25(OH)2D3, 

24,25(OH)2D3, 3-epi-25(OH)D3, as summarised in Figure 4.10 and Table 4.3.  
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Figure 4.10 Serum vitamin D metabolite in non-pregnant women and the SCOPE pregnancy 

cohort at 15 weeks gestation. Serum concentrations of: 25(OH)D3 nmol/L; (25(OH)D2 nmol/L; 3-

epi-25(OH)D3 nmol/L; 1,25(OH)2D3 pmol/L; 24,25(OH)2D3 nmol/L. Samples groups were: non-

pregnant (n=9), matched normotensive pregnancies (n=25) and prospective ‘PET’ cases (n=25). 

Median with interquartile range is shown, with statistically significant variations indicated, * p<0.05, 

** p<0.01, *** p<0.001, **** p<0.0001. 
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 Non-pregnant (n=9) 

(median; IQR) 

Control (n=25)  

(median; IQR) 

PET (n=25)  

median (IQR) 

25(OH)D3 (nmol/L) 46.8 (42.8-91) 44.7 (19.1- 63.5) 33.1 (20.5-50.8) 

25(OH)D2 (nmol/L) 1.17 (0-1.6) 4.8 (4.2- 8.3) 4.7 (0- 10.0) 

1,25(OH)2D3 (pmol/L) 85.6 (47.3-117.4) 336.3 (245.5- 508.4) 388.8 (304.2 – 468.4)  

3-epi-25(OH)D3 (nmol/L) 3.2 (1.7-4.4) 2.5 (1.3- 3.7) 2.6 (1.7- 3.1) 

24,25(OH)2D3 (nmol/L) 9.7 (5.5 –10.7) 6.5 (2.07- 10.7) 3.2 (1.37- 12.9) 

 

Table 4.3 Summary of serum vitamin D metabolites in SCOPE pregnant women at 15 weeks 

gestation and non-pregnant controls. Comparison of serum concentrations of 25-hydroxyvitamin 

D3 (25(OH)D3) nmol/L, 25-hydroxyvitamin D2 (25(OH)D3) nmol/L, 1,25-dihydroxyvitamin D3 

(1,25(OH)2D3) pmol/L, 3-epi-25(OH)D3 nmol/L, 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) 

nmol/L in non-pregnant (n=9),  healthy normotensive pregnancies (n=25) and prospective pre-

eclampsia cases (PET; n=25), with median and IQR shown. 

   Considering maternal ‘vitamin D status’, the IOM definition of vitamin D ‘deficiency’ is 25(OH)D3 

<20 ng/ml (50nM/L) and ‘insufficiency’ as 25(OH)D3>20ng/ml but <30ng/ml (75nM/L)(109). Based 

on these parameters, in the normotensive pregnancy group, 14 (56.0%) women were defined as 

vitamin D-deficient, and 8 (32.0%) insufficient.  In the PET group, 18 (72.0%) women were defined 

as vitamin D-deficient, and 6 (24.0%) insufficient. In both pregnant groups the range of serum 

25(OH)D3 levels showed wide variation; 4.4 to 112.1 nmol/L in normotensive pregnancies and 10.6 

to 66.8 nmol/L in those who developed PET. At 15w gestation, although median 25(OH)D3 

concentrations were lower in the PET group (median 33.1, IQR 20.5 – 50.8 nmol/L) compared to the 

normotensive pregnancy group (44.7, 19.1 – 63.5 nmol/L), this was not significant (p = 0.240).  

Conversely, in the non-pregnant group all women were classified as sufficient (46.8; 42.8-91.0 

nmol/L), with 25(OH)D3 levels significantly higher than those with PET (p= 0.04).   
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   Consistent with previous studies (79), a significant seasonal difference in serum levels of 25(OH)D3 

was observed, with higher concentrations of 25(OH)D3 in summer (median 50.8; IQR 39.3-59.7 

nmol/L) than winter (21.3; 14.1-41.7 nmol/L)(p=0.0004). Sub-group analysis revealed that in the PET 

group, the women pregnant during winter (24.8; 15.4-37.0 nmol/L) had significantly lower 25(OH)D3 

levels than those pregnant in summer (50.7; 33.1-57.3 nmol/L nmol/L)(p=0.002). For those who did 

not develop PET, 25(OH)D3 levels also differed in winter (20.8; 9.9- 63.2 nmol/L) and summer (55.2; 

42.0 – 64.6 nmol/L ), almost reaching significance (p=0.05).  

   Serum concentrations of 25(OH)D2  were similar in the normotensive (4.8; 4.2–8.3 nmol/L) and 

PET (4.7; 0-10.0 nmol/L) groups (p=0.352), and were, as anticipated, much lower than circulating 

25(OH)D3. There was no significant correlation between serum 25(OH)D2 and 25(OH)D3 in either 

the normotensive (r=-0.15, p=0.48) or PET (r=0.00, p>0.10) groups. 25(OH)D2 levels were 

significantly lower in the non-pregnant group comparative to both the PET (p=0.02) and 

normotensive women (p=0.001). There was no significant difference in serum concentrations of 3-

epi-25(OH)D3 between the normotensive pregnant (2.5; 1.3-3.7 nmol/L ), PET (2.6; 1.7–3.1 nmol/L) 

and non-pregnant (3.2; 1.7-4.4 nmol/L) cohorts. There was a significant positive correlation between 

25(OH)D3 and 3-epi-25(OH)D3  in the normotensive pregnancy group (r=0.645, p=0.0005), but this 

was not evident in women who developed PET (r =0.195, p =0.349) (Figure 4.11). 

   Distinct from previous publications from the SCOPE study (80), 1,25(OH)2D3 and 24,25(OH)D2D3 

concentrations were both quantifiable in serum samples. No significant difference in 1,25(OH)2D3 

concentrations was measured in the PET group (388.8; 304.2–468.4 pmol/L) comparative to the 

normotensive pregnant group (336.3; 245.5–508.4 pmol /L). Consistent with previous reports(104), 

1,25(OH)2D3 levels were significantly higher in both the PET (p <0.0001) and normotensive 

(p=0.0005) women compared to the non-pregnant group (85.6; 47.3-117.4 pmol/L).   

   No significant difference in serum 24,25(OH)2D3 concentrations was observed across the 3 groups. 

Similar to 1,25(OH)2D3, no difference in 24,25(OH)2D3 circulating concentrations in the PET (3.2; 

1.4-12.9 ) and normotensive (6.5; 2.1–10.7) groups was measured. However, as summarised in Figure 

4.11, serum 25(OH)D3 levels significantly correlated with 24,25(OH)2D3 (r =0.43, p=0.03) in the 
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normotensive women, whilst in those who developed PET no similar correlation (r =0.25, p =0.23) 

was observed. The significant negative relationship between 24,25(OH)2D3 and 1,25(OH)2D3 

measured in the normotensive group (r=-0.48, p =0.02) was lost in those who developed PET (r=-

0.15, p=0.484).  No correlation between serum 25(OH)D3 and 1,25(OH)2D3 was observed  for any of 

the groups.  
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4.2.10 Urinary vitamin D analysis 

   Urinary 25(OH)D3 and 24,25(OH)2D3  were consistently quantifiable in both pregnant and non-

pregnant groups as summarised in Figure 4.12 and Table 4.4.  

 

 

Figure 4.12 Alterations in urinary vitamin D metabolite concentrations measured at 15 weeks 

gestation in a cohort of pregnant women, of which n=25 prospectively developed PET. Urinary 

concentrations of: A) 25(OH)D3  nmol/L; and B) 24,25(OH)2D3 nmol/L normalised for urinary 

creatinine (ng/ g creatinine) for matched normotensive pregnancies (control) and prospective pre-

eclampsia cases (PET). Median with IQR values is illustrated. Statistically significant variations are 

indicated, * p<0.05.  

 Non-pregnant Control PET 

25(OH)D3 55.8(14.3-84.7) 22.9 (14.8-63.5) 14.8 (11.9-22.5) 

24,25(OH)2D3 55.4 (22.4-118.8) 84.1 (13.5-395.9) 35.6 (15.5-63.7) 

 

Table 4.4 Urinary concentrations of 25(OH)D3 nmol/L; and 24,25(OH)2D3 nmol/L. Urinary 

vitamin D metabolite concentrations were normalised for urinary creatinine (ng/g creatinine) in non-

pregnant controls (n=9), normotensive pregnancies (control; n=25) and matched prospective pre-

eclampsia cases (PET; n=25). Mean values with IQR are shown.  

B
. 

A
. 
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   Urinary 25(OH)D3 concentrations were significantly lower in the PET group (15.2; 12.0–22.2 ng/g 

creatinine) compared to normotensive pregnant women (22.9; 15.3–72.1 ng/g creatinine) (p=0.018). 

Concentrations of urinary 24,25(OH)2D3 were similarly significantly reduced in those women who 

developed PET (34.1; 16.6–62.8 ng/g creatinine) (p=0.018) (Table 4.4 and Figure 4.12). 

   A significant positive correlation between urinary 24,25(OH)2D3 and 25(OH)D3 was measured 

across the non-pregnant (r= 0.90, p=0.002), normotensive (r=0.64, p = 0.0006)  and PET groups 

(r=0.65, p=0.0005) (Figure 4.13).  

   Measurement of the metabolites 1,25(OH)2D3 and 23,25(OH)2D3 was incorporated into the method 

but these analytes could not be quantified as concentrations were  below the lower limit of detection. 
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4.3 Discussion 

   To date most studies assessing vitamin D status and pregnant outcome have relied upon maternal 

serum concentrations of 25(OH)D3 as the principal determinant of vitamin D status and function, 

despite the potential importance of other vitamin D metabolites such as 1,25(OH)2D3 (165), 3-epi-

25(OH)D3 (166), and 24,25(OH)2D3 (172).  

   Here we performed a detailed cross sectional analysis of normal pregnant women at first (NP1, 

n=25) and third trimester (NP3, n=21) and pregnant women with PET (n=22), as well as non-pregnant 

female controls (n=20).  For this a novel LC MS-MS protocol was used to quantify the vitamin D 

metabolome in paired maternal serum, placental, and decidual tissue, with 25(OH)D3, 1,25(OH)2D3, 

24,25(OH)2D3, 3-epi-25(OH)D3 successfully quantified. Parallel analysis of DBP and albumin was 

used to calculate bound, bioavailable and free fractions of vitamin D. Importantly, simple linear 

regression analysis confirmed gestational age alone did not significantly alter serum vitamin D 

metabolite concentrations in the PET and NP3 groups.    

4.3.1 Total 25(OH)D3 alone is not a reliable marker of vitamin status in pregnant 

women 

   Data presented here suggest that total 25(OH)D3 may not be sufficient to accurately evaluate 

vitamin D status in pregnant women. According to current recommendations (64), vitamin D-

deficiency (serum 25(OH)D <50 nmol/L) was highly prevalent in most of the pregnant and non-

pregnant women analysed in the current study despite this being a predominantly white Caucasian 

cohort. Furthermore, no difference in 25(OH)D3 concentrations was measured across gestation, i.e. 

first and third trimester normal pregnancy groups. This is consistent with previous cross-sectional 

analysis of vitamin D status, in which a high prevalence of hypovitaminosis D was observed in 

pregnancy, lactation and infancy with no significant inter-trimester differences in serum 25(OH)D3 

level measured across gestation in 541 healthy Indian women (173). Albeit not assessed, we anticipate 

this may have a direct negative impact upon fetal concentrations of vitamin D, with even lower 

25(OH)D3 concentrations than those measured in maternal serum.  
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   In contrast to previous reports (159, 174, 175), PET was not associated with serum 25(OH)D3. This 

may reflect the smaller sample size and non-matched cohort used relative to previous studies (159), or 

the fact that some previous studies quantified serum 25(OH)D3 using ELISA technology which 

cannot distinguish between 25(OH)D3 and 3-epi-25(OH)D3 and as such may over-estimate serum 

vitamin D ‘status’ (174, 175).  Nevertheless, the over-arching conclusion from data presented here is 

that simple measurement of serum 25(OH)D3 provides only a limited perspective on vitamin D in 

pregnancy.  

 

4.3.2 Dysregulated vitamin D metabolism in pregnancies complicated by PET 

   Increased maternal serum 1,25(OH)2D3 is a well-established feature of normal pregnancy (130, 

176), and in the current study NP3 values were significantly higher than for NP1 and PET. This 

marked upregulation in NP3 compared to NP1 has previously been demonstrated, with concentrations 

returning to normal during lactation (124). In part this reflects the increased fetal demand for calcium 

to support their increasing fetal bone mineralisation requirements.  The stimulus for this rise is not 

however clear, since PTH concentrations are unchanged throughout pregnancy. One potent stimulus 

may be PTH-related peptide (PTHrP), which is produced in the fetal parathyroid and placental tissues 

and increases with gestation (177). PTHrP can enter the maternal circulation to act via PTH/PTHrP 

receptors in the kidney and bone to increase 1.25(OH)2D3, thereby regulating calcium and PTH 

levels. Other factors shown to positively regulate active calcium homeostasis and vitamin D synthesis 

during pregnancy include prolactin, placental lactogen, both of which stimulate PTHrP and 

1,25(OH)2D3 production(178). It appears, enhanced vitamin D synthesis as opposed to decreased 

metabolic clearance and/ or altered half-life drives this process (131, 132), with maternal renal 

synthesis appearing a key mediator(133). Elevation of 1,25(OH)2D3 may be expected to increase 

25(OH)D3 usage directly and potentially result in a decrease in the 25(OH)D3 total stores and 

increase in 24,25(OH)2D3 production as observed between the NP1 and NP3 cohorts here.  

   Previous studies with similar sized NP3 and PET cohorts reported PET-associated declines in serum 

1,25(OH)2D3 of 30% (174) and 14% (179)respectively. Suppressed serum 1,25(OH)2D3 in PET may 
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be due to decreased serum  levels of insulin-like growth factor 1, a stimulator of renal 1α-hydroxylase, 

or lower expression of 1α-hydroxylase in the placenta (180), but other PET studies have reported  

increased whole human placental tissue 1α-hydroxylase expression(181). Data from the current study 

suggest that metabolism of 25(OH)D3 to 24,25(OH)2D3 may indirectly contribute to the lower levels 

of 1,25(OH)2D3 in PET, with concentrations significantly elevated compared to non-pregnant and 

NP1 observed.  

   Alternative metabolism of vitamin D can also occur via epimerisation of 25(OH)D3. Studies have 

shown that 3-epi-25(OH)D3 can undergo 1α-hydroxylation to 3-epi-1,25(OH)2D3, and then bind to 

VDR to activate target gene transcription(182). However, as 3-epi-1,25(OH)2D3 is a less potent VDR 

agonist than 1,25(OH)2D3, epimerisation of 25(OH)D3 may act to control VDR activity by generating 

a less effective ligand for the receptor(183). Here we find that in the context of PET, 3-epi-25(OH)D3 

concentrations were significantly higher, so that as with 24-hydroxylase, epimerisation may play a 

role in the dysregulation of vitamin D function in PET.  

   Considering the physiological role of 3-epi-1,25(OH)2D this is not yet elucidated in pregnancy. 

There has been more recent interest in fetal cord 3-epi-25(OH)D3 as the relative proportion of the 

total 25(OH)D3 which is in the 3-epi-25(OH)D3 form appears significantly enriched. Postnatally, 3-

epi-25(OH)D3 may represent up to 25% of total 25(OH)D3, and this subsequently declines in the first 

year postpartum. Importantly, the prevalence of fetal vitamin D deficiency is likely under-estimated as 

most methods do not discriminate the less active 3-epimer form. For example, in a cohort of 92 paired 

maternal and cord blood samples the concentrations of 25(OH)D3 were 82.9 and 60.1 nmol/L and 3-

epi-25(OH)D3 were 5.3 and 5.1 nmol/L respectively. Importantly, when 3-epi-25(OH)D3 was 

excluded, 4% of maternal and 28% of cord blood had concentrations <50 nmol/L; whilst with 3-epi-

25(OH)D3 included, the estimates were 2% and 21% (184). Albeit based upon small total repeats, we 

have preliminary data consistent with this (Appendix Figure 9.0).  Together these findings suggest 

clinical measurement of the 3-epi-25(OH)D3 may be required to permit accurate determination of 

both maternal and neonatal vitamin D status. This may also account for the current disparity between 

observational and supplementation studies. Further studies are required to understand the in vivo roles 
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of epimers in human pregnancy.  How this should impact upon vitamin D status interpretation and 

supplementation guidance is therefore unclear (185). 

   Our findings suggest parallel quantification of the major vitamin D metabolites offers a more 

comprehensive insight into vitamin D status than 25(OH)D3 measurement alone in normal pregnancy  

and within the context of PET.   

4.3.3 Effects of DBP and free 25(OH)D3 

   There has been increasing interest in the potential role of serum DBP not only as a carrier of vitamin 

D metabolites, but also as a determinant of tissue access of 25(OH)D3 either as ‘unbound’ or ‘free’ 

25(OH)D3, or through megalin-mediated uptake of DBP-bound 25(OH)D3 (25). This is particularly 

important in pregnancy as megalin is expressed in the placenta (38). In the current study, changes in 

DBP and albumin concentrations across pregnancy resulted in subtle changes in the relative 

proportions of bioavailable and free 25(OH)D3. Higher plasma DBP concentrations have been 

reported previously compared to non-pregnant controls, with a 2-fold increase from the first trimester 

(132). However, measurement of total and free 25(OH)D3 have been inconsistent to date, and whether 

free 25(OH)D3 is reduced as a result of increased DBP remains uncertain (136) (132). For our cohort, 

no significant difference in ‘free’ or ‘bioavailable’ 25(OH)D3 was measured, although suppression of 

serum albumin with increasing GA did significantly decrease the ratio of ‘bioavailable’ 25(OH)D3 to 

‘total’ serum 25(OH)D3 consistently in the NP3 and PET  groups. The modestly elevated DBP levels 

in pregnant women also resulted in decrease ratios of ‘free’ 25(OH)D3 to total 25(OH)D3, with this 

effect being more pronounced in PET pregnancies.  

   Serum albumin decreases with pregnancy as a consequence of increased maternal blood volume. 

This effect may be exacerbated in PET, although the extent to which this occurs varies according to 

disease severity (186). Previous studies using first trimester serum samples did not demonstrate any 

significant variation in DBP or 25(OH)D3 concentrations between pregnancies that went to normal 

term delivery, and those complicated by PET(164). To our knowledge, this is the first study to assess 

expression of serum DBP in NP3 and PET pregnancies, with data showing no major variations in free 

or bioavailable 25(OH)D3 with PET. Whether changes in the affinity of DBP for vitamin D 
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metabolites in normal and/ or complicated pregnancies alter free vitamin D metabolites is not clear 

however and requires future study. 

4.3.4 Tissue concentrations of 25(OH)D and 1,25(OH)2D3 are higher in decidua 

compared to placenta  

   This is the first study to use paired placental/ decidual and serum samples to assess the relationship 

between circulating and tissue-specific levels of vitamin D metabolites. Distinctly, the relatively high 

levels of 25(OH)D3 in decidua enabled quantification of 1,25(OH)2D3, whilst in the placenta 

concentrations of 1,25(OH)2D3 were undetectable. These findings are consistent with our primary 

hypothesis that the maternal decidua represents a key site for extra-renal metabolism, with intracrine 

conversion of inactive to active vitamin D a pivotal process from early pregnancy(71).  What remains 

less clear is the determinants of decidual 25(OH)D3 and 1,25(OH)2D3. The most likely driver of 

decidual 1,25(OH)2D3 is local tissue expression of 1α-hydroxylase. In unpublished studies we have 

shown 1α-hydroxylase mRNA correlates with mRNA for inflammatory CK such as IL-6 and IFN-γ, 

suggesting immune activity to be key for initiating decidual 1,25(OH)2D3 production.  Consistent 

with this, immune cell infiltration is a key feature within decidua with leukocytes  comprising at least 

40% of the total decidual cell population from the first trimester(187).  

   What is less clear is what determines decidual levels of the substrate for 1α-hydroxylase, 

25(OH)D3. Here, neither maternal serum nor placental 25(OH)D3 showed any correlation with 

decidual 25(OH)D3, despite the proximity of these tissues. This suggests the decidua has an 

autonomously regulated vitamin D system. This is distinct from extra-renal adipose tissue, where 

25(OH)D3 positively correlates with serum vitamin D status (188). Closer comparisons may be drawn 

to the human colon, where 1,25(OH)2D3 is detected and although partly determined by serum 

concentrations, demonstrates significant in vivo synthesis (189).  

4.3.5 Placental vitamin D metabolites across normal pregnancy  

   Considering placental vitamin D metabolism, 25(OH)D3 concentrations significantly increased with 

advancing gestational age. Alongside this, a non-significant modest rise in 24,25(OH)2D3 and 3-epi-
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25(OH)D3 was measured, thereby indicating local 25(OH)D3 metabolism.  Consistent with this, 

positive expression of CYP27B1, VDR and CYP24A1 from the first trimester have been reported, 

with catabolic CYP24A1 expression decreasing with advanced GA (133, 143, 144) (145). This 

indicates 25(OH)D3 exerts VDR-mediated effects within the fetal placenta. Within the placental 

trophoblast both 24,25(OH)2D3 and 23,25(OH)2D3 have previously been measured following culture 

with 25(OH)D3. Consistent with placental 1,25(OH)2D3 being undetectable in our placental cohorts, 

only in the presence of ‘supra-physiological’ doses of 25(OH)D3 was a concomitant increase in 

placental 1,25(OH)2D3 detected (190).   

   Consistent with recent reports (191), in the NP3 group a significant positive correlation between 

maternal serum and placental 25(OH)D3 concentrations was measured. This was consistently 

observed for DBP-bound, bioavailable and free serum 25(OH)D3. We anticipate this may reflect the 

increased demands of the fetus for calcium and/or phosphate transport across the placenta to support 

fetal skeletal development. There is strong evidence that adequate maternal vitamin D levels are 

crucial for the prevention of fetal and neonatal rickets (192). Cord concentrations of 25(OH)D3, and 

24,25(OH)2D3 correlate significantly with those found in the maternal circulation at the point of 

delivery, thus suggesting both metabolites readily diffuse across the placenta. This is less certain for 

1,25(OH)2D3, with conflicting evidence reported  (193-195). Future detailed analysis of paired cord 

and placental vitamin D metabolites may help delineate the relationship between materno-placental 

vitamin D status and perinatal metabolism in utero.  

   In the PET cohort, stark changes in placental vitamin D metabolite concentrations were observed for 

25(OH)D3, 24,25(OH)2D3 and 3-epi-25(OH)D3. Notably, placental 25(OH)D3 was significantly 

lower compared to the NP3 group, with concentrations equivalent to those measured for NP1.  It is 

possible that placental uptake of 25(OH)D3 is influenced by its serum carrier protein, DBP (23). For 

both NP1 and NP3, serum and placental DBP were positively correlated with tissue 25(OH)D3 whilst 

this was not observed in PET placentas. Thus it is possible that PET is associated with dysregulated 

endocytic uptake of DBP via megalin, which is expressed by the placenta (196).  
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   Enhanced placental metabolism of 25(OH)D3 to 24,25(OH)2D3 may also contribute to lower total 

placental concentrations of 25(OH)D3 in PET. Consistent with the serum analysis, increased 

24,25(OH)2D3 and epi-25(OH)D3 were measured.  Enhanced ‘catabolism’ has previously been 

reported in PET, with upregulated placental (trophoblast) expression of CYP24A1 identified (181). 

Increased expression of CYP27B1 and decreased VDR in placentas from PET pregnancies has been 

reported previously (181), underlining the potential importance of vitamin D metabolism for this 

pregnancy disorder.   

   In mice, vitamin D-deficiency is shown to be associated with dysregulated placental vascularisation 

and  elevated maternal blood pressure(197).  Chan et al, who investigated the effect of vitamin D 

upon human EVT provided early evidence  that vitamin D deficiency  may impair invasion in the first 

trimester (198). Specifically, isolated EVT, which positively express CYP27B1 and VDR, 

demonstrated increased cell invasion in response to both 1,25(OH)2D3. Alongside this, increased 

secretion of pro-metalloproteinase -2 and 9, which degrade collagen networks in extracellular 

matrices, were measured. Whether enhanced placental catabolism of vitamin D arises in PET as a 

compensatory mechanism to promote EVT invasion is unclear (198). Further studies to ascertain 

whether decreased placental 25(OH)D3 is a cause or consequence of PET are first required.  

4.3.6 Dysregulation of vitamin D metabolism prior to PET onset   

   Whilst placental vitamin D analysis offers the novel opportunity to delineate metabolism at the 

materno-fetal interface, the clinical applications of this are limited due to the inaccessibility of this 

tissue throughout normal pregnancy.  Given the prominent alterations in circulating vitamin D 

physiology across pregnancy, additional methods to ascertain vitamin D metabolism across gestation 

may be informative. 

   To advance these observations we performed detailed comparative analysis of serum vitamin D 

metabolites in a cohort of nulliparous ‘low-risk’ pregnancies at 15w gestation of which half 

prospectively developed PET. To further enhance this approach, a novel urinary vitamin D metabolite 

quantification method was incorporated. Given the anticipated low concentrations of steroid 

metabolites present in urine, the analytical method employed utilised a derivatization procedure using 
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PTAD to enhance both the sensitivity and separation of individual metabolites. To our knowledge, 

this is the first time circulating and urinary vitamin D has been measured for clinical analysis, 

describing changes in both circulating and excreted levels on pregnancy outcome. This optimised 

method presents a reference range for urinary vitamin D during pregnancy, along with comparison to 

circulating levels. This method combined with serum analysis will provide a comprehensive 

assessment in vitamin D metabolism in clinical conditions related to vitamin D deficiency.  

   Importantly, pregnant women were matched for age, BMI, ethnicity. Albeit not significant, 

consistent with previous larger studies we found first trimester MABP readings were higher in women 

who subsequently developed PET compared to those pregnant women who remained normotensive 

(164). Unlike the larger SCOPE series (79), we were not significantly powered to evaluate vitamin D 

metabolism within the context of SGA (n=3). 

   Consistent with our West Midlands data-set, vitamin D deficiency was highly prevalent in the Irish 

SCOPE cohort, particularly in winter months,  with 64% (n=32) of pregnant women having 

25(OH)D3 levels < 50 nmol/L at 15w gestation. We anticipate this would be higher still if the cohort 

included pregnant women with darker skin pigmentation; as demonstrated in large epidemiological 

studies (111). Despite current clinical recommendations for pregnant women to take daily vitamin D 

supplementation (199) (200), in this cohort only 20% of women reported taking preconception 

vitamin D supplementation, and by the first trimester adherence to supplementation advice dropped to 

18%. 

   Considering the potential predictive value of vitamin D status assessment, a nested case-control 

study was undertaken following a cohort of nulliparous singleton pregnant women from < 16w 

gestation to delivery and correlated maternal Vitamin D status with the risk of developing PET.  Of 

the 55 women who developed PET,  serum 25(OH)D3 levels were significantly lower comparative to 

normotensive pregnant controls (n=219) (116). The potential predictive role of vitamin D within the 

context of PET was similarly suggested in a 2-phase discovery/validation metabolic profiling study 

performed by Kenny et al, which identified potential metabolomic markers of PET. In the discovery 

phase, a nested case-control study was performed which assessed serum samples obtained at 15±1w 
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gestation from 60 women who subsequently developed PET and 60 matched controls. A multivariate 

predictive model combining 14 metabolites was developed, with an odds ratio for developing PET of 

36 (95% CI: 12 to 108), and area under the receiver operator characteristic curve of 0.94. In the 

validation phase, these findings were re-assessed in a different country using an independent case-

control study design, with n= 39 women at 15w who prospectively developed PET and n=40 matched 

controls. All 14 metabolites were re-identified as significant; odds ratio 23 (95% CI 7-73), amongst 

which vitamin D3 derivatives were included (p=0.002)(201).  However in other previous published 

work this has not been similarly observed (80).  

   In the SCOPE whole dataset (n=1768) circulating 25(OH)D3, 3-epi-25(OH)D3, and 25(OH)D2 

were measured with LC MS-MS, with 25(OH)D3 alone not able to predict PET at 15 w. It was 

concluded that in women with 25(OH)D3 levels >75nM a protective effect (adjusted odds ratio 0.64; 

95% CI: 0.43, 0.96) upon PET plus SGA outcome was evident following adjustment for potential 

confounding factors (80). In our smaller subset only 3 (12.0%) of the total pregnant cohort (n=50), 

none of which were in the PET group had 25(OH)D3 levels > 75nmol/L (maximum 25(OH)D3 =60.9 

nmol/L), this could not be assessed. Circulating 25(OH)D3 concentrations  in those who developed 

PET were statistically lower than the non-pregnant group, but not those who remained normotensive 

through pregnancy. This may simply reflect a small cohort size resulting in a type 1 error and the 

heterogeneity of the PET cohort with respect to both timing of disease onset and progression. It is 

possible our cohort was not representative of the whole SCPOPE cohort. Our findings are however 

consistent with others (202), who similarly found no significant difference in 25(OH)D3 in pregnant 

women who subsequently developed PET compared to normotensive pregnant controls (27.4±1.9 

versus [vs] 28.8±0.80; p= 0.435). DBP and free 25(OH)D levels were also assessed with no difference 

measured (164). As 25(OH)D3 reflects total body stores, we anticipate this may be preserved during 

early PET, and as such alone is unlikely to be informative within the context of ascertaining potential 

risk of PET.  

   Although we did not observe any significant difference in serum vitamin D metabolites between the 

two pregnancy groups, the associations between these metabolites differed significantly. In women 
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who developed PET, no positive correlation between serum 25(OH)D3 and the vitamin D catabolites 

3-epi-25(OH)D3 and 24,25(OH)2D3 was measured. Albeit not clearly understood, alternative 

metabolism of vitamin D via epimerisation to 3-epi-25(OH)D3 results in the formation of 3-epi-

1,25(OH)2D3 which binds to VDR to activate target gene transcription. Importantly, 3-epi-

1,25(OH)2D3 appears a less potent VDR agonist than 1,25(OH)2D3, which may have physiological 

consequences (182). In normal pregnancy, 3-epi-25(OH)2D3 appears directly linked to  25(OH)D3 

concentrations (80), however this relationship was dysregulated only in those women who developed 

PET.  

   A trend towards elevated serum 1,25(OH)2D3 was also observed in the PET samples. Healthy 

pregnancy is characterised by a drive towards 1,25(OH)2D3 production (104). In women with PET 

increased upregulation of placental CYP27B1 and CYP24A1 is reported(181). Increased metabolism 

of 25(OH)D3 to 1,25(OH)2D3  may also be secondary to decreased total serum calcium 

concentrations, which arise during normal human pregnancy but is more pronounced in PET (203).  

   Intriguingly, serum levels of 25(OH)D2 were significantly higher in both pregnancy groups relative 

to non-pregnant controls. The explanation for this is unclear as vitamin D2 is principally obtained 

from plants and mushrooms. One possibility is that enhanced circulating 25(OH)D2 is due to dietary 

modifications undertaken by women when they are pregnant. Furthermore, when considering 

25(OH)D3 and 25(OH)D2 together, no significant difference in total  vitamin D status was measured. 

Therefore, despite significantly lower 25(OH)D3 concentrations in those pregnant women who 

developed PET compared to the non-pregnant group, overall vitamin D status was not altered. This is 

consistent with previous data from the Osteoporotic Fractures in Men Study which found higher 

25(OH)D2 levels not to correlate with higher total 25(OH)D concentrations, and that increased 

25(OH)D2 concentrations were associated with lower 25(OH)D3 (p<0.01)(204). Recent 

supplementation data similarly indicates 25(OH)D2 supplementation decreases serum 25(OH)D3 

levels (205). In serum, 25(OH)D2 binds serum DBP with lower affinity, which may account for the 

increased serum clearance of 25(OH)D2 relative to 25(OH)D3 (206). However, in the current study 

25(OH)D2 was not quantifiable in urine, suggesting that renal handling of 25(OH)D2 bound to DBP 
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is efficient enough to limit urinary excretion of 25(OH)D2 with concentrations below the level of 

detection. Reabsorption of 25(OH)D2 from glomerular filtrates into the proximal tubules may lead to 

increased synthesis of 24,25(OH)2D2 and 1,25(OH)2D2, but as neither of these metabolites were 

measured this is to be confirmed. 

   The method utilised was adapted from that reported by Ogawa et al, who quantified 25(OH)D3 and 

24,25(OH)2D3 in spot urine samples (1mL) from healthy male subjects (n=20) pre- and post- vitamin 

D supplementation (81). In pregnancy, urinary 24,25(OH)2D3 concentrations were approximately 3-

fold  higher than 25(OH)D3, representing the predominant excreted vitamin D metabolite. This was 

not evident in the non-pregnant group, for which urinary 25(OH)D3 and 24,25(OH)2D3 

concentrations were comparable. Furthermore, in the healthy non-pregnant females, median urinary 

25(OH)D3 concentrations were at least 2-fold higher than both pregnant groups, in particular those 

who subsequently developed  PET. Together these findings are consistent with an increased role for 

25(OH)D3 in pregnancy, with significantly enhanced classical and non-classical placental 

1,25(OH)2D3 production and turnover from the first trimester (104, 207). Reduced 25(OH)D3 

excretion may also reflect increased neonatal vitamin D metabolism, as 25(OH)D3 readily diffuses 

across the placenta principally to permit later fetal bone development and growth(208). In rat models 

VDR expression is demonstrated from a very early stage in fetal development(209). 

   Urinary 25(OH)D3 and 24,25(OH)2D3 were significantly correlated in both the normotensive and 

PET groups. This is consistent with serum 25(OH)D3 and 24,25(OH)2D3  in normal pregnancy, as 

evidenced in the West Midlands data-set (104). Uniquely we assessed the relationship between 

circulating and urinary metabolites. Here we find in normal pregnancy serum concentrations of 

25(OH)D3 and 24,25(OH)2D3 do not correlate with their respective urinary concentrations. Given the 

number of known extra-renal sites of vitamin D storage and metabolism, including the placenta, this 

may be anticipated. Furthermore, the kidney has the capacity to actively reabsorb vitamin D 

metabolites via DBP- megalin (18), which may contribute to the lack of correlation between serum 

and urinary vitamin D metabolites.  
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   In the current study urinary vitamin D metabolite analysis suggests dysregulation of vitamin D 

metabolism occurs at an early stage in women who later develop PET as both urinary 25(OH)D3 and 

24,25(OH)2D3 concentrations were significantly decreased compared to those who remained 

normotensive throughout pregnancy. Alongside this increased serum concentrations of 1,25(OH)2D3 

were measured in those with PET. Increased vitamin D metabolism in PET may arise secondary to 

decreased serum calcium concentrations (210, 211). There are also several reports that hypocalciuria 

is associated with PET and could be considered a risk factor for development of PET in pregnancy 

(179, 212). A prospective study measuring the  calcium/ creatinine clearance ratio found women with 

PET excrete significantly less calcium (n=60) compared to normotensive controls (213). This may 

account for enhanced renal 25(OH)D3 re-uptake, thereby limiting metabolite excretion. Evidence 

from Cochrane review found daily calcium supplementation to significantly reduce the risk of PET 

(n=16490 women, risk ratio 0.48; CI 0.34- 0.67; 15 trials), and improved maternal -infant outcomes 

from 20w. Although women’s responses to calcium were heterogeneous, a consistent protective 

overall effect was observed (214, 215). 

   Together our preliminary data indicate dysregulation of vitamin D metabolism may precede clinical 

onset of PET. Spot urinary analyses may offer novel insights into the underlying pathogenesis of 

vitamin D dysregulation in PET. From the data presented we demonstrate that routine measurement of 

serum 25(OH)D3 alone provides only a limited perspective on the requirement for vitamin D in 

pregnancy. Detailed analysis of vitamin D metabolism, including renal catabolism and excretion is 

required. 

4.3.7 Limitations 

   For the West Midlands cohort, most women recruited were white (79.5%), with only 5.7% black 

and 14.8% Asian women. Albeit consistent across all 4 cohorts, due to the sample size there were 

insufficient numbers to ascertain whether ethnicity had a significant impact upon vitamin D 

metabolite concentrations. Certainly within the context of 25(OH)D3 black women appear at 

particular risk of deficiency. A recent report of pregnant women reported that at delivery, 29.2% and 

54.1% of black women, and 45.6% and 46.8% black neonates were vitamin D deficient (<37.5 
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nmol/L) and insufficient (37.5-80 nmol/L) respectively. Conversely, in the white cohort, 5% and 

42.1% of mothers and 9.7% and 56.4% of white neonates were vitamin D deficient and insufficient, 

respectively (111). This is particularly concerning, given the high-prevalence of vitamin D deficiency 

within our cohort, despite over-representation of white pregnant women.  

   The validity of the monoclonal DBP assay utilised here has been subject to recent debate, 

specifically its differential immunoreactivity against variant DBP targets(24). Whether test accuracy 

is contributory to our differential findings in sera and placental tissue is unclear, however this is 

particularly relevant for black populations due to their Gc1F variant expression predominance, 

whereas our cohort was predominantly white Caucasian. A direct measurement method for ‘free’ 

25(OH)D3 and bioavailable 25(OH)D3 would however resolve this. 

   In response to the upsurge of studies investigating the prevalence and clinical implications of 

vitamin D deficiency, the demand for more accurate and efficient measurement modalities has risen. 

Consequently, the accuracy of earlier measurement assays has been investigated, with clear 

differences in the sensitivities and specificities evident.  An understanding of these methods is 

important to interpret the current evidence base on vitamin D metabolite analysis, and conflicting 

outcomes reported (216). Despite significant improvements in assay standardisation procedures by the 

international vitamin D external quality assurance scheme(217), the precision and accuracy of 

different vitamin D metabolite methods remains contentious with significant inter-assay variability 

and deviation of analyte concentrations reported (218).  LC MS-MS is however widely recognised as 

the gold standard technique for vitamin D analysis, reflecting its greater analytical flexibility, 

specificity and sensitivity comparative to immuno-based assays (74, 75).  This permits simultaneous 

measurement of separate 25-hydroxylated metabolites and downstream di-hydroxylated metabolites 

using only small total serum volumes (76).  This includes measurement of active 1,25(OH)2D3, for 

which accurate quantification is complex due to its 1000-fold lower concentrations, short half-life, 

and lipophilic nature (76) (77). Further standardisation of LC MS-MS technology is still required to 

improve the accuracy, precision and consistency of results generated by LC MS-MS. It is also 

important to recognise the high cost and technical expertise necessary to run and maintain LC MS-MS 
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remain a major obstacle to its routine use. Whilst increased surveillance of these methods is becoming 

increasingly evident, as evidenced by scientific journals now only accepting fully validated assays for 

the analysis of steroids and sterols including vitamin D, concerns regarding the lack of standardisation 

of ‘in-house methods’ reported still exist.  (219).   

   In common with all studies of pregnancy, the interpretation of biochemical parameters is complex 

due to the effects of haemodilution, changes in renal and hepatic clearance and the influence of 

pregnancy specific hormones. Furthermore, from the early first trimester significant changes in renal 

function arise, in particular a dramatic increase in glomerular filtration (up to 50%) and renal plasma 

blood flow and thus urinary frequency. There is also often increased renal size and pelvic dilation 

(220). 

   Considering the measurement methods available to assess urinary compounds, 24h urinary analysis 

is considered the gold-standard measurement. This accounts for the susceptibility of urinary 

metabolite concentrations to variation by extrinsic factors including hydration status and overall renal 

function.  However this method is both cumbersome and reliant upon strict compliance. However, 

spot samples and first morning void are widely deemed acceptable for analyte measures, provided the 

effect of sample dilution is quantified and appropriately adjusted (221, 222). At present no consensus 

upon which is most appropriate adjustment technique, however creatinine remains commonly applied. 

This simply calculates the ratio to creatinine concentrations and does not account for temporal 

variations in creatinine excretion rates (222).   

   The potential value of a urinary marker of vitamin D status has wider clinical implications outside 

of pregnancy, and certainly, this method will be highly transferrable. Under the current method 

conditions levels of 1,25(OH)2D3 and 23,25(OH)2D3 could not be measured following derivatization, 

as these concentration were below the limits of detection. To assess the ability to quantify these 

analytes in urine, method development will be required on a later generation mass spectrometer that 

will enable reduced detection limits.  
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   Moving forward, serial serum and urinary analyses at a set time-point would provide a more 

detailed insight into the pathogenesis of vitamin D dysregulation. It would have been interesting to 

include more early-onset PET cases (<34w n=1) in this cohort, as this may have been associated with 

more severe placental pathology. Subgroup analysis of those women who developed PET preterm 

(≤37w) (n=9) did not reveal any significant differences with regards to the 5 major serum vitamin D 

metabolites measured (data not shown), but numbers were too small to draw any robust conclusions 

from this.   

      Finally, a major restriction in understanding fetal physiology is imposed by the relative 

inaccessibility of the human fetus, with metabolite analysis only permissible at the point of delivery. 

Whether placental vitamin D metabolites correlate with fetal cord metabolites is an important 

question, which was not addressed in this study.  
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5 Vitamin D and uterine natural killer cells  
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5.1 Introduction 

5.1.1 Immune cell function and the decidua 

   Pregnancy is a unique situation in which the mother and the hemiallogeneic fetus coexist. Despite 

previous suppositions the syncytiotrophoblast forms an impenetrable barrier preventing access of 

maternal cells to fetal antigens, this is now known not to be the case. Throughout pregnancy continual 

shedding of apoptotic syncytial nuclear aggregates (>100,000/d) and underlying trophoblast cells into 

the systemic maternal circulation occurs (223, 224).  Exposure of the maternal immune system to fetal 

cells and their respective paternal-derived antigens is common with significant gestation-dependent 

immune adaptions develop throughout pregnancy to accommodate this (224).  

   From the first trimester maternal immune cells and endothelial cells of the spiral arteries are closely 

juxtapositioned along trophoblasts at the boundary between the decidua and junctional zone. Within 

the decidua a unique immune cell population exists which appears pivotal to this process. From early 

pregnancy, 30–40% of total decidua cells are leukocytes, including uterine natural killer cells (uNKs) 

(~60%), macrophages (20%) along with CD3+ T Cells (CD8+ > than CD4+), DCs. B cells are 

virtually undetectable (225). The remaining cells are primarily of stromal origin. The cellular cross-

talk between decidual stroma, decidua immune cells and fetal trophoblast is orchestrated by 

hormones, CK, chemokine and growth factors, and this is crucial for normal placentation (138). 

   Originally, it was postulated successful pregnancy reflects an immune bias towards Th2 immunity 

with active suppression of the maternal immune response. This is however an oversimplification with 

multiple mechanisms encompassing both innate and adaptive arms of the immune system now 

recognised.    

   Certainly there is altered antigen presentation, as villous trophoblast and syncytiotrophoblast cells 

lack human leukocyte antigen (HLA)-A, -B, -DR, -DQ, and -DP expression. This non-specific 

downregulation of antigen presentation is assumed of benefit for fetal survival via direct immune 

evasion, however, EVT cells do express HLA-C and class HLA I antigens -E, -F, and –G which 

together permit selective fetal antigen presentation (226) (227). It appears a variable receptor/ligand 
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system has evolved to impact on reproduction and permit implantation and development of the semi-

allogenic fetus. These antigens have diverse functions, which include modulation of T cells, NK cells, 

macrophages and DCs activity (228). The potential mechanisms employed via HLA-G at the materno-

fetal interface have gained particular attention, including a potential role in the modulation of NK cell 

killing and migration; proliferation and IFN-γ production; regulation of CK production in 

mononuclear and T cells; suppression of T cell killing and viability (229, 230). The mechanisms by 

which T cells react to these antigens are also of certain relevance, in particular the role of Tregs (231-

233). Our group has also recently shown that decidual T cells proliferate in response to fetal tissue, 

and depletion of T regulatory cells leads to an increase in fetal-specific proliferation (234). 

Furthermore, pregnant women exhibit many characteristics of a systemic pro-inflammatory response 

with increased leucocytosis, monocyte priming and phagocytic activity, and pro-inflammatory CK 

production (235, 236).  

   As shall be outlined, uNKs are the most prominent subset from early in the first trimester. These 

cells display a characteristic stage-dependent migration and distribution across pregnancy, with active 

regulatory roles during early placentation and fetal development anticipated (237, 238).  

5.1.2 Natural killer cells  

   NK cells are members of the distinct hematopoietic lineage of innate lymphoid cells (ILCs). They 

represent a key component of the innate immune system and in humans are distinguished by the 

absence of CD3 and their density of CD56 and CD16 expression. In the circulation, most (90-95%) 

peripheral NK cells (pNKs) convey low CD56 (CD56dim) and high CD16, with only a small sub-

population of CD56bright CD16- (~5%) evident. Distinct from other ILC subsets, CD56dim pNK 

cells are key drivers of the innate effector response, mediating potent cytotoxic effects, which are 

critical for immuno-surveillance, and anti-tumour and anti-microbial protection (239, 240).   

   The major mechanism that governs NK cell contact-dependent functions is the relative contribution 

of inhibitory and activating natural killer cell receptors (NKRs) to cognate ligands. These permit 

recognition and selective targeting of MHC low/ absent cells, the so called ‘missing self’ hypothesis 

(241).  NK cell activation is primarily achieved via engagement of NKRs, including activatory 
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NKp46, CD16 and NKG2D. Inhibitory receptors, such as killer immunoglobulin-like receptors 

(KIRs) and NKG2A, counterbalance this response acting through MHC I.  This is however an over-

simplification of NK cell responsiveness, with the diversity and balance of activatory and inhibitory 

receptor expression crucial for mediating NK functions, which also include synergy, no enhancement, 

or additive effects (242).  Furthermore, NK cells are activated via innate CKs including IL-2, IL-12, 

IL-15, and IFN-γ, leading to dramatically increased cytotoxic activity against target cells and 

abundant pro-inflammatory CK production (243). IL-12 appears particularly potent (244), however 

IL-2 and IL-15 also differentially activate endogenous NK cells influencing both their differentiation 

and cytotoxic function (245).   

   NK cells are critical mediators of human innate immunity. In humans a complete lack of NKs 

results in overwhelming fatal infection during childhood (246). Classically, NK cells target ‘non-self’ 

tumour and virally infected cells upon the basis of altered, foreign or absent MHC I expression 

without former priming or antigen specificity. This involves secretion of a range of CK and 

chemokines that influence the host's immune response, and/or kill certain infected or transformed 

cells via perforin/ granzyme or death receptors (247).  

   pNKs also have the capacity to shape adaptive immunity by regulating T cell responses. IFN-γ is 

considered pivotal to this process, mediating many direct and indirect cytotoxic effects, including T 

cell priming and pro-inflammatory Th1 differentiation from naive CD4 T cells, antigen presenting cell 

(APC) activation and maturation, and macrophage-mediated killing (248). 

5.1.3 CD56 bright NK Cells 

   As outlined, in the peripheral circulation only a small sub-population of CD56bright CD16+ (~5%) 

is evident. The ontogeny of these subsets remains unresolved with several models proposed. Firstly, a 

common NK cell precursor, which differentiates to either CD56bright or CD56dim subsets, may exist.    

Alternatively, these subsets represent a distinct lineage that switches from one form to another as 

determined by their local microenvironment. A developmental model in which CD56bright CD16+ 

pNK subsets represent an early precursor of CD56dim cells has also gained much attention (249). 
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Attempts to drive CD56 bright differentiation towards a CD56dim phenotype have however been 

heterogenic thus the validity of this theory remains uncertain (250).   

   It appears CD56bright NKs represent a functionally distinct NK subset, which conveys unique and 

diverse roles comparative to their dim counterparts. Firstly, they are devoid of lytic granules and 

demonstrate significantly weakened ability to conjugate with target k562 cells, thereby rendering 

them poorly cytotoxic even with prolonged stimulation (250). They also demonstrate weaker CD16-

mediated antibody-dependent cellular cytotoxicity. CD56bright NK cells are however superior with 

regards to CK secretion, including a range of pro-inflammatory and – regulatory CK such as IFN-γ, 

TNF-α and IL-10. Co-stimulation of CD56bright NKs with T cell–derived IL-2 and monocyte derived 

IL-12 significantly enhanced IFN-γ production, which via the activation of APCs may shape antigen-

driven cytotoxic T-cell responses.  It appears these cells differentially regulate immunological 

responses via CK-mediated signalling as opposed to their cytotoxic potential (251).  This population 

also bears homing receptors such as CCR7 and CXCR3, representing the prominent NK cell subset in 

several major peripheral lymphoid organs (252).  

5.1.4 Tissue resident NK cells  

   NK cells are characterised in a range of human tissues including spleen, liver, tonsil, and lymph 

nodes, with their relative distribution controlled by tissue chemokine receptor and adhesion molecule 

expression. Allocation of NK cells is however dynamic, with recirculation between different organ 

sites identified (253). Notably, NK cells at these sites are phenotypically distinct, reflecting their 

unique local micro-environments; within the spleen 85% of NK cells are CD56dim CD16+ and 

strongly express perforin, whereas in the lymph nodes a CD56bright CD16- phenotype is displayed 

(243). Consequently, tissue NK cells are functionally highly diverse, and are not restricted to classical 

pro-cytotoxic and anti-tumorigenic effects, influencing tissue inflammation and immune homeostasis, 

including immuno-regulation and -surveillance. This in part reflects how local CKs, chemokines and 

adjacent cells shape NK cell activity, for example within the tumour micro-environment Treg cells 

and monocytes suppress NK cell mediated tumour rejection whereas in lymph nodes CD4+ T cells 

stimulate NK cells cytotoxicity via IFN-γ release (243, 254).  
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   Of particular interest are hepatic NK cells, which comprise 20-30% of the total resident lymphocyte 

population. Two major NK populations exist, CD56bright and CD56dim, which reside in equal 

proportions. The CD56dim subsets express higher levels of perforin and granzyme comparative to 

pNKs, which likely reflects their frequent exposure to ‘foreign’ pathogenic antigens against which 

they induce potent cytotoxic effects.  (255). The CD56bright subset appears immature, hypo-

responsive and pro-regulatory, acting to maintain immune balance via CK secretion and immune-cell 

cross talk. The hepatic microenvironment drives acquisition of this unique phenotype, as elegantly 

demonstrated by adoptive transfer studies of ‘cytotoxic’ splenic NK cells, which subsequently confer 

a similar regulatory phenotype (256, 257).  

5.1.5 Uterine NK cells 

   Along with the human liver, the pregnant uterus is the peripheral organ containing the highest 

frequency of NK cells. Albeit present in the non-pregnant endometrium, NK cells are low in number 

and demonstrate cyclical fluctuations. In response to fertilization and implantation, a surge in uNKs is 

observed (258). From the early first trimester, uNKs become the predominant immune cell population 

within the decidua, representing between 50-60%.  From the second half of pregnancy a relative 

reduction in uNK numbers is observed, indicating a greater role in early pregnancy (259).  

   Considering uNK cell origin, these appear highly disparate from their peripheral counterparts being 

predominantly CD56bright CD16- (>80%), with a unique repertoire of activatory and inhibitory 

receptors(238). Murine models suggest they are recruited from peripheral blood or bone marrow, with 

local uterine factors driving NK cell migration (260). Certainly both the fetal trophoblast and decidua 

stroma produce a range of pro-migratory chemokines, with pNK cell migration mediated via CXCR4- 

and CXCL12-dependent mechanisms (261).  Local stromal cell interactions, CK and growth factors, 

such as IFN-γ, stromal cell-derived factor-1 and TGF-β may drive NK cell differentiation and 

education within the decidua microenvironment. There is however evidence to suggest some uNKs 

develop from early CD34+ hematopoietic precursors, as co-culturing uNKs with decidualised stroma 

causes CD34+ cells to differentiate into mature NK cells (262).  
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   Historically, uNKs were considered a significant threat to the fetus (263). However, uNKs are now 

considered instrumental for successful pregnancy. In mice, placentae deficient of NK cells are 

hypotrophic and result in premature fetal death. Tgε26 females, which have <1% of normal uNK cell 

frequency, similarly demonstrate small placentae, absent implantation site–associated metrial glands, 

aberrant decidua vascular pathology and fetal loss rates >60%. Furthermore, this aberrant 

reproductive phenotype is reversed following bone marrow transplantation from scid/ scid (NK+ T− 

B−) mice (264, 265).   

   There is strong evidence to suggest uNKs are pro-regulatory with key roles in the two major 

processes required to establish successful pregnancy (266) 

1. Invasion of EVT into the maternal decidua and inner myometrium (8-10w) (267) 

2. Uterine spiral artery remodelling (10-12w) (268)  

   In brief, these processes arise from initial implantation, with successful uterine invasion crucial for 

blastocyst establishment within the endometrial wall. The trophoblast then invades the decidualised 

endometrium, migrating into the spiral arteries and here replacing maternal vascular endothelial cells. 

Trophoblast cells at the placental villi tips differentiate into specialised EVT which invade the decidua 

and inner myometrium. Extensive artery remodelling ensues (269), with the maternal decidual spiral 

arteries subsequently transformed to wide diameter, non-vasoactive vessels with the capacity to 

ensure the increasing demands of the fetus for nutrients, respiratory gases and metabolic waste 

removal are met.  

   Contradictory to previous suppositions the maternal decidua remains passive during this process, 

this is critical in the initiation and control of fetal trophoblast invasion. This involves complex 

interactions between immune cells, endothelial cells, and invading trophoblasts, with uNKs appearing 

key drivers of this (268).  Histologically it is well recognised that uNKs aggregate around spiral 

arteries and glands (270). NK cell-deficient mice also display significant abnormalities in decidual 

artery remodelling and trophoblast invasion, which appears mediated via the secretion of an array of 

chemokines, growth factors and CK, including IFN-γ and TNF-α, which mediate angiogenesis, tissue 
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remodelling and trophoblast migration (267, 271, 272). This appears dependent upon the engagement 

of both NKp30 and NKp44 ligands which are expressed on stromal decidual cells and EVT (273, 

274). 

   Local factors, including IL-15, IL-2 and IL-12, have gained particular interest with regards to 

mediating uNK cell function.  IL-15, which is strongly expressed within the decidua from the first 

trimester, has gained particular interest (131) as histological examination of implantation sites from 

IL-15-/- pregnant mice demonstrate no uNKs, no spiral-artery modification, and lack decidual 

integrity. Whilst indicating an important role for IL-15, it is not however critical since mice lacking 

IL-15 retain normal fetal viability and reproductive outcomes (272, 275). DCs appear a pivotal source 

of both IL-15 and IL-12, and their depletion is associated with decreased IL-15 and IL-12, and 

abnormal NK cell size and function. Adoptive transfer of DCs from WT mice is also shown to 

abrogate this effect (276).  

   Despite maintaining their cytotoxic machinery uNKs remain poorly cytotoxic and appear mediators 

of immune-tolerance at the materno-fetal interface. Albeit similar to pNK CD56dim cells in relation 

to their granular content, uNKs display reduced activation potential (129, 130). Recent genomic 

analysis by Koopman et al revealed that CD56bright pNK cells are more similar to CD56dim pNK 

cells than to their respective CD56 bright uNK counterparts. Importantly, uNKs also demonstrated 

enhanced immune-modulatory potential compared to both (277).  

   Considering the key mediators of uNK cell function, it appears that largely undefined local 

mechanisms including CK and hormone secretion, and cross-talk with other immune cell types are at 

play, which together suppresses the potential lytic effects of uNKs (121). uNKs are influenced by 

their differential activatory and inhibitory receptor profiles. Perhaps surprisingly, they in fact express 

increased levels of ‘natural cytotoxicity’ activatory receptors, including NKp30, NKp44, NKp46 and 

CD69, comparative to their peripheral counterparts.  They do also however also express a unique, 

broad range of inhibitory receptors, including KIR2D and NKG2A (278). Cytotoxic control is likely 

mediated in part by the counterbalance of these two subsets, which interact with class I non-classical 

HLA subtypes (279). 
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   Comparative to pNKs, uNKs demonstrate enhanced production of immunosuppressive CK 

including TGF-β and IL-10, and lower IFN-у and TNF-α levels (280). They may also actively 

regulate fetal implantation and placentation via their local interactions with other decidual immune 

subsets. Some studies suggest uNKs may actively suppress Th17-mediated local inflammation via 

IFN-γ-dependent pathways (281).  Whether uNKs initiate immune tolerance at the materno-fetal 

interface remains a subject of debate (237, 279). Their lack of cytotoxicity appears to favour their 

residence within the decidua, with a range of diverse and dichotomous functions influencing tissue 

inflammation, angiogenesis, and immune-regulation instead delineated.  

5.1.6 NK cells in malplacentation 

   In humans, defective trophoblast invasion and vascular remodelling are the hallmark features of 

aberrant placentation. Failure of this process is associated with a range of serious ‘malplacentation 

disorders’, including miscarriage, PET, and SGA (282-284). Given the prominence and anticipated 

key roles of NK cells in healthy placentation, both pNK and uNKs have gained much research interest 

(285).  

   As outlined, murine KO models have provided important insights into NK cell biology within the 

context of placentation. Within the context of malplacentation, IFN-γ is considered a key mediator of 

uNK cell function in KO mice, as significant abnormalities in the decidual vasculature, similar to 

those observed in NK cell-deficient mice are observed (286). Furthermore, reconstitution of RAG-

2−/−/γc−/− mice with bone marrow from IFN-γ−/− mice, restores normal uNK frequencies, but does not 

reverse the decidual abnormalities in the absence of IFN-γ. IFN-γ administration however reverses 

this decidual pathology, supporting a major role of IFN-γ in uterine vascular remodelling (286, 287). 

uNK cells have recently been reported as pivotal for  fetal growth during early pregnancy, with 

adoptive transfer of induced CD49a+ Eomes+ NK subsets associated with reversal of aberrant fetal 

growth (288). Follow up validation studies are however clearly warranted.  

   Considering current human studies, which are extremely limited, pregnancies complicated by 

recurrent miscarriage or PET provide the basis of most available evidence. Within the context of 

recurrent miscarriage, attempts to predict women at risk of miscarriage based upon NK cell frequency 
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alone have proven highly heterogenic with NK cell function considered the more significant factor 

(289, 290). Considering pNKs, it is postulated the suppression of Th1 immunity towards fetal 

trophoblast may be lost within this context. In response to trophoblast antigens, PBMC from women 

with recurrent miscarriage released increased concentrations of pro-inflammatory CK, including IFN-

γ and TNF-α, with a concomitant reduction in IL-10 (291).  

   Within the context of PET, a Th1 shift of NK cells is similarly reported, with an increased 

prevalence of pro-cytotoxic NK subsets comparative to normal pregnancy. This shift may account for 

the elevated levels of pro-inflammatory CK, including TNF-α, IL-6, IFN-γ, IL-15, IL-12 and IL-2, 

and lower IL-10. Correlation between these markers and PET severity may also be evident (292-294).   

   Within the context of PET, a major contribution was hallmark gene-linkage analysis, which 

revealed a significant link between fetal HLA-C and maternal KIR interaction combinations which 

induce potent uNK inhibition and PET. It appears appropriate NK cell activation is required to reduce 

the likelihood of PET. This was true even if the mother expressed a similar receptor profile, indicating 

that neither non-self nor missing-self discrimination was implicated in this process (295).  

   Progress delineating the exact aetiology of malplacentation with regards to uNK function has been 

hindered by the lack of accurate diagnostic tests available to identify women either pre-conception, or 

early in the first trimester at significant risk.  Uterine artery resistance index (RI) has been utilised to 

some effect, with a raised RI a surrogate marker of impaired vascular remodelling.  Comparative to 

pregnant women with a normal RI, there was no difference in uNK cell frequencies, whilst a 

significant reduction in uNK-mediated trophoblast motility and vascular apoptosis was measured 

(296, 297).    

   A recent systematic review and meta-analyses concluded however there remains insufficient 

evidence (n=12 studies) to ascertain whether high pNK or uNK percentages or activity predict 

subsequent miscarriage risk. Future studies are warranted to determine the role of NK cell assessment 

as a predictive test for screening at risk pregnant women (298). 
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5.1.7 Vitamin D and NK Cells 

   Considering the potential effects of vitamin D upon NK cell function, studies to date are relatively 

inconsistent and scarce. Certainly to our knowledge no studies specifically investigating the effects of 

1,25(OH)2D3 upon uNKs have been performed.  

   Merino et al provide first the evidence that 1,25(OH)2D3 may modulate NK-like immune activity in 

the 1980’s. The current belief was that serum calcium exerted important immune-regulatory effects 

upon both innate and adaptive immune cell subsets (299). It was subsequently found that 

1,25(OH)2D3 inhibited CD16+ cytotoxic cell activity and that this related directly to hormone-

mediated suppression of IL-2. Furthermore, IL-2 treatment reversed these effects. It was postulated 

that NK cells express a functional VDR with intrinsic immune-suppressive actions (299).  

   Not until 2013 was isolated pNK expression of the vitamin D metabolic system measured in a 

cohort of type 1 diabetics (300).  pNK cells demonstrated differential expression of CYP2R1, VDR 

and CYP27B1, comparative to both Th1 and monocyte subsets. Unexpectedly, CYP27B1 expression 

was higher than monocytes but lower than Th1 cells. VDR expression was however lower than both. 

The reasons underlying these differences remain unclear and warrant further investigation (300).  

   The effects of 1,25(OH)2D3  upon mature and developing pNK function are highly inconsistent.   

Ravid et al found 1,25(OH)2D3  significantly increased pNK cytotoxic activity via upregulation of 

granzyme A, with no effect upon cell proliferation observed (301).  Conversely, recent studies suggest 

an inhibitory role for 1,25(OH)2D3 upon pNK development, with preferential differentiation towards 

a monocytic cell lineage. Furthermore, a significant reduction in pNK cytotoxicity and IFN-γ release 

was measured (302). Similarly Ota et al demonstrated 1,25(OH)2D3 inhibited pNK cytotoxicity in a 

dose-dependent manner following IFN-у and IL-2 activation (303).  

   As eluded to in Chapter 4, albeit the exact role of decidual 1,25(OH)2D3 in early pregnancy remains 

unclear, an important non-classical function may be anticipated (71, 304). Preliminary studies suggest 

certain decidual immune cells may be particularly important; following purification of non-adherent 

stromal cells and adherent cells (including macrophages and uNKs), adherent cells demonstrated the 
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greatest capacity for 1,25(OH)2D3 production (305). Consistent with this, Evans et al found decidual 

CD10- cells (stromal cell negative) strongly express CYP27B1, and this closely correlates with key 

immune markers, including TLR-4 and indoleamine-pyrrole 2,3-dioxygenase (IDO). Given their 

prominence within the CD10- decidua cohort, uNKs may represent a major mediator of vitamin D 

derived immune effects, particularly in early gestation (306). Consistent with this, first trimester 

CD56+ cells  treated with 1,25(OH)2D3 demonstrated decreased synthesis of several decidua CK 

including  TNF-α and IL-6, and increased cathelicidin (306). We anticipate resident uNK represent a 

major source of 1,25(OH)2D3, acting in an autocrine/paracrine fashion to regulate both acquired and 

innate responses at the materno-fetal interface. 

   Considering the diverse roles undertaken by uNKs, alternative effects of vitamin D may be 

anticipated. 1,25(OH)2D3 may promote fetal-driven angiogenic effects, as EVT co-express CYP27B1 

and VDR, and demonstrate induction of CYP24A1 and cathelicidin following 1,25(OH)2D3 

treatment. Furthermore, culture with 1,25(OH)2D3 significantly enhanced EVT invasion, with a 

concomitant increase in pro-MMP2 and pro-MMP9 (304).  

   Outside of pregnancy, vitamin D is similarly shown to promote angiogenesis with enhanced 

endothelial tubule formation, pro MMP-2 activity and vascular endothelial growth factor (VEGF) 

reported (307). Preliminary findings by our group were not indicative of this since mRNA levels of 

VEGF and platelet-derived growth factor (PLGF) following culture with 1,25(OH)2D3 were not 

significantly altered (304). Conversely, within the context of cancer 1,25(OH)2D3 inhibits 

angiogenesis, with anti-proliferative and apoptotic effects mediated via VDR signalling reported 

(308).  Since uNKs produce a diverse range of angiogenic factors more comprehensive studies 

delineating the effects of 1,25(OH)2D3 are warranted. Given the striking differences between uNK 

and pNK it is important to investigate and compare the effects of vitamin D upon both peripheral and 

uterine subsets.  
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5.2 Results 

5.2.1 Distribution of decidua immune cells: comparative analysis with matched 

peripheral maternal blood – first trimester 

   Within the decidua a unique immune cell population resides in the first trimester, and notably this is 

highly disparate comparative to matched maternal PBMCs. Within the first trimester ‘normal’ 

decidua, CD45+ immune cells comprise approximately ~40% of the total live cell cohort, with the 

remaining tissue primarily of stromal origin (270). In preparation for these studies the relative 

proportion of the major innate and adaptive immune cell subsets was assessed in matched decidua and 

peripheral blood samples which were obtained from ‘low-risk’ pregnant women (n=5) in the first 

trimester (GA 6-11w), as summarised in Table 5.0.  

Study ID DOB Ethnicity GA (w) 

DC191 23.05.73 Caribbean 6+0 

DC192 01.09.79 Indian 8+3 

DC193 18.01.83 Czech Republic 10+2 

DC194 28.04.90 White British 11+0 

DC195 17.11.82 White British 10+5 

 

Table 5.0 Demographic summary of first trimester participants (n=5). The study identification 

(study ID), date of birth (DOB), ethnicity and gestational age at collection (GA) (weeks; w) is shown. 

   An example gating strategy is illustrated in Figure 5.0, with decidua and maternal frequencies 

summarised in Figure 5.1 for APCs (CD3-CD20-CD56-CD14+), NKs (CD3-CD56+NKp46+), natural 

killer T  cells (NKT) (CD3+CD56+), CD4+ T cells (CD3+CD4+), CD8+ T cells (CD3+CD8+) and 

CD20+ B cells (CD3-CD56-CD14-CD20+), all of which were CD45+.  
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Figure 5.0 Summary of the gating strategy utilised to assess both decidua-derived and 

circulating maternal live CD45+ lymphocyte subsets. Example flow cytometry plots for decidua-

derived whole polymononuclear blood cells, with the gating strategy for measurement of the relative 

frequencies of CD45+ NK cells (CD3-CD56+NKp46+), CD4+ T cells (CD3+CD4+), CD8+ T cells 

(CD3+CD8+) and CD20+ B cells (CD3-CD56-CD14-CD20+) subsets shown. 

   In the decidua, of the CD45+ immune cell cohort CD56+ NKp46+ NKs were predominant in the 

first trimester, representing 58.8% ± standard deviation (SD) 10.4 with APCs representing 16.2% 

±3.7. In this cohort 10.0% ±5.1 were T cells, with 5.7% ±2.7 CD4+ and 3.1% CD8+ cells.  

   In the maternal peripheral blood conversely, only 7.5% ±2.5 of CD45+ cells were CD56+NKp46+ 

NKs, and 11.1% ±5.8 CD14+ APCs. Instead, CD3+ T cells were predominant representing 67.2% 

±10.6 of CD45+ cells. Here CD4+ cells were highly predominant (51.7% ±11.5), with CD8+ cells 

representing only 16.1% ±5.6 of the total immune cell population.  Notably, a high preponderance of     

NKT cells (5.6% ±3.1) is present in the maternal blood comparative to the decidua (1.3% ±3.7). In 
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both decidua and maternal blood, CD20+ B cell frequencies were low representing 3.1% ±1.5 and 

1.6% ±1.0 respectively. 

 

 

Figure 5.1 Characterisation of first trimester immune cells subsets. Comparative analysis of 

paired decidua (A; red) and maternal (B; blue) CD45+ immune cell subsets, using flow cytometry. 

Relative frequencies (%) are summarised in their respective bar chart and table (n=5), including 

antigen presenting cells (APCs), natural killer cells (NK), natural killer T (NKT) cells,  T cells, CD4+ 

T cells, CD8+ T cells and B cells. 
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   In relation to their surface activation marker expression, consistent with previous reports, NKs in the 

decidua were consistently CD56 NKp46 bright > 95% (n=5), as opposed to CD56 and NKp46 dim. 

Conversely, in the periphery, CD56+ NKs were predominantly CD56+ NKp46 dim (92.8%), with 

only 7.2% CD56 NKp46 bright(277).  However, similar to pNKs, uNKs appear highly granular cells 

with clear cytotoxic potential as characterised by their positive perforin and granzyme B expression.  

Consistent with previous reports, uNKs exhibited similar median NK perforin and granzyme B 

expression to their peripheral counterparts, as summarised in Figure 5.2 and Table 5.1. 
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Figure 5.2 Phenotypical characterisation of paired first trimester uNK and pNK subsets. (A) 

Using flow cytometry, extracellular NKp46 and CD56 expression were measured in live CD45+CD3- 

uNK and pNK cells obtained from matched decidua and maternal peripheral blood mononuclear cells, 

as illustrated in the scatter plot. (B) Using FACS, relative intracellular expression of perforin and 

granzyme B was measured in live CD45+CD56+CD3- uNK and pNK cells.  The off-set histograms 

illustrate perforin and granzyme B expression relative to their matched isotype control. The bars 

define positive and negative surface marker expression. 
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 uNK Freq+ 

(median; IQR) 

pNK Freq+ 

(median; IQR) 

Perforin 43.2; 0.7-60.6 57.7; 45.1-63.1 

Granzyme B 66.0; 61.2-93.6 60.1; 44.2-77.8 

 

Table 5.1 Relative intracellular protein expression of perforin and granzyme B in paired uNK 

and pNK subsets. The frequency of positive perforin and granzyme B intracellular expression for 

paired first trimester uNK and pNK is summarised as median and interquartile range (IQR) (n=4).   

   An important observation was the significant difference in uNK cell morphology and scatter 

comparative to their pNK counterparts. This became more marked following NK cell culture and 

exposure to the assays. Notably, the relative proportions of ‘dead’ uNKs also increased, as did their 

heterogeneity in cell structure and size.   

5.2.2 Optimisation of NK cell activation assay 

   Prior to establishing any potential functional effects of 1,25(OH)2D3 upon uNK cytotoxic potential 

it was necessary to establish a reliable NK cell activation protocol. For this purpose, isolated CD3-

CD56+ pNKs from non-pregnant healthy female controls were utilised to measure the individual and 

combined effects of recognised NK cell activating CK (IL-2, IL-15, IL-12 and TNF-α (Table 5.2) in 

the presence or absence of a k562 cell line (309). Activation was measured according to surface 

expression of recognised NK activation marker CD107 and production of IFN-γ and TNF-α at a series 

of 24 and 48h time-points.    

   As summarised in Table 5.2, compared to unstimulated (US) pNKs single CK treatments (IL-12, IL-

2, IL-15 or TNF-α) or co-culture with k562 cells failed to significantly activate TNF-α and IFN-γ 

release. Conversely, co-treatment with IL-12, IL-15 and IL-2 significantly enhanced CD107, IFN- γ, 

and TNF-α expression at both the 24h and 48h time-points.  
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24h 48h 

 

Freq + of pNKs (%) 

Freq total 

cells (%) Freq+ of pNK (%) 

Freq total 

cells (%) 

Treatment CD107 IFN-γ TNF-α Viability CD107 IFN-γ TNF-α Viability 

US 9.3 5.7 1.4 88.1 1.8 0.1 0.1 70.1 

IL-2  14.6 30.4 2.1 91.3 8.0 0.4 1.4 91.8 

IL-12  30.1 44.8 1.8 91.5 5.8 0.8 0.5 90.0 

IL-15 15.4 35.8 2.1 89.4 38.6 7.2 3.7 79.7 

K562 18.4 11.4 3.3 77.9 5.4 0.3 2.0 60.7 

TNF-α 30.5 4.2 7.0 86.5 8.5 0.1 2.3 89.3 

PMA & ionomycin 56.8 98.1 65.9 80.5 19.3 27.7 25.7 73.4 

IL-2 IL-12 IL-15  43.9 97.2 12.3 86.3 71.8 85.9 36.7 29.0 

k526 IL-2 IL-12 IL-15  67.0 99.1 27.2 79.4 81.1 98.3 39.8 28.5 

 

Table 5.2 Summary of time-point analysis of pNK cell activation. The percentage (%) frequency 

(freq) of CD107, IFN-γ, TNF-α expression and viability (% of live total cells) following 24 and 48 

hour (h) culture with either no treatment (US) or treatment with a range of activation agent regimes 

(IL-2, IL-12, IL-15, k562, TNF-α, and/ or phorbol 12- myristate 13-acetate [PMA] & ionomycin) is 

summarised.  

   With increasing culture time a marked decrease in cell viability was evident with both co-treatment 

regimes. Although phorbol 12- myristate 13-acetate (PMA) and ionomycin, which are recognised NK 

cell activators(310), demonstrated high pNK activation at 24h and preserved NK viability at both 

time-points, CD107 and CK expression were markedly reduced by 48h. Whether this reflects earlier 

NK cell activation, with tailed NK responsivity by 48h is not clear.  Based upon these findings, co-

treatment with IL-2, IL-12, and IL-15 was selected for subsequent assays.   
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Figure 5.3 Flow cytometric analysis of the effects of 1,25(OH)2D3 upon isolated uNK and pNK 

cell CK release (IFN-у, TNF-α) and cytotoxic potential, as characterised by CD107 expression. 

Expression was measured following 24 hour (h) in one of four treatment conditions prior to analysis; 

(i) non-stimulated (US), (ii) non-stimulated in the presence of 1,25(OH)2D3 (US +1,25(OH)2D3) , (iii) 

CK stimulated (IL-2,1L-15, IL-12), (iv) CK stimulated in the presence of vitamin D (IL-2,1L-15, IL-

12 + 1,25(OH)2D3). The off-set histograms illustrate CD3-CD56+ pNK and uNKs CD107, IFN-γ and 

TNF-α release. 

   Having optimised NK cell activation using pNK subsets alone, comparative analysis of paired uNK 

and pNK CK release and CD107 activation status was assessed. As summarised in Figure 5.4 and 

Table 5.3, in response to pNK stimulation, IFN-γ, and CD107 expression markedly increased 

comparative to their unstimulated counterparts. Although the proportion of IFN-γ, and CD107 

positive cells increased in the uNK subsets in response to CK stimulation, this was suppressed relative 

to those from the periphery. Interestingly, TNF-α expression was low in both populations in response 

to CK stimulation.  
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Figure 5.4 Summary of flow cytometry analysis of the effects of 1,25(OH)2D3 upon isolated pNK  

(blue) and  uNK cell (red) CK release (IFN-γ, TNF-α ) and cytotoxic potential, as characterised 

by CD107 expression. Expression was measured following 24 hours (h) in one of four conditions 

prior to analysis; (i) non-stimulated (-, -), (ii) non-stimulated in the presence of 1,25(OH)2D3 (+/-) , 

(iii) CK stimulated (IL-2,1L-15, IL-12) (-,+) (iv) CK stimulated in the presence of vitamin D (IL-

2,1L-15, IL-12 + 1,25(OH)2D3) (+,+). Mean values with standard error of the mean is illustrated, non 

–parametric analysis of effect of CK stimulation and 1,25(OH)2D3 were measured. Stars indicate 

significance level (* p<0.05). 
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 Median Frequency positive (%) (IQR) 

 pNK US pNK CK uNK US uNK CK 

IFN-γ 2.0 (0.9-47.2) 69.3 (63.2-81.3) 0.76 (0.2-15.8) 28.3 (17.8-46.6) 

TNF-α 0.7 (0-3.2) 2.2 (0.5-33.9) 1.0 (0.7-4.4) 6.5 (5.1-22.0) 

CD107 7.6 (1.7-12.1) 47.6 (11.4-70.6) 7.2 (5.2-12.7) 14.0 (13.7-24.5) 

 

Table 5.3 IFN-γ, TNF-α and CD107 intracellular expression in isolated uNK and pNK cells. 

Median frequency of positive IFN-γ, TNF-α and CD107 in paired isolated uNK and pNK subsets 

following 24 h culture in the presence and absence (US) of CK (IL-2, IL-12, IL-15) stimulation (n=1). 

The % and IQR are illustrated.  

5.2.3 Analysis of the vitamin D metabolic system in NK subsets by qRT-PCR 

   To ascertain whether both isolated uNK and pNKs express the metabolic apparatus required to 

mediate local 1,25(OH)2D3  production and function, qRT-PCR was performed to assess CYP27B1, 

CYP24A1 and VDR transcript expression (Figure 5.5). Relative expression to US uNKs for each 

transcript was calculated to permit comparative analysis. The purity of the matched NK subsets was 

assessed, as summarised in Table 5.4, for uNKs (80.6–98.1%) and pNKs (58.2–90.3%). The lower 

purity obtained for the pNKs reflects both the increased relative frequencies in peripheral blood, and 

NKT cell preponderance. This may reflect the wide IQR bars evident in the pNK transcript data in 

Figure 5.6. 
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uNK 

(%) 

pNK 

(%) 

80.6 90 

98.1 90.3 

97.3 87.1 

96.2 58.2 

97.7 61 

97.7 - 

 

Table 5.4 Purity analysis of CD56+ subset isolation of maternal and decidua subsets. Percentage 

frequencies (%) are reported as the proportion of live CD45+ CD56+ NKp46+ (CD3- CD14-, CD19-) 

cells isolated.  

   Consistent with the surface protein data uNKs, median VDR transcript expression increased 4.95 

fold (IQR 4.32-5.75 IQR; p = 0.0001) in response to CK activation. pNK VDR expression also 

increased 2.20 fold (1.20-5.2.31; p = 0.017) relative to US uNK subsets following CK activation, 

albeit this is significantly less comparative to their decidua counterparts (p=0.02). Importantly, 

1,25(OH)2D3 significantly  suppressed VDR upregulation in both subsets, thereby indicating a 

negative feedback system exists to regulate 1,25(OH)2D3- mediated activity via VDR (Figure 5.5).  

   Expression of CYP27B1, the principal catalyst for 1,25(OH)2D3, concomitantly increased alongside 

VDR mRNA in response to CK stimulation in the uNKs (2.72 fold change; 2.33-3.18). A similar 

response was measured in the pNKs (2.93; 0.86-5.40), albeit this was non-significant, reflecting wider 

heterogeneity in their responsivity. No significant effect of 1,25(OH)2D3  upon CYP27B1 expression 

was measured in either NK subset, suggesting 1α-hydroxylase activity is not driven by vitamin D 

status.  

   By contrast, 1,25(OH)2D3 strongly induced expression of the catabolic CYP24A1 enzyme in US 

uNKs (73.0; 30.7-197)(p = 0.020). Interestingly, a greater response was evident in pNKs, with a 157.0 

fold (92.9-1706) induction of CYP24A1 in US pNKs exposed to 1,25(OH)2D3. In the co-presence of 

CK this was partially suppressed in both subsets, uNKs (29.3; 12.1-72.6) and pNKs (10.1; 5.4-110.1). 
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Together these findings suggest that in response to CK challenge, NK cells drive 1,25(OH)2D3 

synthesis and function via 1α-hydroxylase, whilst restricting alternative catabolism.  

 

 

Figure 5.5 Transcript analysis of the vitamin D metabolic system in uNK and pNK. Transcript 

expression of VDR, CYP27B1 and CYP24A1 was measured in isolated unstimulated (-) and cytokine 

stimulated (CK) (+) CD3-CD56+ uNK (red) and pNK (blue) subsets in the presence (+) and absence 

(-) of 1,25(OH)2D3. Relative expression comparative to US uNK subsets is shown. Bars denote 

median values, with IQR intervals. Two-way ANOVA analysis was performed to assess the effect of 

CK stimulation and 1,25(OH)2D3. 
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5.2.4 Intracellular VDR expression in uNK and pNKs 

   FACS was utilised to assess intracellular VDR expression in isolated uNK and pNKs following 24h 

culture in the presence and absence of CK stimulation and  1,25(OH)2D3 (10nM). CD69 surface 

expression was co-assessed, as a recognised marker of NK cell activation (311). Live lymphocyte 

cells were selected and gated for CD3-CD56+ with CD69 and VDR frequency positive cells (freq+) 

measured for both NK subsets.  
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   As summarised in Figure 5.6, CD69 activation marker expression was found to be low in US uNKs 

(median frequency 30.5; 14.5-37.1) and matched pNKs (12.4; 7.4-17.9). The uNKs appeared less 

responsive to immune activation, as although both subsets significantly upregulated CD69 surface 

expression, this was enhanced in pNKs (p<0.0001) relative to the uNKs (p= 0.04). Co-treatment with 
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1,25(OH)2D3 had no significant effect upon CD69 expression in either the US or CK treated uNK or 

pNK subsets (Figure 5.6).  

   Consistent with the qRT-PCR data, intracellular VDR expression was low in both US uNKs (20.2; 

5.8-35.7) and pNKs (16.9; 13-44.1) at baseline. In response to CK, uNKs significantly upregulated 

VDR (64.8; 37.9-73.7) (p=0.03), whilst no similar response observed in those from the periphery 

despite significant VDR up-regulation at a transcript level. This differential CK-responsivity suggests 

that within the decidua NK VDR expression is more readily upregulated within the context of CK 

stimuli.  Since 1,25(OH)2D3 had  no significant effect on VDR protein expression in either the uNK 

or pNK subsets in the presence or absence of CK stimulation, it appears negative feedback occurs at a 

transcript level. 

5.2.5 uNK and pNKs convert inactive 25(OH)D3 to active 1,25(OH)2D3 

   Having demonstrated both uNKs and pNKs express the major components of the vitamin D 

metabolic system, a 25(OH)D3 conversion assay was performed using LC MS-MS quantification. 

The objectives of this was to ascertain whether uNK and pNKs demonstrate the capacity to convert 

25(OH)D3 to 1,25(OH)2D3, and how this compares between these distinct sites. Alongside this, 

24,25(OH)2D3 was also measured as this is the main measure of vitamin D catabolism.  

   As summarised in Figure 5.7, within 24h both uNK and pNKs converted 25(OH)D3 (100 nM) to 

1,25(OH)2D3 (pg/mL) (n=3). Consistent with the transcript and protein data presented, total 

1,25(OH)2D3 activity was enhanced in response to CK challenge following co-culture with 

25(OH)D3.  24,25(OH)2D3 production was also measured in both NK subsets culture supernatants, 

and similarly increased following CK co-culture. Interestingly, 1,25(OH)2D3 production appeared 

slightly higher in matched CK + 25(OH)D3 pNKs (0.18; 0.16-0.47 pg/mL)  comparative to uNKs 

(0.13; 0-0.22 pg/mL). No clear difference in 24,25(OH)2D3 concentrations was evident in the uNK 

(1.7; 1.3-2.7 pg/mL) and pNKs (1.2; 1.1-2.6 pg/mL) respectively (Figure 5.7).   
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Figure 5.7 uNK and pNKs convert inactive 25(OH)D3 to active 1,25(OH)2D3. Isolated matched 

uNK (red) and pNKs (blue) were cultured for 24h in the presence and absence (unstimulated; US) 

cytokine (CK) stimulation and inactive 25(OH)D3 (100nM) and. LC MS-MS was used to measure 

supernatant concentrations of (A) 1,25(OH)2D3 (pg/mL) and (B) 24,25(OH)2D3 (pg/mL). The 

horizontal bars denote mean, with SEM interval.  

5.2.6 Effects of vitamin D upon uNK and pNK IFN-γ transcript expression 

   Following establishment of a functional vitamin D metabolic system, the potential functional effects 

of 1,25(OH)2D3 were investigated. Since both the data here, and previous peer-reviewed data 

regarding immune cell function support a greater potential functional role for 1,25(OH)2D3within the 

inflammatory setting, this was concomitantly assessed (56, 312).  

   Of particular interest was the effect upon IFN-γ, a key mediator by which pNKs induce cell lysis, 

and exhibit cytotoxic function. Within the decidua a unique role for IFN-γ is evident, with a crucial 

role in the initiation of uterine vascular modification and the maintenance of decidual integrity(287). 
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Furthermore, within the context of vitamin D, both pro-modulatory and pro-anti-microbial effects via 

IFN-γ are reported.  

   As summarised in Figure 5.8, IFN-γ production was assessed at a transcript and protein level in both 

uNK and pNK subsets. 1,25(OH)2D3 treatment alone had no significant effect upon IFN-γ mRNA  or 

protein expression in either subset as illustrated. However, IFN-γ expression was significantly higher 

in CK pNKs comparative to CK uNKs at both a transcript (p=0.03) and protein (p=0.01) level. 

Uniquely, co-culture of uNKs with CK and 1,25(OH)2D3 significantly suppressed IFN-γ production at 

both an mRNA (p<0.01) and protein (p<0.001) level in the uNKs, whilst no similar responsivity was 

evident in matched pNKs either at a transcript (p=0.88) or protein (p=0.69) level. Together these 

findings suggest uNKs demonstrate differential responsivity to low-dose 1,25(OH)2D3, and within the 

decidua 1,25(OH)2D3 promotes IFN-γ suppression. Interestingly, no similar effect was measured. 
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Figure 5.8 Transcript and intracellular protein expression analysis of IFN-γ 

(A) IFN-γ transcript expression in isolated unstimulated (-) and cytokine stimulated (CK) (+) CD3-

CD56+ uNK (red) and pNK (blue) subsets in the presence (+) and absence of 1,25(OH)2D3 (-). 

Relative expression comparative to US uNK subsets; median values with bars denoting IQR, two-way 

ANOVA analysis of effect of CK stimulation and 1,25(OH)2D3. 

(B) Intracellular IFN-γ protein analysis using FACS in unstimulated (-) and CK (+) stimulated CD3-

CD56+ uNK (red) and pNK (blue) subsets in the presence (+) and absence of 1,25(OH)2D3 (-). The 

scatter plots illustrate median fluorescence intensity IFN-γ expression. Mean with SEM are shown. 

Two-way ANOVA analysis of effect of CK stimulation and 1,25(OH)2D3 

5.2.7 RNA sequence analysis purity analysis 

   To elucidate the impact of 1,25(OH)2D3 upon NKs at a transcript level we conducted a genome-

wide RNA sequence (RNA-seq) analysis of matched first trimester uNK and pNKs. Since both the 

data here, and previous peer-reviewed data regarding immune cell function support a greater potential 

(B) 

(A) 
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functional role for 1,25(OH)2D3 within the inflammatory setting, these studies were performed in the 

presence of CK stimulation (56, 312).  

   In total, n=4 participants were included, with matched FACS sorted uNK and pNKs cultured with 

CK in the presence and absence of 1,25(OH)2D3 for 24 h (total n=16 samples for RNA-seq) assessed. 

FACS sorting was utilised to ascertain NK cell purity, with matched live CD45+ CD3- CD14- CD56+ 

NKp46+ cells isolated (n=4) with ≥ 96% purity for pNK (range; 99.0-99.2%) and uNKs (96.0-98.7%) 

respectively (Table 5.6). Participant demographics (n=4) are summarised in Table 5.5, with all women 

undergoing elective sTOP at <12w gestation (range 7-11+2 w).    

ID Age BMI Ethnicity 

Gestation 

(w) 

Smoking 

status G/P Living Stillbirth Miscarriage TOP 

40 33 29.4 

White 

British 7+4 N G5P3+1 2 0 1 0 

41 33 24.5 

Black 

Caribbean 11+2 N G1P0 0 0 0 0 

43 19 22.3 

White 

British 9+4 N G1P0 0 0 0 0 

42 35 22.7 Pakistani 7 Y - 6/d G4P3 3 0 0 0 

 

Table 5.5 Summary of donor demographic analysis. Data show: Identification number (ID), 

maternal age, body mass index (BMI), ethnicity, gestational age at surgical termination of pregnancy 

(sTOP) (w; weeks), smoking status (yes [Y] / no [N] - total / day [d]), gravida and parity (G/P) with 

obstetric history; living, stillbirth, miscarriage, TOP. 
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ID Maternal pNK  

(%) 
Decidua uNK  

(%) 

40 99.1 96.0 

41 99.0 98.7 

42 99.2 98.5 

43 99.0 98.3 

 

Table 5.6 uNK and pNK purity analysis. Summary of NK cell purity for n=4 matched pNK and 

uNKs used for RNA sequence analysis following FACS. Purity is classified as total fraction (%) of 

live cells which were CD45+ CD3- CD14- CD56+ NKp46+. 

5.2.8 Principal component analysis 

   Principal components analysis (PCA) is an exploratory technique used to describe the structure of 

high dimensional data by reducing its dimensionality. Specifically, PCA identifies gene-expression 

patterns (principal components) that best explain the measured variance across a data set, as 

performed to the log2 fold change on the whole dataset(313). Here, wide variance in the 

transcriptional patterns of purified uNK and pNKs, PC1 29.9%, PC2 11.9%, PC3 9.3%, in relation to 

NK cell origin was measured, i.e. peripheral blood and decidua. Intra-participant variability for pNKs 

was high, whereas the uNKs demonstrated low variability comparatively despite CK activation. In 

both subsets, co-treatment with 1,25(OH)2D3 was responsible for low variance in their transcript 

profiles (Figure 5.9) 
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Figure 5.9 Principal component analysis (PCA) analysis of cytokine (CK) stimulated uNK and 

pNKs in the presence and absence of 1,25(OH)2D3. A 3-dimensional dot-plot to summarise the 

main sources of variance across the whole data set using principal components (PC) is illustrated; PC1 

29.9%, PC2 11.9%, PC3 9.3% (x- y- and z-axes). This includes pNKs (red), uNK (blue) in the 

presence (small dot) and absence (large dot) of 1,25(OH)2D3 co-treatment. Numbers (i.e. 40-, 41, 42-, 

43- #) denote study identification (ID) number as per Table 3.4.    

5.2.9 Comparative analysis of CK treated uNK and pNK  

   Prior to treatment with 1,25(OH)2D3, 2286 transcripts were identified as differentially expressed 

between uNK CK and pNK CK, with 1188 transcripts downregulated, and 1098 transcripts 

upregulated in uNK CK (cut-off p value ≤0.05; fold change> 1.5) (Figure 5.10). Importantly this 

included significant upregulation of CD56 (NCAM1) (fold-change = 5.29, p= 0.00002) and 

downregulation of CD16A (FCG3RA) (fold change = -14.57, p= 0.0001) in uNK CK treated subsets, 

both of which are well-recognised differentially expressed CD56bright NK markers comparative to 

CD56dim pNK subsets (277, 314).  

   Comparatively, in the presence of 1,25(OH)2D3, 2373 genes were identified in uNK versus pNK; 

1238 downregulated and, 1135 upregulated in uNK. The distribution of differentially expressed genes 
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is illustrated in Figure 5.10, indicating a similar distribution of upregulated and downregulated genes 

in uNKs comparative to their peripheral counterparts.  

 

Figure 5.10 Transcriptomic analysis of cytokine (CK)-stimulated pNK and uNKs. Summary of 

differentially expressed genes in CK uNK relative to CK pNK; significantly upregulated genes in 

uNKs CK are red (n=1098), downregulated genes green (n=1188), with those not significantly 

different in grey (n= 11163). A cut-off of p≤ 0.05 and fold change ≤ -1.5 or ≥ +1.5 was utilised. 

5.2.10 Pathway analysis 

   To delineate the differences in transcript expression in a more informative manner, complementary 

pathway analysis was performed. Our principal aim was to gain a more comprehensive insight into 

the underlying biology of those differentially expressed genes identified in the uNK CK vs pNK CK 

comparison group.  Across both the WikiPathways (WP) (Figure 5.11) and Reactome (Figure 5.12) 

databases, a broad spectrum of enriched canonical pathways were identified with those significant 

(p≤0.05) ranked from a high to low Z-score. Overall, 14 WikiPathways (WP) and 54 Reactome 

pathways were significantly enriched (Z-score >1.96) in uNK (relative to pNK). Prominently these 
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included pathways related to genomic processing, immune function, cell signalling, and molecule 

mechanisms of cancer. For the WP database analysis, pathways included histone modification (3.29), 

retinoblastoma in cancer (2.18) and TGF-β receptor signalling (2.01) and nuclear receptors (1.99).  

 

Figure 5.11 Summary of WikiPathways data-base analysis for CK treated uNK versus CK 

pNK. Bars represent those pathways significantly enriched (p-value <0.05, Z-Score >1.96), with the 

frequency of significant differentially expressed genes (blue) and total genes measured (orange) as a 

proportion of the total frequency of pathway genes (grey) illustrated. Bars are ranked from a high to 

low Z-score.    
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Figure 5.12 Summary of the Reactome data-base analysis for CK treated uNK versus CK pNK. 

Bars represent those pathways significantly enriched (p-value < 0.05, Z-Score >1.96), with the 

frequency of significant differentially expressed genes (blue) and total genes measured (orange) as a 

proportion of the total frequency of pathway genes (grey) illustrated. Bars are ranked from a high to 

low Z-score.    
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   Similar findings were also observed utilising Reactome database analysis, with uNK enriched 

pathways including DNA methylation (9.69), meiotic recombination (7.43), GPCR downstream 

signalling (5.86), immuno-regulatory interactions between a lymphoid and a non-lymphoid cell (4.61) 

and integrin αIIbβ3 signalling (2.33)  (Figure 5.12). Notably both databases showed differences in 

pathways directly related to TLR-signalling, glucose homeostasis, the electron transport chain, and 

MAPK signalling pathway. VDR receptor signalling also appeared enriched in uNK comparative to 

pNKs, but this was not significant (Z-score 1.05, p< 0.05). 

5.2.11 Vitamin D effects upon CK treated pNK cells  

   Overall 71 genes were differentially expressed in the pNK CK group (p<0.05; fold-change +/- 1.5). 

Of these, 33 genes were downregulated by 1,25(OH)2D3, and 38 genes upregulated by 1,25(OH)2D3.  
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Table 5.7 Effect of 1,25(OH)2D3 upon gene expression in CK pNK. Summary of total genes 

(n=71) differentially induced (green) (n=38) or suppressed (red) (n=33) by 1,25(OH)2D3 in CK pNK 

(fold change < -1.5 or > +1.5, p ≤ 0.05), with sub-classification according to transcript function.     

   As summarised in Table 5.7, co-treatment with 1,25(OH)2D3 primarily targeted genes associated 

with metabolism and lipogenesis (n=17), including upregulation of ACOT1, ACSF2, MTHFDL2, 

PPP1R3F, AMPD3, GRHPR and downregulation of PM20D2, TKFC, KDELC1, BDH2, GMPR, 

BCKDHB, NBR2, NPR2, ENPP1, NR2F6. A preponderance of genes related to cell processing, in 

particular cell signalling and cell transport (n=15) were also identified, including the upregulation of 

TMEM14A, MMP14, PIK3R6, ENG, RABL2A, DEPDC1B, TRIM35, CAB39L, AP5S1, and 

downregulation of TSPAN4, SERPINI1, NRP2, RAPGEFL1,  FAM195A, AP4M1.  Genes influencing 
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genomic processes (n=10) and ion transport (n=1) were also identified. Only 3 genes identified were 

directly implicated in immune function, with 1,25(OH)2D3 positively influencing LXN (3.94 fold 

change, p = 0.01), MTCP1(2.78 fold change, p = 0.02), and RSAD2 (1.74 fold change, p = 0.03).  A 

number of genes with ‘unknown functions’ or were classified as ‘anti-sense/ non-coding’ (total n=21) 

were detected using RNA-seq. Table 5.8 outlines the function of those significantly differentially 

expressed genes of particular functional interest, with scaled colour change graded according to fold-

change.   
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5.2.12 Functional analysis of vitamin D-mediated uNK transcripts 

   Direct comparative analysis of CK treated and CK+ 1,25(OH)2D3 treated uNKs revealed 

significantly disparate effects upon gene transcript expression.  Overall, 66 genes were differentially 

expressed (p<0.05; fold change ± 1.5), with 20 downregulated and 46 upregulated by 1,25(OH)2D3 

treatment.  

 

Table 5.9 Effect of 1,25(OH)2D3 upon gene expression in CK uNK. Summary of total genes 

(n=66) differentially induced (green)(n=46) or suppressed (red) (n=20) by 1,25(OH)2D3 in CK-uNK 

(fold change < -1.5 or > +1.5, p ≤ 0.05), with sub-classification according to transcript function.     

   As summarised in Table 5.9 co-treatment with 1,25 (OH)2D3 primarily targeted genes implicated in 

cell processing, in particular cell adhesion, apoptosis, migration and angiogenesis (n=27) . Of these, 



171 
 

17 were upregulated by 1,25 (OH)2D3, including TSPAN2, ARAP3, ITGAM-1, RARRES3, ADGRE5, 

FGL2, DYSF, NINJ1, ZFP91-CNTF, DENND6B, BGLAP, DOCK3, RNF165, TAX1BP3, TRIM35, 

TAGLN2, RGS3, and 10 downregulated by 1,25(OH)2D3, including ADGRG1, TMPRSS6, CYGB, 

C8orf44-SGK3, LZTS3, MARCKSL1, NACAD, TCF7L2, PHOSPHO2-KLHL23, P2RY11. 

Comparative to pNKs, fewer targets relating to metabolism and lipogenesis were identified (n=7); 

TMEM56-RWDD3, SARDH, CYP1A1, GDPGP1, ACSL1, GDE1, and ADA. Furthermore, as 

summarised in Table 5.10, these targets have distinct functional roles, which importantly appear 

directly related to placentation.  
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   Importantly, only 4 genes identified are concerned with immune function; with 3 upregulated 

(SERPINB1, LGALS9, RELT) (Figure 5.13), and 1 downregulated (RSAD2) by 1,25(OH)2D3 (Figure 

5.14).  

   Considering RSAD2, which encodes a cytoplasmic anti-viral protein induced by interferons, this was 

downregulated in uNKs (fold-change -1.62, p=0.03) and conversely upregulated in pNKs (fold-

change = 1.74, p=0.03).  A number of genes influencing genomic processes (n=9) and ion transport 

(n=2) were identified, and a number of genes with ‘unknown functions’ (n=8) or ‘anti-sense/ non-

coding’ (n=6).  

 

Figure 5.13 Analysis of transcript expression of SERPINIB1, LGALS9 and RELT in CK treated 

NK cells. Transcript expression of SERPINIB1, LGALS9 and RELT in CK treated NK cells (red) 

comparative to those treated with CK + 1,25(OH)2D3 (blue) for both uNK and pNKs (n=4). The cut-

off p ≤ 0.05 and fold change ≤ -1.5 or ≥ +1.5 was utilised to assess 1,25(OH)2D3 effects (*).    

   Of the 137 genes differentially expressed in NKs treated with 1,25(OH)2D3, only 1 common 

transcript was identified for uNKs and pNKs; pro-apoptotic tripartite motif-containing protein 35 

(TRIM35) which was upregulated in both uNK (p=0.0006, fold-change = 1.86) and pNKs (p=0.01, 

fold-change 1.50). Baseline expression of TRIM35 was higher in the CK treated uNKs comparative to 

pNK, and a greater responsivity to 1,25(OH)2D3 was also evident (Figure 5.14).   
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Figure 5.14 Analysis of transcript expression of TRIM35 and RSAD2 in CK treated NK cells. 

Transcript expression of TRIM35 and RSAD2 was assessed in CK treated NK cells (red) comparative 

to those treated with CK + 1,25(OH)2D3 (blue) for both uNK and pNKs (n=4). A cut-off of p ≤ 0.05 

and fold change ≤ -1.5 or ≥ +1.5 was utilised to assess 1,25(OH)2D3 effect (*).     
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5.3 Discussion 

   The maternal decidua represents a key extra-renal site for vitamin D metabolism (306).  As 

demonstrated, at this interface a highly heterogenic immune cell population exists, dominated by 

uNKs and T cells. Of particular interest are the prominent uNKs, which are primarily recognised for 

their roles in EVT invasion and spiral artery remodelling (315). Moreover, these cells exert key 

immuno-regulatory actions (277), with aberrant NK cell function associated with adverse pregnancy 

outcomes and malplacentation (316). Given vitamin D exerts important immuno-regulatory effects, 

this has evoked many important questions regarding the potential functional effects of vitamin D upon 

decidua-derived uNKs (71).  The exact mechanisms underlying this remain ill-defined; a potential 

immune-regulatory role for vitamin D has not previously been explored.  The present study provides a 

detailed analysis of vitamin D and its effects upon matched early pregnancy pNKs and uNKs.  

   Within first trimester decidua we confirm a unique immune cell population exists, dominated by 

uNKs (50-60%).  This appears gestation dependent, as by the third trimester T cells appear more 

prominent with uNKs representing ≤25% (317).  Conversely, in the first trimester pNKs represent 

only a small fraction (3.63-10.3%) of the total immune cell population in maternal blood. 

   Previous studies using DNA microarrays have described marked transcriptomic variations in 

CD56bright pNKs and CD56dim pNKs, as well as CD56 bright uNKs (277). In the current study, we 

did not sub-categorise pNK or uNKs according to CD56 brightness since CD56dim pNKs 

predominated in peripheral blood (~95% total pNKs), whilst CD56bright uNK predominated in 

decidua (~>95% total uNKs). Given the stark differences in number and frequency, some postulate 

uNKs represent a distinct lineage arising from a unique endometrial hematopoietic precursor (318). 

However, there is also strong evidence to support enhanced pNK recruitment to the decidua, with 

uNK phenotype and function regulated within the unique tissue micro-environment (319). Studies 

characterising other tissue-derived NK subsets similarly suggest this, for example, hepatic NKs which 

represent a high (50%) proportion of liver immune cells and reside in a constitutively active state 

(CD69+NKp46bright) with potent anti-viral and anti-tumour activity (320).  
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   Here we confirm these two populations appear phenotypically highly disparate, with those from 

blood predominantly CD56dim NKp46dim and those from decidua almost exclusively CD56bright 

NKp46bright.  These differences may imply that uNKs are constitutively active. In agreement with 

this, we find decidual cells are larger with abundant perforin and granzyme. Generally however, 

CD56bright NKs are considered efficient CK producers with immuno-regulatory properties, which 

only become cytotoxic upon appropriate activation. However, disparate to most other sites, uNKs do 

not express activating receptor CD16 which mediates antibody-dependent cellular cytotoxicity (314). 

It appears that whilst uNKs maintain an intrinsic capacity to exert cytotoxic functions when 

specifically challenged, this function is regulated in normal early pregnancy. Further undefined local 

mechanisms, such as CK or hormone secretion, or crosstalk with other immune cell types within the 

decidual micro-environment are also thought to suppress the potential lytic effects of uNKs (238, 

321).  

   An increasing body of evidence now exists to suggest first trimester uNKs have the capability to 

transform into foes of pregnancy. NK cell frequency alone does not appear causative, as evidenced in 

a recent systematic review and meta-analysis of women with recurrent miscarriage(290). It appears 

NK cells undergo functional changes in women with spontaneous miscarriage, with a pro-

inflammatory shift reported. Specifically, a decreased proportion of CD16- CD56bright NKs with 

increased CD16+CD56dim NKs was measured in the luteal phase endometrium (316). In pregnant 

mice, fetal resorption following administration of LPS was also associated with aberrant uNK cell 

phenotypic and function, as characterised by excessive TNF-α release at the maternal-fetal interface 

(322). 

   Consistent with previous reports, we demonstrate uNKs release low levels of inflammatory IFN-γ 

and TNF-α in response to CK stimulation, and appear less reactive with low CD107 expression 

relative to pNKs. Since CD107 is a recognised marker of degranulation, CK secretion and NK cell-

mediated lysis, a correlation with IFN-γ and TNF-α was anticipated. This reflects the weak 

cytotoxicity of uNKs, which most likely serves to promote tolerance of the semi-allogenic fetus (309, 
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323). A recent report which tracked pNK cell IFN-γ production identified that in CD56dim NK cells 

this occurs within 2-4h, and declines beyond 16h. In contrast, CD56bright subsets released IFN-γ 

later, >16h post stimulation(324). Since a 24h time-point was utilised, we anticipate both uNK and 

pNK CD56bright and CD56dim activity was captured in the assay. It is uncertain why TNF-α 

expression was not clearly upregulated in pNKs in response to CK, as this is a recognised pNK cell-

mediated CK outside the context of pregnancy(239).   

   The principal aim of the current study was to assess the NK cell responsivity to 1,25(OH)2D3, in 

particular following immune challenge. Given the striking differences between uNK and pNK subsets 

it was important to investigate and compare the effects of vitamin D upon paired subsets.  Pro-

inflammatory IL-2, IL-12 and IL-15 were utilised for CK challenge, as these are recognised NK cell 

activators, with both IL-12 and IL-15 constitutively expressed within the decidua from initial 

implantation (325, 326). Although IL-2 concentrations appear low within normal decidua (327), 

significantly elevated IL-2 has been reported in the setting of malplacentation (328), where vitamin D-

deficiency is also more common (329). Furthermore, previous reports delineating the non-classical 

effects of vitamin D demonstrate greater functional responsivity of innate and adaptive cell subsets 

within the context of immune cell activation (56, 330).  

5.3.1 NK cells positively express a functional vitamin D system 

   To our knowledge, this is the first time the vitamin D metabolic system has been characterised in 

purified uNKs and compared to pNKs. Our data indicate both populations express the machinery 

necessary to detect and control 1,25(OH)2D3 in response to CK challenge via the reciprocal regulation 

of CYP27B1 and CYP24A1. Specifically, when there is sufficient local 1,25(OH)2D3, CYP27B1 is 

downregulated and CYP24A1 expression is enhanced. In response to CK conversely, a clear shift 

towards enhanced 1,25(OH)2D3 production and maintenance is evident. Considering CYP24A1, in 

both NK populations transcript expression was upregulated in response to 1,25(OH)2D3. In the 

decidua this may serve to regulate placental exchange of calcium to the developing fetus. However 

since fetal bone formation is concentrated in the third trimester, and fetal calcium supply does not 
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appear negatively influenced by a vitamin D status(109), alternative non-classical actions of 

1,25(OH)2D3 may be anticipated during first trimester implantation and fetal development.    

   Our group has similarly shown upregulation of CYP27B1 in decidua-derived CD10 negative cells 

(stromal negative) to closely correlate with several key immune markers (41).  Here we find in uNKs 

CYP27B1 is upregulated in response to CK challenge. Given their prominence within the CD10- 

decidua cohort, these findings would suggest uNKs may be a key mediator of vitamin D derived 

immune effects at the fetal-maternal interface.  At a transcript and protein level, our data suggest both 

uNK and pNKs also express VDR, and upregulate expression in response to CK challenge. 

Interestingly our initial data suggests greater VDR induction by uNKs compared to pNKs in response 

to CK activation. Together these findings strongly support a functional role of NK cells in mediating 

vitamin D immune effects, with potentially a greater functional significance for vitamin D within the 

local decidua environment. Since uNKs display enhanced immune-regulatory properties comparative 

to both peripheral NK subsets (64), this may be expected.   

   However, genome-wide analysis of chromatin-binding of VDR, as  determined by chromatin 

immunoprecipitation sequencing (ChIP-seq) analysis indicates VDR may employ additional non-

classical mechanisms, including alternative DNA binding motifs, and indirect DNA binding, to 

recognise its genomic targets(331). It may be an over-simplification to state that uNKs are more 

responsive to vitamin D than their peripheral counterparts based upon VDR expression alone. 

Furthermore, although both uNK and pNKs showed a clear shift towards enhanced 1,25(OH)2D3 

production (conversion assay) in response to pro-inflammatory CK challenge, 1,25(OH)2D3 

production was relatively higher for pNKs, despite no significant difference in CYP27B1 expression 

or 24,25(OH)2D3 production.  

   Considering the potential mechanisms by which 1,25(OH)2D3 may influence NK cell function, in 

CD4+ T cell similar VDR upregulation in response to CK stimulation is observed. Here, vitamin D 

exerts a range of pro-regulatory effects upon T cell development, differentiation and elicitation of 

effector function (110). Furthermore, T cell VDR activation is shown to be protective within the 

context of auto-immune disease models (111). Albeit the data regarding VDR activity in NKs is 
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sparse, in umbilical cord NK cell progenitors 1,25(OH)2D3 was shown to inhibit NK cell maturation 

and cytotoxic potential (112).   

5.3.2 1,25(OH)2D3-mediated suppression of uNK IFN-γ production 

   We found 1,25(OH)2D3 significantly suppressed uNKs IFN-γ expression at both a transcript and 

protein level. Others have also reported a role for VDR-dependent 1,25(OH)2D3 in the placenta, 

including inhibition of pro-inflammatory CKs, IFN-γ, IL-6 and TNF-α within the trophoblast (332). 

Classically, NKs play an important role in immune response by producing IFN-γ to induce cell lysis, 

as well as exhibiting cytotoxic function.  Within the decidua however a unique functional role for 

IFN-γ seemingly exists, with essential roles in the initiation of uterine vascular modifications and 

maintenance of decidual integrity. In murine models, IFN-γ is vital for normal placentation. 

Specifically, IFN-γ null mice exhibit aberrant NK cell frequencies, inappropriate decidualisation and 

spiral artery modifications, and significant fetal loss (333). Treatment with IFN-γ restores normal 

decidual and arterial morphology(333). In human pregnancy, uNK IFN-γ secretion also increases with 

gestational age (315). However, IFN-γ administration can also induce pregnancy failure, thus 

balancing IFN-γ expression appears important (334). Within the context of vitamin D, both pro-

modulatory and pro-anti-microbial effects via IFN-γ have been reported (335, 336). This may explain 

why only partial suppression of uNK IFN-γ by 1,25(OH)2D3 was observed. A model accounting for 

both materno-fetal tolerance and maternal micro-organism defense is warranted. 

5.3.3 Whole transcriptome comparative analysis of CK treated uNK and pNK subsets 

   To advance our understanding of the impact of vitamin D on early decidual function, a non-targeted 

whole transcriptome analysis of the effects of 1,25(OH)2D3 upon CK stimulated uNK and pNK was 

performed.  Co-activation enhanced the potential for a broader transcriptomic comparison between the 

two different NK cell types. Previous DNA array analyses, reported >1,100 genes to be significantly 

differentially-expressed in US CD56dim pNK versus US CD56bright uNK (277). By contrast, in the 

current study >2,000 genes were differentially expressed in CK-activated uNK versus CK-activated 

pNKs. Furthermore, a comparable number of up and downregulated genes was detected in CK-

activated uNK relative to CK-activated pNK, whereas in the absence of CK stimulation Koopman et 
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al found uNKs almost exclusively demonstrated enhanced transcription relative to pNK (277). 

Consistent with our preliminary data, uNK responsivity to CK challenge appears highly distinct from 

that observed from circulating pNKs during pregnancy.  

5.3.4 Complementary pathway analysis reveals distinct CK-mediated effects upon 

uNKs 

   To facilitate interpretation further, detailed pathway analysis was performed (337). By grouping 

genes that function in the same pathways and identifying how expression differs between comparative 

groups, i.e. CK uNK and pNKs, we found this technique to offer complementary explanatory power. 

Specifically, we demonstrated uNK are phenotypically distinct, with cell signalling and processing, 

immune cell function and cancer pathways over-expressed relative to pNK. These observations are 

consistent with the known critical roles of uNKs for placental development and materno-fetal 

tolerance.  

   Consistent with previous microarray analysis of  first trimester uNK and adult non-paired pNK 

(338), this study showed that uNK are strongly enriched for genes associated with the regulation of 

transcription, which likely serves to differentially regulate NK development and function within the 

decidual microenvironment. Consistent with our analysis, Koopman et al, identified that pro-adhesive 

markers, including the integrin family which influence processes such as cell adhesion, migration and 

interaction with target cells, were over-represented in uNKs. An enhanced immune-modulatory 

potential was also evident through over-expression of galectins, which are implicated in immune 

maturation and modulation of T cell cytotoxicity (277). Importantly, consistent with our transcript and 

protein analysis data VDR receptor signalling also appeared enriched in CK uNK comparative to CK 

pNKs. 

5.3.5 Differential regulation of first trimester uterine and peripheral blood natural 

killer cells by 1,25(OH)2D3 

   In CK-activated uNK and pNKs the effects of 1,25(OH)2D3 were highly selective; with only 66 

(0.59%) and 71 (0.64%) transcripts measured respectively. By contrast, in the human THP-1 

spontaneously immortalized monocyte-like cell line which represents a valued tool for investigating 
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monocyte structure and function (339), RNA-seq analysis identified 663 stimulated genes and 541 

repressed genes, with 8.9% of the expressed transcriptome (14,402 total genes) responsive to 

1,25(OH)2D3 following 24h culture (340). This suggests monocytes may be comparatively more 

responsive to 1,25(OH)2D3 than NK, however it should be noted that a 10-fold higher treatment dose 

(100nM) was utilised (340) and THP-1 cell lines demonstrate important functional variances 

comparative to their human peripheral blood monocytic counterparts (339). 

   The relatively low numbers of genes influenced by 1,25(OH)2D3 in both pNK and uNK may be due, 

in part, to temporal variations in gene expression. Previous analysis of 1,25(OH)2D3-regulated gene 

expression in THP-1 cells demonstrated an exponential increase in vitamin D-mediated transcript 

expression over 24h. In previous studies, combined 1,25(OH)2D3 (100nM) and glucocorticoid 

treatment of PBMCs at different time points (8 and 24h) also revealed time-dependent variations in 

transcriptional responses to 1,25(OH)2D3, with enrichment of genes associated with 

immunomodulation and defence only occurring after 24h (341). In the current study, we assessed 

mRNA expression at 24 h to maximise potential for variations in gene expression, whilst ensuring 

high cell viability. It is possible both pNK and uNKs would have demonstrated a different pattern of 

gene regulation by 1,25(OH)2D3 at earlier or later time points. Due to both cell numbers and RNA-

seq costs, a comparative time-point analysis was not feasible.  

   TRIM35 was the only gene significantly upregulated in both uNK and pNKs in response to 

1,25(OH)2D3. TRIM35 has been reported to play a role in apoptosis (342); in neoplastic Hela cells 

this occurs via regulation of the ‘Warburg effect’, which describes a switch in cellular metabolism 

from aerobic glucose metabolism and oxidative phosphorylation towards glycolysis to meet the 

heightened energy demands of a tumour cell (343).  In macrophages and DCs, pro-inflammatory 

lipopolysaccharide (LPS) endotoxin challenge alone downregulates genes in the oxidative 

phosphorylation pathway, inducing a metabolic shift to anaerobic glycolysis and thereby driving a 

pro-inflammatory response (344). Recent evidence indicates that 1,25(OH)2D3 attenuates this 

response (345), suggesting that 1,25(OH)2D3 regulates NK cell energy metabolism and cell 

proliferation both within the decidua and peripherally. ‘Warburg-like glycolysis’ and local lactate 
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shuttle also play a critical role in early decidualisation (346, 347). We anticipate 1,25(OH)2D3 

mediated upregulation of uNK TRIM35 may support early decidualisation and regulate immune cell 

function in the first trimester. This would also be consistent with prior reports indicating 1,25(OH)2D3 

promotes EVT invasion (304).   

   In uNK, treatment with 1,25(OH)2D3 demonstrated significant upregulation of several other key 

genes recognised in placentation, including ADA and RARRES3.  Placental ADA is essential for 

purine metabolism, with deficiency leading to elevated adenosine with subsequent aberrant cellular 

responses to hypoxia, tissue damage and immune dysregulation. In mice with placental restricted 

ADA deficiency, hallmark features of ‘human malplacentation syndromes’ (i.e. PET and SGA) are 

evident (348). In PET, high purine levels are evident albeit their source is unknown. Uric acid, the 

end-product of purine metabolism, is certainly elevated which may reflect increased tissue damage or 

breakdown(349).  RARRES3, an intermediate of the retinoic acid (RA) pathway, is considered a 

potential biomarker of endometrial receptivity (350). Importantly, within the decidua, RA suppresses 

endometrial stromal cell decidualisation (351). Since a direct association between VDR-RXR 

heterodimer-mediated gene expression and nuclear signalling by RA and 1,25(OH)2D3 is well 

established (352), future studies exploring the interaction between vitamin D and RA within the 

decidua are likely to be important.  

   Given the established effects of vitamin D on other innate immune cell subsets (353), we anticipated 

that 1,25(OH)2D3 would target multiple NK genes associated with immune regulation. However, only 

4 genes directly linked to immune modulation (SERPINB1, LGALS9, RELT and RSAD2) were 

regulated by 1,25(OH)2D3 in uNKs. Galectin-9 (LGALS9) suppresses uNK pro-inflammatory IFN-у 

release (354, 355), with decreased decidual expression of LGALS9 in both an abortion prone mouse 

model, and LGALS9 D5/10 variant in women suffering spontaneous miscarriage reported (355, 356). 

Since IFN-γ is reported as important for vascular changes in pregnancy (287), future studies defining 

uNK LGALS9 function are merited.  

   NK cell cytotoxicity consists of a stepwise series of tightly regulated cellular events that requires 

early contact with and adherence to target cells with subsequent rapid polarization of their lytic 
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granules and de-granulation. This facilitates fatal secretion of perforin and lytic granzyme enzymes 

against the target cell and represents a major cytotoxic mechanism to induce target cell death. 

Intracellular leukocyte elastase inhibitor (SERPINB1) directly inhibits granzyme H, thus 

downregulation by 1,25(OH)2D3 may serve to regulate innate cytolysis, prevent unwanted tissue 

destruction and promote materno-fetal tolerance (357).  Receptor Expressed in Lymphoid Tissues 

(RELT) is a member of the TNF receptor family, that is known to induce NF-κB and promote 

apoptosis (358). Radical S-Adenosyl Methionine Domain-Containing Protein 2 (RSAD2), an early 

marker of conceptus development reportedly offers anti-viral protection during early implantation. 

Downregulation of RSAD2 by 1,25(OH)2D3 may therefore serve to regulate uNK anti-viral activity, 

promoting immune modulation at the materno-fetal interface.  

   Classically pNKs are critical mediators of human innate immunity and targeting ‘non-self’ tumour 

and virally infected cells upon the basis of altered, foreign or absent MHC I without former priming 

or antigen specificity. Since many of the 1,25(OH)2D3 regulated transcripts were not directly related 

to immune function and apoptosis, the effects of 1,25(OH)2D3 do not appear simply concerned with 

innate immune function in early pregnancy.  

   Overall, 1,25(OH)2D3 induced 3 genes linked to immune function in pNKs. The first of these, 

RSAD2, which was conversely down regulated in uNK, is an antiviral interferon-inducible iron-

sulphur cluster binding protein (359). Although a role for this protein in NK cells has not previously 

been described, enhanced expression of RSAD2 is consistent with the established antiviral function of 

NK cells (360). 1,25(OH)2D3 also induced expression of latexin (LXN), a regulator of haematopoietic 

stem cells (361). LXN is the is the only known homolog of the retinoic acid receptor responder 1 

(RARRES1) gene, and both LXN and RARRES1 can act as tumour-suppressor genes (362), 

suggesting a novel role for 1,25(OH)2D3 in promoting tumour immune-surveillance actions of NK 

cells (363).   

   Data from the current study show for the first time that NKs are an important target for 

1,25(OH)2D3, with effects upon uNK distinct from those observed with pNKs. For uNKs, 

1,25(OH)2D3 primarily acts to promote NK cell recruitment and retention within the decidua, whilst 
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also facilitating apoptosis, angiogenesis, cell adhesion and trafficking, as well as immunomodulatory 

effects. All of these responses are crucial to normal healthy placentation, underlining the importance 

of vitamin D as a modulator of immune cell function at the fetal-maternal interface. It therefore seems 

likely that vitamin D-deficiency during pregnancy will have a significant impact on uNK cell 

function, particularly in the early stages of gestation. By contrast, in paired pNKs the predominant 

effects were upon expression of genes associated with metabolism and lipogenesis, indicating an 

entirely different function for vitamin D. Further studies are required to better understand the role of 

NK cells in mediating immune responses to vitamin D metabolites.   

5.3.6 Study limitations 

   The power of RNA-seq lies in the combined aspects of high-throughput discovery and 

quantification. However, due to its novel and widespread applications, marked variations in RNA-seq 

protocols and analyses are reported, thereby making accurate interpretation and repetition of 

individual methodologies a challenge. The optimal method for transcript quantification, 

normalisation, and ultimately differentially expressed analysis remains contentious, and is dependent 

in part upon study design (364). With regards to experimental design, the sample preparation, library 

type selection, sequencing depth and total replicates requires careful advanced planning to avoid 

unnecessary bias.  

   Furthermore, whilst RNA-seq is a powerful tool for defining global changes in gene expression, it 

provides only a snapshot of the transcriptome, and does not routinely account for changes in gene 

expression over time.  A time-course methodology would permit a more comprehensive insight into 

how vitamin D treatment targets NKs at a transcript level; however this was not feasible due to both 

the cost and total RNA concentrations.  

   Reviewing the RNA-seq methodology utilised, RNA extraction quality was confirmed prior, with 

only RIN values >7.5 progressed for RNA-seq. Due to the high RNase content of the human placenta, 

the RIN values of the uNK subsets were anticipated to be more heterogenic (7.5-10) than the pNK 

subsets (365). To manage this, Clontech SMARTer technology (95), which is specifically designed to 
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account for variations in the integrity and stability of the RNA preparation, was utilised for cDNA 

library preparation (93, 94).  

   Notably, intra-participant variability appeared a more significant concern for the pNK transcript 

data however, as PCA analysis suggests a significant degree of heterogeneity. To help ascertain data 

reproducibility, serial replicates would have been performed. However due to the low RNA 

concentrations obtained and cost this was not possible. The pNK and uNKs however paired, which 

permitted direct comparative analysis of the two subsets. To help identify transcript targets with low 

expression we employed a PE read technique, which is more accurate than single end sequencing, 

(364).  

   For the data analysis quality check-points were included through the data acquisition process, 

including raw read checks, pre- and post-alignment checks, normalisation and coverage quantification 

(364). The read alignment was good with the uniformity exon read coverage consistent with 

reassuring GC content, thereby suggesting no major PCR biases had arisen.  

   As quantification based upon raw read counts alone is not sufficient to compare sample expression, 

as these values are affected by factors such as transcript length, total reads, and sequencing biases, a 

normalisation step was introduced. This employs an expectation-maximization approach to estimate 

transcript abundance taking into account biases such as the non-uniform read distribution along the 

gene length. As demonstrated, post-normalisation box-plots were highly consistent (364).  

   Regarding transcript identification, as all NK samples were mapped to the latest reference 

transcriptome, hg38_RefSeq, the discovery of new, unannotated transcripts was precluded. Since our 

principal objective was comparative quantification analysis, this was not an issue. However, the 

RNA-seq data obtained did reveal a significant fraction of the transcriptome lacked protein-coding 

potential, for example short non-coding RNAs. Whether these represent key vitamin D targets is not 

known (366).  

   Albeit useful for identifying genes that may have roles in a given NK phenotype with mechanistic 

insights into the underlying biology of vitamin D obtained, there is also the potential for functional 
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over-interpretation of RNA-seq data.  To aid interpretation, the analysis was simplified by grouping 

related transcripts into ontological groups according to their cited biological function. However, as a 

number of genes remain unannotated, with many existing annotations often low quality, RNA-seq 

interpretation may be inaccurate. Follow up studies are thus still required to validate the biological 

impact of specific 1,25(OH)2D3-target genes in both pNK and uNK subsets.  

   The interpretation of RNA-seq data may also often be facilitated by integrating the results with 

other types of genome-wide data. Here this was not possible as to our knowledge no previous studies 

have assessed the effects of vitamin D upon uNK and pNK subsets utilising a non-targeted approach. 

A previous comparative microarray analysis of unstimulated uNK and pNK has been performed, 

however as for this pNKs were isolated into 2 distinct CD56bright and CD56 dim subsets, this was 

not directly comparable (277).  

 

 

 

 

 

  

 

 

 

 

 



187 
 

6 Vitamin D and monocyte - macrophages in 

pregnancy  
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6.1 Introduction 

6.1.1 Mononuclear phagocyte system 

   Elie Metchnikoff first established the phagocyte system as a critical component of human innate 

host defence in 1882.  Soon after this was re-classified as the ‘mononuclear phagocyte system’ 

(MPS), and originally encompassed both monocyte and macrophage subsets. The DC was 

subsequently coined a key component, with these three subsets distinguished based upon their 

morphology, function and origin.  

   Traditionally, monocytes were thought to represent a linear precursor of both DC and macrophages, 

and differentiate following tissue migration from the blood following signal activation by pathogen-

associated pattern recognition receptors and the inflammatory milieu.  However, with advancing 

technology the developmental origins of these 3 major subsets has become increasingly complex, 

particularly given many of the original proposed unique subset markers are now found to be shared. It 

is also now understood both macrophages and DCs also develop independently of monocytes(367). 

Consequently, much debate regarding which subsets represent distinct cell types and which are simply 

modified versions of the same cell type has arisen. Inflammation complicates this further, as this 

induces phenotypical changes (368). As such, these subsets also display a high degree of functional 

overlap and plasticity, with roles in homeostasis, immune defence, and tissue repair and clearance of 

cellular debris reported. It is suggested a system based upon ontogeny with consideration to the 

location, function and phenotype of mononuclear cells may provide a more robust approach to their 

classification(367). The following sections broadly consider the functions of the monocyte and 

macrophage subsets. DCs are not considered here as in the decidua macrophages are the most 

important professional APCs in the decidua, with DCs otherwise appearing relatively sparse(369).  

6.1.2 Monocytes  

   Monocytes represent a diverse population of cells primarily located in the circulation, bone marrow 

and spleen. Circulating monocytes, comprise 5–10% of peripheral blood leukocytes, and traditionally 

are defined upon the basis of morphology and cytochemistry, demonstrating significant variability in 
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size, granularity and nuclear morphology. More recently flow cytometry has been utilised, with 

monocytes sub-classified based upon expression patterns of the lipopolysaccharide receptor (CD14) 

and the Fcγ-III receptor (CD16). Three distinct human subsets have subsequently been identified: 

classical (CD14++CD16−), intermediate (CD14++CD16+), and non-classical (CD14+CD16++) 

(370).  

   Peripherally, ‘classical monocytes’ are highly predominant (90%), with ‘non-classical’ monocytes 

representing the main alternative fraction (10%).  Most functional studies have focussed upon these 

two subsets, with classical monocytes recognised as key mediators of the direct innate effector 

immune response, phagocytosis and tissue remodelling, releasing a range of inflammatory effector 

CKs in a TLR-dependent manner following pro-inflammatory LPS stimulation.  Classical monocytes 

initiate innate immune responses by internalization, phagocytosis, and killing of pathogens and 

concurrently produce a wide range of costimulatory molecules, inflammatory CKs and chemokines. 

As a result, the activation of the adaptive immune response by soluble immune mediators, co-

stimulatory molecules, and antigens presented by MHC I or II on APCs subsequently arises (371). 

Furthermore, in response to inflammation, classical monocytes extravasate to these sites and secrete 

acute pro-inflammatory CK such as IL-6, nitrous oxide (NO), and TNF-α.   

   The ‘intermediate’ subsets, which are found at very low frequencies, have gained increased 

attention as they too display unique features with increased inflammatory capacity, characterised by 

increased MHC II and TNF-α (372). Albeit not well understood, a potential highly diverse role for 

these intermediate monocytes is suggested, with CD14++CD16+ monocytes linked to Ag processing 

and presentation, inflammation, monocyte activation, and angiogenesis (373).  

   Non-classical monocytes present later during inflammation (374). Functionally, these subsets appear 

less phagocytic, with roles in tissue patrolling to remove virally infected or injured cells, antigen 

presentation and innate surveillance anticipated. There is a suggestion that non-classical monocytes, 

as opposed to intermediate monocytes, are prepared to move out of the circulation due to their 

enhanced expression of genes relevant to adhesion and trans-endothelial migration (375, 376). 
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In vitro experiments have also shown that CD16+ monocytes are more mobile than CD16- cells, 

albeit their recruitment kinetics, function and differentiation capacity still remain less clear (375). It  

   It has been suggested these 3 monocyte subsets represent sequential maturation stages in the 

differentiation of peripheral monocytes; namely,  classical monocytes originate from the bone marrow 

and mature into non-classical monocytes via intermediate monocytes (370). Whether intermediate 

subsets are more similar to their classical or non-classical counterparts is not entirely clear (374, 377). 

As summarised in Figure 6.0, both non-classical and intermediate subsets are postulated to replenish 

tissue resident macrophages and DCs, particularly within the context of inflammation(378). 

 

Figure 6.0 Differentiation of monocytes to tissue macrophages. This includes sub-classification of 

the three distinct human monocyte subsets in peripheral blood: classical (CD14+CD16−), 

intermediate (CD14++CD16+), and non-classical (CD14+CD16+). Following migration though the 

blood vessel walls into tissue, macrophage differentiation occurs with two distinct macrophage 

subsets defined here (MI and MII). Their polarisation is dependent upon the local cytokine milieu 

present.  Revised from A Eljaszewicz et al (379).  
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6.1.3 Macrophages 

   Macrophages are large vacuolar cells, which reside in most tissues throughout the body. Classically 

they are recognised for their key roles in phagocytosis; protecting the host from pathogens and 

mediating clearance of apoptotic cells, cellular debris and pathogens. As key effectors for both the 

innate and adaptive immune system, macrophages represent  important inflammatory mediators (380). 

However crucially they also demonstrate anti-inflammatory properties, with roles in the resolution of 

the inflammation and tissue homeostasis demonstrated (381).  

   Macrophages are extremely heterogeneous, which reflects their high sensitivity to the local 

environmental milieu. Traditionally, they were broadly categorised into two main subsets; classically 

activated ‘M1’ and alternatively activated ‘M2’ macrophages based upon their phenotype and 

functional characteristics. M1 macrophages are elicited through pro-inflammatory stimulation with 

IFN-γ, select CK such as TNF-α, and microbial products such as LPS via CD14. They are 

traditionally considered microbicidal and pro-inflammatory with a high capacity for antigen 

presentation and elevated production of reactive oxygen intermediates and NO (382).  

   M2 subsets demonstrate a much broader range of activities, and may be induced by a range of 

stimuli including IL-4, IL-10, IL-13, IL-33, TGF-β, and G-CSF. Principally they are anti-

inflammatory with enhanced pro-regulatory properties. They are also implicated in angiogenesis, 

resolution of inflammation and tissue repair.  

   The robustness of this dichotomous M1/ M2 classification has received increased scrutiny; recent 

technological advances have provided a more detailed immunological insight into the complex 

mononuclear phagocyte system. Genome-scale data and meta-analysis of macrophage/DC datasets, 

including those polarized with different stimuli, failed to identify any set of genes equivalent to the 

proposed markers of the M1 or M2 activation. Further sub-categorisation definitions have since been 

proposed (383), however due to their increased complexity, the overall utility is questioned, 

particularly given differentiation appears driven by the local cellular milieu. It may be more 

informative to consider these subsets from a tissue specific perspective given their functional 
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variance. Furthermore, macrophages transition between states, rather than remaining committed to a 

single activation state, driven by the local tissue micro-environment.  

6.1.4 Monocytes in pregnancy  

   Our understanding of circulating monocytes in normal human pregnancy remains limited. An 

important functional role is anticipated, as with advanced GA an increased number of circulating 

monocytes is identified. These display phenotypic activation, measured by significant upregulation of 

both CD11b and CD14. Despite previous assumptions that the syncytiotrophoblast forms an 

impenetrable barrier preventing access of maternal cells to fetal antigens, this is not true. The 

placental anatomic arrangement in reality introduces multiple possibilities for monocyte exposure and 

activation by fetal trophoblast and their respective antigens. Continual shedding of apoptotic syncytial 

nuclear aggregates and underlying trophoblast into the systemic maternal circulation is clearly 

demonstrated, with several grams expelled daily by the third trimester (224).  

   There is reasonable evidence to suggest these circulating subsets infiltrate the decidua at the onset of 

pregnancy and differentiate to tissue macrophages. Whether these cells represent classical, non-

classical or intermediate subsets is uncertain.  Both non-classical and intermediate monocytes have 

been implicated in pregnancy, with the combined percentage of these cells increased compared to 

non-pregnant controls. However recent reports of an increased preponderance of classical monocytes 

now oppose this (384).  

   Monocyte function is also anticipated to be altered within the context of human pregnancy; in 

particular the phagocytic function of monocytes appears decreased, with a greater preponderance to 

CK secretion and antigen presentation reported (376). Consistent with this, pregnant women are more 

susceptible to infections, which are often more severe (385). LPS stimulated monocytes obtained from 

pregnant women also demonstrate reduced CK production, becoming tolerant to activation. 

Conversely, co-stimulation with LPS and IFN-γ leads to increased CK production, including IL-1β, 

TNF-α, IL-6 and IL-12. It appears IFN-γ, abrogates LPS tolerance, which may suggest monocyte 

activation and CK production are enhanced in pregnancy (386).   
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6.1.5 Macrophages in pregnancy  

   Macrophages comprise around 20% of the total CD45+ immune cell population within the decidua, 

and approximately 10% of total decidua cells. Unlike uNKs they remain relatively constant across 

gestation residing in close proximity to uNKs, T-cells, stromal cells, EVT and maternal spiral arteries. 

A key role in all stages of pregnancy, throughout fetal development, parturition, and postpartum 

uterine involution is subsequently anticipated.  

   Although circulating monocytes are considered likely precursors, once within the decidua 

macrophages develop a unique pattern of gene expression comparative to their peripheral 

counterparts. CK, chemokines and pregnancy hormones appear significant for mediating their 

recruitment and regulation (387, 388). In ovariectomised mice, migration appears significantly 

decreased with administration of estrogen shown to restore normal recruitment (389).  

   Exposure to the local tissue microenvironment subsequently drives monocyte differentiation to 

tissue-specific macrophage subsets, which as pregnancy progresses become increasingly 

heterogeneous. Defining the phenotype of these tissue resident cells remains a significant challenge 

despite detailed analysis using transcriptome and methylation profiling, flow cytometry, and 

immunohistochemistry (383). This reflects both their poor uniformity with either an M2 or an M1 

signature, and the potential co-presence of several small sub-populations (390).  

   A range of functional activities for decidual macrophages have been identified (391). In the non-

pregnant endometrium key roles in menstruation are cited. In pregnancy, macrophages appear 

concerned with implantation, placentation, fetal development, and parturition (392, 393). They also 

demonstrate immuno-regulatory properties against invasive fetal EVT, promoting fetal trophoblast 

tolerance and anti-inflammatory CK production. They do also produce an abundance of pro-

inflammatory CK, indicating they are not simply concerned with immune regulation.  

   Utilising detailed microarray analysis, Houser et al identified two highly distinct first trimester 

decidua subsets based upon their relative expression of CD11c (390). The CD11cHI were predominant, 

expressing less phagocytic receptors, CD209 and CD206, compared to those CD11cLO. The CD11cHI 



194 
 

macrophages expressed genes involved in invasion, mobility, inflammatory processes including lipid 

metabolism, and anti-apoptotic effects, whereas CD11cLO macrophages expressed genes concerned 

with growth regulation and development, and cell signalling. Interestingly, the subsets did not differ 

in phagocytic capacity; albeit CD11cHI appear the major APCs (390).  

6.1.6 Monocytes, macrophages and disorders of malplacentation 

   Monocytes and decidua macrophages have also been implicated within the context of mal-

placentation, albeit the data remains limited. The reported changes in monocytes support the notion 

pregnancy is a pro-inflammatory condition, which is more prominent in PET (393).  Monocyte 

activation appears more prominent, as characterised by increased CD11b, CD14, and CD64 

expression (235). This has been linked with increased free radicals and pro-inflammatory CK 

production, marked upregulation of TLR-4, and LPS hyper-responsivity (384). However, studies 

investigating whether total monocyte frequencies are increased have been inconsistent, with both up 

and downregulation reported (376). 

   Within the context of PET, similarly an increased number of ‘M1-like’ subsets is reported, which 

reside around the spiral arteries within the decidua. These too appear aberrantly activated, 

characterised by increased production of pro-inflammatory CK, including IFN-γ, TNF-α, and NO. 

Importantly, these factors have been shown to disturb trophoblast invasion and increase their 

apoptotic sensitivity (387, 394). Spontaneous abortion has also been associated with an increased 

influx of macrophages into the decidual stroma, with an increased rate of trophoblast apoptosis (395). 

A similar shift towards M1 polarisation was shown to enhance abortion in CBA × DBA/2 mouse 

mating’s when treated with LPS(396). 

6.1.7 Vitamin D and monocyte and macrophage function 

   The spectrum of vitamin D-mediated non-classical immune responses followed seminal 

observations of extra-renal 1α-hydroxylase over-activity in patients with sarcoidosis, characterised by 

elevated circulating 1,25(OH)2D3 and associated hypercalcemia(39). Within the context of 

tuberculosis infection, vitamin D treatment significantly decreased M.Tb growth, and this was 



195 
 

enhanced in the presence of IFN-γ stimulation. Later this was found to arise in a TLR-dependent 

manner, with concomitant upregulation of CYP27B1 and VDR (44). TLR-activation induced 

cathelicidin antimicrobial peptide expression, which is crucial for macrophage-mediated defence. 

   Importantly, intracrine activation of vitamin D promotes antibacterial responses beyond simple 

induction of cathelicidin and other antibacterial proteins such as β-defensins (397).  These include the 

induction of autophagy(398) and possible effects on intracellular iron concentrations via the iron 

export modulator hepcidin (399). Antimicrobial activity induction by vitamin D is not simply 

restricted to TLR-mediated signalling however and can involve other pathogen recognition receptors 

and antibacterial proteins (45, 400). The efficacy of subsequent antibacterial activity dependent upon 

the availability of 25(OH)D3 for intracrine conversion to 1,25(OH)2D3, with vitamin D status 

appearing a key determinant. As such, low serum 25(OH)D3 restricts monocyte antibacterial activity, 

with an increased risk of infection evidenced (401). 

   In human blood monocytes pre-treatment with physiological concentrations of 25(OH)D3 or 

1,25(OH)2D3 inhibits LPS-induced p38 phosphorylation in a dose-dependent manner, with a 

significant decrease in IL-6 and TNF-α transcripts measured (402). Vitamin D may also actively 

regulate immune activation, as 1,25(OH)2D3 is shown to potently downregulate expression of 

monocyte TLR-2 and TLR-4, thereby suppressing potential downstream pro-inflammatory responses 

(403). Vitamin D may also serve to control immune activation and prevent over-reactivity. 

   Vitamin D also modulates innate immune responses by affecting macrophage antigen presentation. 

Specifically, 1,25(OH)2D3 promotes the differentiation of monocytes into macrophages, but inhibits 

the maturation of DCs by attenuating antigen presentation, thereby suppressing their capacity to 

present antigen to effector T-cells(330).  

   Whether vitamin D-mediated monocyte effects are enhanced following LPS stimulation has not yet 

been explored. An immuno-regulatory role may be anticipated, as in murine IFN-γ activated 

macrophages, 1,25(OH)2D3 selectively suppressed key innate and inflammatory effector functions, 

including microbicidal activity, superoxide anion production, CCL5, CXCL10, CXCL9, and TLR-
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2(404). However, it appears macrophages at different sites demonstrate differential responsivity to 

25(OH)D3. Pulmonary alveolar macrophages convert 25(OH)D3 to 1,25(OH)2D3 in the presence of 

IFN-γ stimulation. Unstimulated bone marrow subsets were capable of producing 1,25(OH)2D3, but 

this was enhanced 3-5 fold with stimulation (405). 

   Demonstration of a vitamin D-dependent response in monocytes and macrophages raises the 

possibility that similar innate immune responses will be present in decidua resident subsets (406). 

Purification of decidual cells into non-adherent stromal cells and adherent cells, which includes 

decidual macrophages, indicates adherent cells demonstrate a greater capacity for 1,25(OH)2D3 

production(305). It seems likely macrophages will play a significant role in the localised generation of 

1,25(OH)2D3 within the decidua.  

   The mechanisms regulating local synthesis of 1,25(OH)2D3 vary considerably and are not yet fully 

understood. Within the placental trophoblast, induction of cathelicidin and subsequent bacterial killing 

by 25(OH)D3 appears to arise via constitutive expression of 1α-hydroxylase, which is not enhanced 

further by TLR activation. Conversely, in keratinocytes, 1α-hydroxylase expression is enhanced 

following TGF-β stimulation, with upregulation of TLR-2 and TLR-4 observed.  

   As yet, it is not clear whether similar pathogens and the associated antimicrobial responses will be 

evident in the decidua. Indeed, it is possible that decidual vitamin D will support alternative 

antimicrobial responses including potential antiviral activity(407). Decidual monocytes and 

macrophages may promote the same antibacterial responses observed for equivalent cells from the 

peripheral blood to combat infection by pathogens such as Listeria monocytogenes and Group B 

Streptococcus. Studies using un-purified first-trimester decidual cells have shown 25(OH)D3- and 

1,25(OH)2D3-mediated induction of cathelicidin (306). However, beyond their established innate 

antimicrobial activity, macrophages also play a pivotal role in tissue inflammation and antigen 

presentation, and both of these facets of immunity are crucial to normal decidual function.   
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6.2 Results 

6.2.1 Distribution of decidua immune cells: comparative analysis with matched 

peripheral maternal blood and fetal cord blood – third trimester 

   Having demonstrated that within the decidua a unique immune cell population resides in the first 

trimester, third trimester analysis was performed. Distinctly, this included paired fetal cord blood 

obtained at the time of delivery alongside maternal peripheral blood.  The relative proportion of major 

innate and adaptive immune cell subsets was subsequently assessed in matched decidua, maternal 

blood and cord blood from ‘low-risk’ pregnant women (n=4) at the time of elective caesarean section 

(ELCS)(>37w).   

   A similar gating strategy to that utilised in Chapter 5 was applied, with decidua, maternal and cord 

frequencies of APCs, NKs, CD4+ T cells, CD8+ T cells and B cells summarised in Figure 6.1.  In the 

decidua, NKs were no longer predominant representing 27.9% (± SD12.9) of the CD45+ immune cell 

cohort, with APCs representing 4.1 % (±1.7). T cells were the major immune subset (38.0% ± 8.1), of 

which 14.4% (±9.6) were CD4+ and 12.8% (±9.5) CD8+.  In the maternal blood, 15.4% (± 12.4) of 

CD45+ cells were of NK origin, with 3.0% (±3.3) APCs. Consistent with our first trimester findings, 

CD3+ T cells were predominant representing 57.5% (±12.7) of CD45+ cells. Here 17.4% (± 4.9) were 

CD4+, and 20.1% (±6.9) CD8+.  Similarly, in the cord blood NKs represented 13.0% (± 5.1) of the 

CD45+ population, with 4.7% (±4.1) APCs. Similarly, CD3+ T cells were predominant, representing 

45.2% (±10.6) of CD45+ cells; 8.8% (±9.0) were CD4+ and 10.8% (±7.1) CD8+.  
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Figure 6.1 Comparative analysis of the relative proportion of CD45+ immune cell subsets in 

paired third trimester umbilical cord (vein) blood, maternal blood and decidua tissue samples.  

Mean values with bars denoting standard deviation are illustrated. Non-parametric Friedman test was 

performed. Statistically significant variations are indicated, * p<0.05, ** p<0.01. A comparative 

analysis of paired cord (red), maternal blood (blue) and decidua (black) CD45+ immune cell subsets, 

using flow cytometry, is shown. Relative frequencies (%) are summarised in their respective bar chart 

(n=4), including natural killer cells (NK), T cells, CD4+ T cells, CD8+ T cells and antigen presenting 

cells (APCs). 

6.2.2 Comparative analysis of monocyte and macrophage subsets in decidua and 

maternal blood – first trimester analysis 

   Consistent with our findings in Chapter 5, no significant difference in the frequency of CD14+ cells 

as a percentage of total CD45+ cells was measured in first trimester paired maternal blood (9.4%; IQR 

5.1-11.9) and decidua (13.3%; 7.1-18.7).  
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GA (w) 
Decidua 

(%) 
Maternal blood 

(%) 

8+2w 5.39 7.06 

9+3 12.6 18.7 

10+2w 4.72 7.87 

10+2 w 9.41 2.26 

12+2w 11.2 4.35 
 

Table 6.0 First trimester CD14+ cell analysis in paired decidua and maternal blood. The 

gestational age (GA) (weeks; w) and relative frequency of first trimester CD14+ cells in paired 

decidua and maternal blood, as a percentage (%) of the total CD45+ cell population, is summarised.  

   The proportions of non-classical (CD14+CD16++), intermediate (CD14++CD16+) and classical 

(CD14++CD16-) subsets were subsequently measured. This was assessed without an initial ficoll 

purification step, as this has previously been reported to decrease relative CD14++CD16- classical 

monocyte expression, with a concomitant expansion of CD14+ CD16++ non-classical monocytes 

(408). 

   Whole lymphocyte populations were gated as live CD45+ cells, negative for CD3, CD66b, CD56 

and CD20, with those identified cells sub-categorised according to relative CD14 and CD16 

expression. An example of the gating strategy utilised is summarised in Figure 6.2.  
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Figure 6.2 Summary of the flow cytometry gating strategy utilised to classify maternal and 

decidua derived whole lymphocyte subsets according to their expression of recognised 

mononuclear cell markers. The gating strategy was utilised to identify live CD45+ which were 

negative for CD66b, CD3, CD20 and CD56 ‘dump’. The negative population was subsequently sub-

classified according to CD14 and CD16 surface marker expression to identify CD14+CD16- 

(classical), CD14++CD16+ (intermediate) and CD14+CD16++ (non-classical) subsets.  

   As summarised in Table 6.1, this was assessed across a range of gestations (w), with the relative 

frequency (%) reported as a proportion of total CD14+ cells. 
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Table 6.1 Summary of the relative frequencies of first trimester decidua and paired maternal 

blood subsets according to CD14 and CD16 expression. The relative frequencies of decidua and 

maternal subsets, as a percentage of total CD14+ cells, are shown. This includes CD14+CD16- 

classical, CD14++CD16+ intermediate and CD14+CD16++ non-classical subsets. The gestational 

ages (GA) (weeks; w) of each participant is shown. To summarise the data, the median and 

interquartile range (25th – 75th percentile [C]) have been utilised. 

   Overall, the median frequency of classical CD14++CD16- subsets was similar with 62.6% (39.7 – 

74.8) in decidua and 66.3% (53.3 – 81.0) in maternal blood. Conversely, non-classical 

CD14+CD16++ subsets represented 8.58% (5.9- 11.8) of decidual CD14+ cells and 26.3% (15.2 – 

39.5) in maternal blood. The intermediate CD14++CD16+ subsets represented 22.7% (12.0 – 45.8) of 

CD14+ cells in decidua, but only 4.3% (2.5 – 5.5) in maternal blood. No significant difference in each 

subset was measured between the two sites. 

6.2.3 Comparative analysis of monocyte and macrophage subsets in decidua, maternal 

and cord blood – third trimester analysis 

   As summarised in Table 6.2, the frequency of CD14+ cells was assessed in paired third trimester 

(>37w) maternal blood, cord blood and decidua samples utilising flow cytometry (n=4).  

 

GA 

(w) 

Decidua 

CD14++CD16+ 

Decidua 

CD14++CD16- 

Decidua 

CD14+CD16++ 

Maternal 

CD14++CD16+ 

Maternal 

CD14+CD16- 

Maternal 

CD14+CD16++ 

8+2 15.5 70.3 13.4 4 76.4 17 

9+3 22.7 62.6 8.58 0.94 85.5 13.3 

10+2 8.45 79.4 10.1 4.33 66.3 26.3 

10+2 54.1 30.1 3.57 5.1 49.8 44 

12+2 37.5 49.3 8.18 5.95 56.8 34.9 

25% C 11.98 39.7 5.875 2.47 53.3 15.15 

Median 22.7 62.6 8.58 4.33 66.3 26.3 

75% C 45.8 74.85 11.75 5.525 80.95 39.45 
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Decidua Maternal blood Cord blood 

11.2 7.18 11.2 

15.4 8.32 8.24 

13.8 12.1 16.5 

19.2 4.26 7.84 

 

Table 6.2 Relative frequencies of third trimester CD14+ cells in the decidua, maternal blood and 

cord blood. The relative frequency of third trimester CD14+ cells in paired decidua, maternal blood 

and cord blood, as a percentage (%) of the total CD45+ cell population, is summarised.  

    No significant difference in the median frequency of CD14+ cells was measured, with 7.8% (5.0-

11.2), 9.7% (7.9-15.2) and 14.6% (11.9 –18.3) in maternal blood, cord blood and decidua 

respectively. The proportion of non-classical (CD14+CD16++), intermediate (CD14++CD16+) and 

classical (CD14++CD16-) subsets were similarly measured utilising the same gating strategy (Figure 

6.2). As summarised in Table 6.3, the relative frequency (%) is reported as a proportion of the total 

CD14+ population. For the decidua, no CD14+CD16++ non-classical subset was consistently 

measured. 

   Overall, the median frequency expression of classical CD14++CD16- subsets was 14.9% (4.9-19.6), 

75.0% (62.5-90.1) and 73.8% (52.8-87.9) in decidua, maternal blood and cord blood respectively. 

Conversely, intermediate CD14++CD16+ subsets represented 83.7% (78.3-94.5), 7.2% (4.8-8.9) and 

2.5% (2.2- 4.2) of CD14+ cells in the decidua, maternal blood and cord blood.  In maternal and cord 

blood, non-classical monocytes represented 16.4% (3.0-16.4) and 17.6% (6.5-41.1). Only a significant 

difference in the intermediate decidua and cord (p=0.03) subsets was measured.    
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 Decidua Maternal  Cord 

 CD14++ 

CD16+ 

CD14++ 

CD16- 

CD14++ 

CD16+ 

CD14++ 

CD16- 

CD14+ 

CD16++ 

CD14++ 

CD16+ 

CD14++ 

CD16- 

CD14+ 

CD16++ 

 77.4 20.2 7.12 85 6.97 4.73 73.6 13.5 

 97.2 2.52 7.26 64.9 25.9 2.76 74 21.6 

 86.5 12.1 9.49 61.7 27.6 2.12 45.8 47.6 

 80.8 17.7 3.96 91.8 1.74 2.35 92.5 4.12 

25% C  78.25 4.915 4.75 62.5 3.048 2.178 52.75 6.465 

Median 83.65 14.9 7.19 74.95 16.44 2.555 73.8 17.55 

75% C 94.53 19.58 8.933 90.1 27.18 4.238 87.88 41.1 

         
Table 6.3 Summary of the relative frequencies of third trimester paired decidua, maternal blood 

and cord blood subsets according to CD14 and CD16 expression. The relative frequencies of 

paired third trimester decidua, maternal blood (maternal) and cord blood (cord) subsets (n=4), as a 

percentage of total CD14+ cells, are shown. This includes CD14+CD16- classical, CD14++CD16+ 

intermediate and CD14+CD16++ non-classical subsets (maternal and cord blood only). To summarise 

the data, the median and interquartile range (25th – 75th percentile [% C]) have been utilised. 

   Considering the effects of GA, in the decidua, the proportion of CD14++CD16+ subsets increased 

(22.7% to 83.7%), whereas the population of classical CD14++CD16- subsets appeared less 

prominent (62.6% to 14.9%) (Figure 6.3). The frequency of ‘non-classical’ subsets remained low at 

all GA. In paired maternal peripheral blood, monocyte phenotype remained relatively consistent. 
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Figure 6.3 Flow cytometry plots of first and third trimester decidua, and third trimester cord 

and maternal monocyte / macrophage subsets classified according to CD14 and CD16 surface 

expression. Flow cytometry was utilised to identify CD14+CD16- classical, CD14++CD16+ 

intermediate and CD14+CD16++ non-classical subsets (maternal and cord blood only), with the same 

gating strategy utilised as summarised in Figure 6.2. Comparative analysis of first and third trimester 

decidua subsets is shown in the top row. The bottom row illustrates an example of the third trimester 

cord and maternal blood subset analysis.   
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6.2.4 Characterisation of first trimester monocyte and macrophage subsets in decidua 

and maternal blood 

   Having characterised the prominent monocyte and macrophage subsets within paired first trimester 

maternal blood and decidua, more detailed characterisation and comparative analysis of individual 

subsets was performed. Flow cytometry was utilised to measure the expression of a range of 

recognised monocyte and macrophage markers to help aid their functional classification, as 

summarised in Table 6.4. Total frequency (%) was measured, with subtraction of the isotype control 

to account for variability in the baseline fluorescence of blood and tissue resident subsets (Table 6.5). 

Classical maternal blood and decidua, and CD14++CD16+ intermediate decidua subsets were 

compared since these appeared most prominent. Furthermore, the observed gestational shift (Figure 

6.3) in decidua-derived classical and intermediate subsets meant both were of interest.   
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Marker Functional Properties 

CD209  C-type lectin signalling dendritic cell and macrophage marker – M2 marker  - 

pathogen recognition   

HLA-DR MHC class II cell surface receptor encoded by the human leukocyte antigen 

complex - expression appears downregulated within the context of inflammatory 

disease such as sepsis(409)  

CD163 Member of the scavenger receptor family – inflammatory mediator and tissue 

resident marker – expressed exclusively on monocytes and macrophages - M2 

marker  

CD80 Co-stimulatory signal necessary for T cell activation and survival  

CD86 Co-stimulatory signal necessary for T cell activation and survival  

TLR-2 Activation receptor - M1 polarisation mediator 

TLR-4 Activation receptor – M1 polarisation mediator  

Dectin Lectin-like innate immune receptor. High expression in M2a macrophages, 

while M2b express low levels – pathogen recognition 

 

Table 6.4 Functional summary of the surface protein markers utilised to characterise monocyte 

/ macrophage subsets.  The surface marker of interest and its associated functional properties are 

briefly outlined as detailed.  
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Marker Maternal 

freq (%) (IQR) 

Decidua 

freq (%) (IQR) 

 CD14++CD16- CD14++CD16- CD14++ CD16+ 

CD209 16.6 (16.1-34.9) 15.8 (12.1-24.6) 45.4 (37-47.4) 

TLR-2 98.4 (97.0-98.9) 75.7 (63.5-85.6) 83.2 (72.1-90.5) 

Dectin 94.2 (63.7-97.5) 13.9 (2.2-21.2) 39.6 (29.5-62.0) 

CD80 33.9 (18.0-41.3) 17.9 (15.8-38.5) 46.8 (37.2-77.0) 

CD86 95.0 (77.1-96.8) 30.2 (24.3-40.0) 38.9 (26.6 - 64.9) 

HLA-DR 97.5 (57.9-98.7) 60.3 (56.5-88.5) 91.8 (87.1-99.0) 

CD163 93.8 (79.5-97.3) 60.4 (24.7-66.0) 90.2 (88.1-93.4) 

CD68 6.1 (0-18.9) 43.5 (24.5-44.7) 69.2 (66.4-69.3) 

TLR-4 61.1 (25.7-95.0) 0.7 ( 0.2- 1.4) 5.5 (3.5-14.4) 

 

Table 6.5 First trimester maternal and decidua subset expression of recognised monocyte and 

macrophage markers. Summary of the flow cytometric analysis of a range of recognised monocyte 

and macrophage markers in paired maternal blood and decidua CD14+ subsets; CD14+CD16- 

classical (maternal and decidua), and CD14++CD16+ intermediate (decidua only). The median 

frequency (Freq) (%) and interquartile range (IQR) are illustrated for each marker (n=3-5).    

   Figure 6.4 is included to facilitate interpretation of those with significant differences in expression. 

HLA-DR expression did not differ in the maternal or decidua subsets with expression relatively 

consistent. A significant difference in CD209 between the decidua CD14++CD16- and decidua 

CD14++CD16+ subsets was measured (p=0.01), with higher surface expression in the intermediate 

(45.4%) relative to classical CD14++CD16- subsets (15.8%).  CD209 was also low in classical 

maternal CD14++CD16- cells (16.6%), but did not reach significance. Conversely, dectin another 

classical M2 marker was significantly lower in classical decidua C subsets (13.9%) comparative to 

their maternal blood counterparts (94.2%). Expression in the  CD14++CD16+ decidua population 

(39.6%) was higher than the classical decidua subsets, but again lower than maternal blood.  

   Conversely, CD163, traditionally an M1 marker, demonstrated highest expression in the classical 

maternal (93.8%) and decidua intermediate (90.2%) populations. Expression was lower in the 
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classical decidua subsets (60.4%), albeit this was not significant. Consistent with this, CD80 

expression was similar in classical maternal subsets (33.9%) and intermediate decidua subsets 

(46.8%), whereas classical decidua expression appeared lower (17.9%).  However, CD86 expression 

was notably higher in maternal blood (95.0%) comparative to both classical (30.2%) (p<0.05) and 

intermediate (38.9%) decidua populations. 

   Considering TLR-4 and TLR-2, recognised M1 markers, both were highly expressed in maternal 

CD14++CD16- subsets, with 61.1% and 98.4% median expression respectively. TLR-4 was notably 

reduced in both decidua intermediate (5.5%) and classical (0.7%) subsets (p<0.05). TLR-2, expression 

was positive but lower in decidua CD14++CD16+ (75.7%) (p>0.05) and CD14++CD16- subsets 

(72.1%) (p<0.05).   

   Finally, intracellular CD68, a glycoprotein used as a monocyte/macrophage marker was measured. 

In the decidua CD68 was higher in CD14++CD16+ cells (69.2%; 66.4-69.2%), relative to those 

CD14++CD16- (43.5%; 24.5-43.5%). In the maternal blood the frequency of CD68 was significantly 

low (6.05%; 0-18.9%) comparative to paired CD14++CD16+ from decidua (p<0.05).  
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Figure 6.4 Summary of maternal (mat; red) classical CD14++CD16-, and decidua (black) 

classical CD14++CD16- and intermediate CD14++CD16+ subset expression of monocyte and 
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macrophage markers; CD209, dectin, CD86, CD68, TLR-4 and TLR-2. Median frequency (%) and 

interquartile range are shown, with statistically significant variations indicated * p<0.05.  

6.2.5 Characterisation of third trimester monocyte and macrophage subsets in paired 

decidua, maternal and cord blood 

 Cord 

freq (%) (IQR) 

Maternal 

freq (%) (IQR) 

Decidua 

freq (%) (IQR) 

 CD14++CD16- CD14++CD16- CD14++CD16- CD14++CD16+ 

CD209 1.3 (0.02 - 6.99) 3.8 (0.2 - 10.8) 3.1 (1.7-5.5) 26.9 (18.9-40.6) 

TLR-2 98.3 (94.9-99.4) 98.2 (94.0 - 98.9) 68.0 (62.0- 75.8) 68.6 (19.1-76.0) 

Dectin 85.6 (59.2-97.4) 86.8 (79.2-91.1) 6.2 (0.7-59.9) 41.0 (21.9-70.8) 

CD80 6.3 (2.1-9.1) 6.3 (1.7-10.6) 12.2 (6.1-18.3) 63.0 (42.6-69.8) 

CD86 43.9 (12.9-69.0) 68.2 (21.0-84.9) 4.9 (1.8-16.1) 32.6 (18.6-70.2) 

HLA-DR 56.0 (7.5-87.1) 71.5 (15.0-94.1) 16.1 (5.4-43.9) 60.0 (39.9-91.5) 

CD163 39.7 (35.6-42.6) 61.8 (18.1-73.5) 14.2 (4.9-27.8) 73.1 (41.3-88.7) 

CD68 0 (0-15.7) 0 (0-36.6) 19.4 (12.8-26.0) 68.1 (61.1-75.0) 

 

Table 6.6 Paired third trimester cord blood, maternal blood and decidua analysis of recognised 

monocyte and macrophage markers. Summary of the flow cytometric analysis of a range of 

recognised monocyte and macrophage markers in paired cord blood, maternal blood and decidua 

CD14+ subsets; CD14+CD16- classical (cord blood, maternal blood and decidua), and 

CD14++CD16+ intermediate (decidua only). The median frequency (freq) (%) and interquartile range 

(IQR) are illustrated for each marker (n=3-5).    

   As for the first trimester analyses, the median frequency of a range of recognised monocyte and 

macrophage markers (Table 6.4) was assessed. As summarised, HLA-DR expression did not 

significantly differ between the CD14++CD16- classical cord (56.0%) or maternal (71.5%) subsets or 

the decidua CD14++CD16+ intermediate (60.0%) subsets. Classical decidua CD14++CD16- HLA-

DR expression appeared lower (16.1%) but also variable (5.4-43.9%), and this was not significant. 

Consistent with the first trimester, CD209 expression appeared higher in the CD14++CD16+ decidua 

subsets (26.9%) comparative to those classical CD14++CD16- from decidua (3.1%), maternal (3.8 %) 
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and cord blood (1.3%). Dectin another classical M2 marker was markedly lower in classical decidua 

CD14++CD16- (6.2%) comparative to those in peripheral maternal (86.8%) and cord blood (85.6%).  

Consistent with the first trimester (39.6%), expression in the intermediate decidua (41.0%) 

CD14++CD16+ subsets, albeit higher than the classical decidua subsets, was also lower than those 

peripherally.  

   Conversely, CD163 demonstrated higher expression in the decidua CD14++CD16+ intermediate 

(73.1%) and maternal CD14++CD16- classical (61.8%) subsets. Interestingly, expression appeared 

lower in the classical cord (39.7%) and decidua (14.2%) subsets. In the third trimester, CD80 

expression overall appeared low, in particular for the 2 peripheral classical subsets; 6.3% cord, 6.3% 

maternal. Expression modestly increased in the decidua in both the classical (33.9%) and intermediate 

(46.8%) subsets. Consistent with the first trimester data, CD86 expression was higher in maternal 

blood (68.2 %) comparative to both the classical (4.9 %) (p<0.05) and intermediate (32.6%) (p>0.05) 

decidua subsets. Cord CD86 expression was moderate; 43.9% median frequency.   

   TLR-2 was highly expressed in maternal and cord CD14++CD16- classical subsets, with 98.2% and 

98.3 % median expression respectively. In the decidua expression was moderate for both 

CD14++CD16+ intermediate (68.6%)(p>0.05) and CD14++CD16- classical subsets (68.0 %). A 

significant difference was measured between the classical cord and classical decidua subsets (p=0.04).  

   Finally, intracellular CD68, a glycoprotein used as a monocyte/macrophage marker. In the decidua, 

the median frequency of CD68 was higher in the CD14++CD16+ intermediate subsets (68.1%), 

relative to the classical CD14++CD16- (19.4%) cells. Conversely, the frequency of CD68 was 

negligible in both the CD14++CD16- classical maternal (0%) and cord (0%) subsets.  

6.2.6 Transcript analysis of the Vitamin D metabolic system in third trimester CD14+ 

monocyte and macrophage subsets 

House-keeping gene optimisation  

   Due to the high RNase content in term placental tissue, the reliability of the house-keeping gene 

employed was assessed. This was particularly important for third trimester LPS-culture assays, since  
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pro-inflammatory, and  hypoxic stimuli have also previously been reported to significantly alter the 

stability of expression(365). Comparative analysis of cytochrome- c-1 (CYC-1) and 18S, with all 

samples in triplicate, was performed.  CYC-1 in particular has demonstrated good stability in 

placental tissue obtained from complicated and non-complicated pregnancies at an advanced GA 

previously (410).    

   Table 6.7 summarises the expression of both housekeeping genes in third trimester decidua 

monocyte/ macrophage subsets isolated from decidua, maternal and cord blood following culture for 

24h in the presence and absence of LPS. Differential expression of both 18S rRNA and CYC-1 was 

consistently lower for the decidua-derived subsets comparative to those from cord and maternal 

blood. Albeit 18s demonstrated higher expression, overall heterogeneity appeared greater comparative 

to CYC-1. Moving forward CYC-1 was utilised for further transcript analysis.   
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CD14+ Origin Treatment CYC-1 18S 

Cord US 26.16372 17.85442 

US 26.04429 14.05769 

US 26.02066 17.1499 

LPS 26.26224 13.30304 

LPS 26.17989 11.57689 

LPS 26.27441 12.01914 

Maternal US  24.95721 12.06384 

US  24.94769 11.63523 

US  24.83023 12.63691 

LPS 27.65986 13.0281 

LPS 28.05831 13.07373 

LPS 27.83424 14.24646 

Decidua US  30.32088 17.31346 

US  30.60384 16.50863 

US  30.32483 17.34443 

LPS 30.84199 20.0991 

LPS 30.73973 19.38229 

LPS 30.24451 22.2215 

 

Table 6.7 House-keeping gene comparative analysis in third trimester paired cord blood, 

maternal blood and decidua. Comparative quantitative analysis of the expression of CYC-1 and 18S 

rRNA expression in third trimester decidua, maternal and cord blood CD14+ subsets (performed in 

triplicate) following 24h culture in the presence and absence (US) of LPS stimulation.  
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Purity of CD14+ cell isolation  

Cord 

(%) 

Maternal 

(%) 

Decidua 

(%) 

93.1 86.7 77.3 

76.7 76.6 77.6 

87.1 67.9 85.0 

74.4 76.5 71.6 

 

Table 6.8 Third trimester CD14+ purity analysis; summary of the purity of matched CD14+ cells 

as a percentage (%) of the live total CD45+ population, as measured using flow cytometry in cord 

blood, maternal blood and decidua (n=4).  

   The median purity for CD14+ isolation in cord blood, maternal blood and decidua samples was 

81.9% (75.0-91.6), 77.0% (770.1-84.2) and 77.5% (73.0-83.2) respectively (n=4).  

Transcript analysis of the vitamin D metabolic apparatus in CD14+ cells 

   To ascertain whether isolated CD14+ monocyte / macrophage subsets express the metabolic 

apparatus required to mediate local 1,25(OH)2D3  production and function, qRT-PCR was used to 

measure CYP27B1, CYP24A1 and VDR transcript expression (Figure 6.5). Relative expression to US 

maternal CD14+ cells was calculated for each transcript to permit comparison.      

   Expression of CYP27B1, the principal catalyst for 1,25(OH)2D3, was comparable in the paired US 

cord (1.4; 1.0-1.8) and US maternal subsets. In response to LPS-stimulation, expression increased in 

both the cord (4.8; 1.5-29.3) and maternal (9.3; 3.0-17.6) derived subsets. However, in the decidua 

higher baseline CYP27B1 expression was measured in US subsets (4.3; 1.4-17.9) with no concomitant 

increase post LPS-stimulation (2.5; 0.3-22.1).  No significant effect of 1,25(OH)2D3 upon CYP27B1 

was measured in all three subsets (n=4), thus 1α-hydroxylase activity does not appear driven by 

vitamin D status.  

   Relative to US maternal CD14+ subsets, US cord (1.7; 0.6-2.2) and decidua (1.5; 1.4-2.5) VDR 

transcript expression was again similar at baseline. Consistent with CYP27B1, VDR expression 
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increased in response to LPS in both the cord (6.9; 4.1-20.3) and maternal (5.4; 4.2-7.0) cells, albeit 

not reaching statistical significance. No significant effect of 1,25(OH)2D3 upon VDR was measured in 

decidua. Interestingly a similar upregulation of VDR in response to LPS was not evident in the 

decidua (0.7; 0-1.7), with low expression measured across all four culture conditions.  

   Considering CYP24A1, relative expression appeared low in US cord (0.04; 0-2.0) and maternal (1.2; 

1.0-1.1) subsets comparative to US decidua CD14+ cells (12.0; 1.9-541.9). As postulated, 

1,25(OH)2D3 significantly induced expression of the catabolic enzyme in US cord (3573; 1103-8626), 

maternal (1988; 401-10040) (p=0.02) and decidua (738.1; 101.4-1493) (p=0.02)  subsets. In the co-

presence of LPS, CYP24A1 expression notably increased in the cord (10354; 1783-39158) (p=0.003) 

and maternal (3707; 218.3-28110) (p=0.02) subsets, whereas in decidua lower relative expression was 

measured (122; 32.3-369.0) despite higher baseline levels.   
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Functional transcript analysis of paired cord, maternal and decidua CD14+ Cells 

   To delineate the potential functional role of vitamin D in pregnancy-derived CD14+ subsets, a range 

of recognised vitamin D responsive (cathelicidin) and LPS- responsive (TNF-α, IFN-у and IL-6) 

transcripts were assessed. Cathelicidin, a recognised anti-microbial peptide target for vitamin D, was 

upregulated in response to 1,25(OH)2D3 in both the cord (78.7; 42.8-79.3) and maternal (50.7; 46.5-

51.0) –derived subsets. In the decidua, this response was not evident (7.1; 3.9-20.4), with minimal 

induction comparative to US decidua subsets (3.9; 2.2-7.0) (Figure 6.6).   

   IFN-γ expression was consistently low in all maternal and cord subsets in the presence and absence 

of LPS and 1,25(OH)2D3. Conversely, decidua CD14+ group demonstrated relatively high IFN-γ 

transcript expression as baseline (174.2; 86.9-213.3), with marked induction (242.9; 209.9-476.7) in 

response to LPS. In the presence of 1,25(OH)2D3, expression was less marked in both US (21.6; 0 – 

60.0) and LPS-stimulated (49.7; 48.3-92.6) groups, albeit not significant (Figure 6.6).    

   IL-6, a recognised innate immune marker in peripheral monocytes (411), was markedly upregulated 

in both cord (12821; 1927-35276) and maternal (3317; 923.2- 34676) CD14+ subsets in response to 

LPS. Notably, albeit the decidua-derived subsets demonstrated constitutively higher expression at 

baseline (2978; 241.2-18781), no LPS-induced upregulation was observed. In response to 

1,25(OH)2D3 and LPS co-treatment, expression decreased in the cord (3166; 1088-10915), maternal 

(1438; 825.7-14293) and decidua (926.6; 227.6-2306) subsets respectively (Figure 6.6).    

   Finally, at baseline TNF-α expression in US cord (1.4; 0.9 – 2.1) was similar to maternal US 

subsets. In response to LPS stimulation this increased in both the cord (15.1; 10.3-34.5)(p=0.01) and 

maternal CD14+ cells (14.9; 7.0-18.7) following LPS, albeit not significant (p= 0.08). No difference 

in those US subsets co-treated with 1,25(OH)2D3 was measured, whilst in the co-presence of LPS, 

TNF-α expression was lower in cord (6.2; 4.3-13.6) and maternal (5.7; 3.3-10.0) subsets.  In the 

decidua TNF-α expression was constitutively higher at baseline (12.7; 6.1-23.1), with no significant 

change in expression in response to LPS (15.1; 10.4-60.0). Vitamin D had no effect upon TNF-α 

expression in US decidua subsets (10.6; 7.9 – 13.3), whilst in the presence of LPS a partial 

downregulation (6.4; 5.8-10.0) was observed, albeit not significant Figure 6.6.  
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6.2.7 Demographic summary of those participants with samples utilised for RNA-seq 

analysis  

   To more accurately elucidate the impact of 1,25(OH)2D3 upon third trimester monocyte/ 

macrophages subsets at a transcript level we conducted a genome-wide RNA-seq analysis of 

matched third trimester subsets isolated from decidua, maternal and cord blood. Consistent with the 

NK studies performed in Chapter 5.0, this was performed within the context of LPS- stimulation as 

previous data indicate a greater role for 1,25(OH)2D3 within the context of immune challenge(402), 

certainly for those derived from maternal and cord blood. Participant demographics (n=4) are 

summarised in Table 6.9, with all women undergoing ELCS.   

ID Age BMI Ethnicity GA at 

delivery 

(w) 

Smoking Alcohol G/ P Live Stillbirth Miscarriage TOP Vitamin D  

(iu) 

669 37 22 White 

European 

39+3 No No G1P0 0 0 0 0 400 

672 29 31 White 

British 

38+1 No No G3P2 2 0 0 0 400 

676 37 31 White 

British 

39+1 No No G2P1 1 0 0 0 400 

687 30 22 White 

European 

39+3 No No G1P0 0 0 0 0 400 

 

Table 6.9 Demographic summary of third trimester maternal participant’s recruited for RNA-

seq analysis. Data show: Identification number (ID), age, body mass index (BMI), ethnicity, 

gestational age at delivery (weeks; w), smoking status, alcohol intake, gravida and parity (G/P), 

obstetric history; living, stillbirth, miscarriage, termination of pregnancy (TOP), and vitamin D 

supplementation (units; iu) for the n=4 3rd trimester maternal participants with samples utilised.  
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6.2.8 Purity of CD14+ FACS-sorted subsets 

   In total, n=4 participants were included, with matched FACS sorted monocyte/ macrophage subsets 

cultured with LPS ± 1,25(OH)2D3 for 24h (n=24 samples for RNA -seq) assessed. FACS sorting was 

utilised to ascertain purity, with paired live CD45+ CD14+ HLA-DR+ (CD3- CD56-, CD66-, CD19-) 

cells isolated (n=4) with  purity for maternal subsets 97.3% (93.9 – 98.6%), cord 94.7% (85.5 – 

96.1%) and decidua 84.0% (82.0 -91.9%) respectively (Table 6.10). As summarised in Table 6.6, 

surface HLA-DR expression does not appear significantly different in the maternal, cord or decidua 

subsets (p >0.05). 

Study 

ID 

Maternal 

(%) 

Cord  

(%) 

Decidua  

(%) 

669 98.8 94.3 91.9 

672 96.7 96.4 83.1 

676 93.9 82.6 81.6 

687 97.8 95.1 84.7 

 

Table 6.10 Purity analysis of CD14+ subsets from maternal blood, cord blood and decidua. 

Summary of the purity of the CD14+ isolation for RNA-seq using FACS. Percentage frequencies (%) 

are reported as the proportion of live CD45+ CD14+ HLA-DR+ (CD3- CD56-, CD66-, CD19-) cells 

isolated, as measured by flow cytometry.  

6.2.9 Principal component analysis 

   PCA was performed to the log2 fold change on the whole dataset (Figure 6.7). Overall this revealed 

high variance in the transcriptional patterns of purified cord, maternal and decidua-derived subsets, 

PC1 23.1%, PC2 17.9%, PC3 8.5%, in relation to origin. The maternal and cord-derived subsets 

consistently clustered more tightly than their decidua-derived counterparts. In all 3 groups, those co-

treated with 1,25(OH)2D3 demonstrated relatively low variance in their whole transcript profiles 

comparative to those treated with LPS alone. 
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Figure 6.7 PCA analysis of LPS stimulated monocyte and macrophage subsets in the presence 

and absence of 1,25(OH)2D3. The 3D dot-plot summarises the main sources of variance measured 

across the whole data set by principal components; PC1 23.1%, PC2 17.9%, PC3 8.5% (x-, y-, z- axes 

respectively) is illustrated for cord blood- (blue), maternal blood- (yellow) and decidua- (red) derived 

monocyte / macrophage subsets in the presence (large dot) and absence (small dot) of 1,25(OH)2D3 

co-treatment.   

6.2.10 Comparative analysis of LPS treated cord, maternal and decidua monocyte/ 

macrophage subsets.  

   Prior to treatment with 1,25(OH)2D3, comparative analysis of the LPS treated cord, maternal and 

decidua derived subsets was performed. First, comparing LPS treated peripheral maternal subsets, of 

the 7735 genes measured, 113 (1.5%) transcripts were significantly upregulated (fold-change >1.5, 

p<0.05) and 105 (1.4%) downregulated (fold-change <-1.5, p< 0.05) in the cord comparative to the 

maternal blood (Figure 6.8).  Conversely, 846 (10.9%) transcripts were downregulated, and 1616 

(20.9%) upregulated in the cord comparative to decidua. Comparative analysis of LPS-decidua versus 

LPS-maternal blood subsets identified 832 (10.8%) transcripts to be upregulated, and 1515 (19.6%) 
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downregulated.  As summarised in the 2D volcano scatter plots (Figure 6.7), within the context of 

LPS monocyte transcript expression was highly akin for the cord, and maternal blood subsets, whilst 

those from the decidua appear highly distinct. As summarised in Figure 6.8, of those transcripts 

significantly upregulated in the cord comparative to decidua, 1211 (63.0%) were also upregulated in 

the maternal versus decidua comparative analysis group. Of those transcripts significantly 

downregulated in the cord comparative to decidua, 591 (54.5%) were similarly downregulated in the 

maternal versus decidua comparative analysis group.  
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6.2.11 Pathway analysis  

   To help delineate the differences in transcript expression complementary pathway analysis was 

performed to assess differences in both cord and maternal LPS monocytes compared to decidua LPS 

macrophages. Across both the WP (Figure 6.9 and 6.11) and Reactome (Figure 6.10 and 6.12) 

databases, a broad spectrum of enriched canonical pathways (2.0 fold-change) were identified with 

those significant (p<0.05) ranked from a high to low Z-score. Overall, in cord 21 WP and 45 

Reactome pathways were significantly enriched (Z-score >1.96) in LPS cord monocytes relative to 

decidua LPS macrophages.  
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Figure 6.9 Summary of WikiPathway database comparative analysis for LPS treated cord and 

decidua subsets. Bars represent pathways significantly enriched (p <0.05, Z-Score >1.96), with the 

frequency of differentially expressed genes (blue) and total genes measured (green) as a proportion of 

the total frequency of pathway genes (grey). Bars are ranked from a high to low Z-score.    
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Figure 6.10 Summary of Reactome database comparative analysis for LPS treated cord and 

decidua subsets. Bars represent pathways significantly enriched (p <0.05, Z-Score >1.96), with the 

frequency of differentially expressed genes (blue) and total genes measured (green) as a proportion of 

the total frequency of pathway genes (grey). Bars are ranked from a high to low Z-score.    
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   In LPS maternal monocytes relative to decidua LPS macrophages 23 WP and only 19 Reactome 

pathways were significantly enriched (Z-score >1.96). Notably in both these included pathways 

related primarily innate immune cell function, lipid and glucose metabolism. The WP database 

analysis pathways for cord included vitamin D metabolism (3.05), type II IFN signalling (3.08), 

triacylglyceride synthesis (3.09) and peroxisome proliferator-activated receptor (PPAR) signalling 

(3.74). Similar findings were also observed for maternal subsets, with vitamin D metabolism (3.23), 

triacylglyceride synthesis, PPAR signalling pathway (2.81) and also the inflammatory response 

pathway (2.81) over-represented. Utilising the Reactome database analysis, cord monocyte enriched 

pathways included reactive oxygen species (ROS), reactive nitrogen production (RNS) in phagocytes 

(3.23), IL-10 signalling (3.85), integrin αIIβ β3 signalling (2.22), TLR- like receptor cascades (2.22), 

antimicrobial peptides (2.61) and IFN-γ signalling (1.96). In the maternal subsets inflammatory 

response (2.13), vitamin D metabolism (2.82) and PPAR signalling (2.86) Reactome pathways were 

enriched.  
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Figure 6.11 Summary of WikiPathway database comparative analysis for LPS maternal and 

decidua subsets. Bars represent those pathways significantly enriched (p <0.05, Z-Score >1.96), with 

the frequency of differentially expressed genes (blue) and total genes measured (green) as a 

proportion of the total frequency of pathway genes (grey). Bars are ranked from a high to low Z-score.    
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Figure 6.12 Summary of Reactome database comparative analysis for LPS maternal and 

decidua subsets. Bars represent those pathways significantly enriched (p <0.05, Z-Score >1.96), with 

the frequency of differentially expressed genes (blue) and total genes measured (green) as a 

proportion of the total frequency of pathway genes (grey). Bars are ranked from a high to low Z-score.    
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   Overall, only 2 differentially expressed genes, CA and EFL1, were shared between the three distinct 

decidua, maternal and cord group analyses, being upregulated by LPS+ 1,25(OH)2D3 comparative to 
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genes were shared in both cord and maternal LPS vs LPS and 1,25(OH)2D3 group analyses, being 

significantly upregulated relative to LPS-treatment in both.  

 

Figure 6.13 Summary of those transcripts significantly upregulated in cord blood, maternal 

blood and decidua derived LPS stimulated monocyte/ macrophage subsets in response to 

vitamin D. The venn diagram summarises the frequency of genes significantly (p<0.05) upregulated 

(fold change >1.5) in cord, maternal and decidua monocyte/ macrophage subsets in response to 

vitamin D, comparative to LPS alone. All shared upregulated genes between the 3 sites are annotated.   

   The function of these transcripts is summarised in Table 6.11, which indicates a number were 

concerned with cell processing, including cell proliferation, trafficking, migration and adhesion, such 

as TRAK1, LAMB3, CLMN, CTTN. Genetic processing and transcription modulation also appeared 

significant with genes including NRIP1, ASCC1, MAPK13 and ZFP36L1 all upregulated. 
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Table 6.11 Summary of the shared transcripts measured in cord and maternal monocytes 

significantly upregulated in response to co-treatment with LPS and 1,25(OH)2D3. Those 

transcripts significantly upregulated (p<0.05) by 1,25(OH)2D3 are summarised in the table, with the 

fold-change and function summarised for cord (red) and maternal (blue) subsets.    

   In the cord and decidua, 3 shared transcripts were significantly upregulated by 1,25(OH)2D3, 

DIRC2, CA2 and EFL1, comparative to LPS-treatment alone. Finally, comparing the maternal and 

decidua subsets, only 2 shared transcripts CA2 and EFL1 were identified. Albeit DIRC2 was not 

significantly differentially expressed in maternal subsets, a similar response to 1,25(OH)2D3 co-

treatment was measured (fold-change 1.64; p>0.05) (Figure 6.14).  

 

 

Transcript Cord Maternal Function

NRIP1 2.27 1.73

Nuclear Receptor Interacting Protein 1 which specifically interacts with the hormone-

dependent activation domain AF2 of nuclear receptors and modulates transcriptional 

activity of the estrogen receptor. 

ASCC1 1.81 1.83 Activating Signal Cointegrator 1 Complex Subunit 1 - a transcriptional coactivator 

CLMN 12.6 3.46 Calmin -  Negative regulation of cell proliferation

ZFP36L1 2.33 1.79

ZFP36 Ring Finger Protein Like 1 - destabilizes mRNA transcripts to attenuate protein 

synthesis

SPRED2 1.8 1.79

Sprouty Related EVH1 Domain Containing 2 - Regulates growth factor-induced activation of 

the MAP kinase cascade 

MAPK13 2.46 1.91

Mitogen-Activated Protein Kinase 13 -  Involved in a wide variety of cellular processes 

including proliferation, differentiation, transcription regulation and development. 

SEMA3C 4.57 2.06

Semaphorin 3C - Binds to plexin family members and plays an important role in the 

regulation of developmental processes. Increased gene expression correlates with 

increased cancer cell invasion and adhesion

TRAK1 3.16 2.71

Trafficking Kinesin Protein 1 - Involved in the regulation of endosome-to-lysosome 

trafficking

CTTN 4.22 2.78

Cortactin - Regulates interactions between components of adherens-type junctions and 

organizes the cytoskeleton and cell adhesion structures of epithelia and carcinoma cells. 

DPP4 6.07 3.19

Dipeptidyl Peptidase 4 - Classically recognised for its enzymatic ability to inactivate incretin 

hormones. Positive regulator of T-cell coactivation, with pro-regulatory functions.  

LAMB3 6.72 3.62

Laminin Subunit Beta 3 - mediates the attachment, migration and organization of cells into 

tissues during embryonic development

SLC24A1 3.2 3.76

Solute Carrier Family 24 Member 1 -  encodes a member of the potassium-dependent 

sodium/calcium exchanger protein family

THBD 3.32 3.8

Thrombomodulin - endothelial-specific type I membrane receptor that binds thrombin, 

which results in the activation of protein C, which degrades clotting factors Va and VIIIa and 

reduces thrombin generation. 

G0S2 6.95 5.64 G0/G1 Switch 2 - Promotes apoptosis by binding to BCL2

Fold-change (p<0.05)
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 Fold-change (p<0.05) 

 DIRC2 CA2 EFL1 

Cord 2.92 6.68 7.54 

Decidua 1.97 8.57 4.71 

Maternal ns 3.66 6.32 

 

Figure 6.14 Comparative analysis of cord, maternal and decidua monocyte/ macrophage 

transcript expression of DIRC2, CA2 and EFL1. Transcript expression of DIRC2, CA2 and EFL1 

in LPS treated (blue) and LPS + 1,25(OH)2D3 (red) CD14+ monocyte / macrophage subsets (n=4). 

All 3 subsets significantly (p<0.05) upregulated (fold change >1.5) expression (*) in response to 

1,25(OH)2D3 comparative to LPS alone.    
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   Of the 23 genes downregulated in the cord, 12 in maternal blood, and 82 in decidua, no transcripts 

were shared. 

6.2.13 Vitamin D effects upon maternal monocytes  

   Of the 7735 genes identified, 41 (0.53%) transcripts were differentially expressed in the LPS and 

LPS + 1,25(OH)2D3 treated maternal subsets comparatively. Of these, 12 (29.2%) were significantly 

downregulated and 29 (70.7%) upregulated following co-treatment with vitamin D (p≤0.05, fold-

change < -1.5 and > 1.5). This is summarised using hierarchical dendogram clustering analysis, which 

using Euclidean dissimilarity for rows and columns, arranged similar transcript targets into 

homogeneous ‘clusters’ as illustrated in Figure 6.15. Importantly, those differentially expressed 

transcripts appeared consistently differentially expressed in the LPS comparative to LPS + 

1,25(OH)2D3 sample subgroups, with clear patterns of transcript upregulation (blue) and 

downregulation (yellow) visualised.  
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   As summarised in Table 6.12, treatment with 1,25(OH)2D3 appeared to primarily target genes 

associated with cellular function (n=13; 31.7%). All differentially expressed transcripts associated 

with cell processing were significantly upregulated and principally related to cell migration, adhesion, 

apoptosis and intracellular trafficking; LAMB3 (fold-change 3.62), TRAK1 (fold-change 2.71), GOS2 

(fold-change 5.64), MAPK13 (fold-change 1.91). Importantly 9 (69.2%) of these were also 

significantly upregulated in the cord group, for which 40 (48.2%) of the total 83 transcripts 

significantly differentially expressed in the vitamin D group related to cell processing, in particular 

regulation of monocyte apoptosis, trafficking, adhesion and proliferation. A number of other 

differentially expressed transcripts were involved in genomic processing (10; 24.4%).  There were 

also 7 (17.0%) related to glucose energy and cell metabolism, 3 (7.3%) immune function, 3 (7.3%) 

ion transport, 2 (4.9%) unknown function and 2 anti-sense (4.9%).  Significant transcripts of interest 

primarily related to mRNA splicing and cell cycle regulation.   
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Table 6.12 Effect of 1,25(OH)2D3 upon gene expression in LPS maternal monocytes. Summary of 

total genes (n=41) differentially induced (red) (n= 29) or suppressed (green) (n=12) by 1,25(OH)2D3 

(fold change < -1.5 or > +1.5, p ≤ 0.05), with sub-categorisation according to transcript function.     

6.2.14 Vitamin D effects upon cord monocytes 

   Of the 7735 genes identified, 83 (1.07%) transcripts were differentially expressed in the LPS and 

LPS + 1,25(OH)2D3 treated cord subsets. Of these, 23 (27.7%) were downregulated and 60 (72.3%) 

upregulated following co-treatment with vitamin D. Hierarchical dendogram clustering analysis was  

similarly performed, and as illustrated in Figure 6.16, transcripts were consistently differentially 

expressed in the LPS comparative to LPS + 1,25(OH)2D3 groups, with patterns of transcript 

upregulation (blue) prominent in the LPS+1,25(OH)2D3 group.  
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   Consistent with the maternal  blood derived subset analysis, most prominent were those transcripts 

related to cell survival, proliferation, invasion, adhesion, angiogenesis, trafficking  (40; 48.2%), 

genetic processing (14; 16.9%), and glucose energy and cell metabolism (10; 12.0%). Overall, there 

were 7 (8.4%) concerned with immune function, and 2 (7.3%) ion transport, with 2 (10.8%) of 

unknown function and 2 anti-sense (2.4%).  Those significant transcripts of particular interest are 

summarised in Table 6.13, relating primarily to lymphocyte homing and migration.  

 

Table 6.13 Effect of 1,25(OH)2D3 upon gene expression in LPS cord monocytes. Summary of the 

total genes (n=83) differentially induced (red) (n=60) and suppressed (green) (n=23) by 1,25(OH)2D3 

(fold change <-1.5 or >+1.5, p ≤ 0.05), with sub-categorisation according to transcript function.     
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6.2.15 Vitamin D effects upon decidua macrophages  

   Of the 7735 genes identified, 150 (1.9%) transcripts were differentially expressed in the LPS- and 

LPS + 1,25(OH)2D3 treated decidua subsets. Of these, 82 (54.7%) were downregulated and 68 

(45.3%) upregulated following co-treatment with vitamin D.  Hierarchical dendogram clustering 

analysis was similarly performed, with transcripts consistently differentially expressed in the LPS 

comparative to LPS + 1,25(OH)2D3 sample subgroups. Unlike cord and maternal subsets, transcript 

upregulation (blue) and downregulation was similarly prominent in the LPS+1,25(OH)2D3 groups 

(Figure 6.17).  
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   Of those genes differentially expressed, unlike the maternal and cord analyses, those relating to 

genomic processing were most prominent (49; 32.7%). Genes related to cell survival, proliferation, 

invasion, adhesion, angiogenesis, trafficking were also highly prominent (40; 28.0%). There were 16 

(10.7%) genes related to glucose energy and cell metabolism. Overall, there were 4 (2.7%) concerned 

with immune function, and 4 (2.7%) ion transport, with 15 (10.0%) of unknown function and 15 

(10.0%) anti-sense.  Those significant transcripts of particular interest are summarised in Table 6.14, 

relating primarily to transcription, RNA binding and RNA transport, and histone modification.  
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Table 6.14 Effect of 1,25(OH)2D3 upon gene expression in LPS decidua macrophages. Summary 

of the total genes (n=150) differentially induced (red) (n=68) and suppressed (green) (n=82) by 

1,25(OH)2D3 (fold change< -1.5 or > +1.5, p ≤ 0.05), with sub-categorisation according to transcript 

function.     
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6.3 Discussion 

   Both monocytes and tissue macrophages provide both immediate defence against foreign agents and 

assist during the activation and development of the adaptive immune response. Within the context of 

human pregnancy a key role for both is anticipated, with critical roles in implantation, placentation, 

fetal development, and parturition anticipated (393). In the decidua, macrophages are postulated to 

participate in both the progression of inflammation, and to promote fetal–maternal immune tolerance, 

tissue remodelling and scavenging of apoptotic cells (15)(16). Furthermore, changes in the immuno-

phenotype, metabolic characteristics, and distribution of peripheral monocytes and decidual 

macrophages have been implicated in the pathogenesis of pregnancy disorders including PET and 

preterm birth (235, 412, 413).  

   The potent effects of vitamin D upon innate monocytes and macrophages are well recognised 

outside of pregnancy, in particular their enhanced antimicrobial defence against pathogens such as 

Mycobacterium tuberculosis(414). What remains less clear is whether similar responses will be 

evident in the decidua, or whether alternative tissue effects such as tissue remodelling, angiogenesis, 

or immune-suppression may be identified.  The potential impact of maternal vitamin D status upon 

fetal cord-derived monocyte phenotype and function is also potentially important, given the 

recognised association between maternal vitamin D deficiency and adverse neonatal outcomes, 

including bone health, respiratory disease and sepsis (415, 416).  

6.3.1 A distinct immune cell population persists in third trimester decidua 

comparative to cord and maternal blood 

   The present study provides a detailed analysis of vitamin D and its effects upon matched monocyte 

and macrophage subsets present in ‘healthy’ maternal blood, cord blood and third trimester decidual 

tissues. Albeit T cells were prominent in both, relative total CD3 frequencies were increased in 

maternal blood (59.4%) compared to cord (45.8%), with lower CD4 and CD8 relative frequencies.  

No difference in NK or APC subsets was measured. Previous larger cohort studies have similarly 

reported lower T cell, B cell and NKT frequencies in neonatal cord blood, with higher monocytes and 

Treg cells measured (417).   
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   In the decidua, initial third trimester analysis indicates a notable shift in the relative proportion of 

leukocyte subsets resident within decidua. Principally, a marked decrease in the preponderance of 

uNKs was observed, representing ~20-30% of total leukocytes comparative to ~50-60% in first 

trimester. This is consistent with previous reports (418), and likely reflects a principal role for uNKs 

in early spiral artery remodelling and trophoblast invasion (419). Albeit at term uNKs are still highly 

prominent compared to maternal blood, their function remains more poorly defined.  With adaptive T 

cells representing the major immune subset, a more prominent role for the adaptive immune system is 

recognised with advancing gestation (317, 420). Here, the relative proportion of both CD4+ and 

CD8+ cells increased at term. Albeit not characterised here in further detail, it is important to 

recognise certain T cell subset protect the fetus from immune rejection and facilitate development, 

whilst others may contribute to pregnancy pathologies such as PET.  Previous reports have identified 

significantly higher percentages of CD4+CD25bright and CD8+CD28− T-cells in third trimester 

decidua compared to peripheral blood, suggesting an important role for Treg subsets locally (421). 

This may reflect the observed increased T cell prominence in term decidua measured here.  

   Conversely the relative prevalence of APCs appeared lower with advanced GA, representing <10% 

at term. In mice, the number of uterine macrophages at 15d (4d pre-delivery) is reportedly 

significantly higher compared to non-pregnant controls. In this study concentrations returned to non-

pregnant levels 1d prior to birth (317, 422). However there is conflicting evidence which supports 

enhanced macrophage recruitment at term, with increased myometrial CCL-2 monocyte/macrophage 

chemoattractant expression measured at d18 relative to earlier gestational time-points (423). In human 

decidua decreased CD14+ frequencies measured at term in 3rd trimester healthy samples compared to 

those obtained from both first and second trimester pregnancies (317).  The reason for these 

discrepancies is uncertain.      

6.3.2 Detailed monocyte and macrophage subset analysis reveals stark differences in 

third trimester decidua 

   Here we report a detailed analysis of monocyte and macrophage subsets comparatively in cord, 

maternal blood and decidua. This was performed in the first and third trimester utilising recognised 
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markers for subset differentiation; CD14, CD16 and intracellular CD68 markers. For the peripheral 

monocyte subsets, the proportion of non-classical (CD14+CD16++), intermediate (CD14++CD16+) 

and classical (CD14++CD16-) subsets was assessed (370, 424).  

   In maternal blood, classical subsets were most prominent in both trimesters representing ~66% and 

75% respectively. Consistent with this, classical subsets were predominant (74%) in third trimester 

cord blood. In both, a smaller population of non-classical subsets was measured, whilst the relative 

frequency of intermediate subsets was low in both. In the non-pregnant state, classical subsets are 

often more prevalent, representing at least 80-90% of the total monocyte population (374, 408). Here 

a more detailed gating strategy was utilised to ensure exclusion of potential contaminants prior to 

analysis, including T cells, neutrophils, NK cells and B cells, which may explain the difference in 

subset relative proportions. Consistent with our data, the percentage of combined non-classical/ 

intermediate monocytes has previously been reported to be higher from the first trimester in humans 

as compared to non-pregnant controls(376). The proportion of non-classical subsets was also higher 

than intermediate subsets for both.  

   Understanding the functional differences between monocyte subsets remains a challenge. Outside of 

pregnancy, classical monocytes are recognised as key mediators of the direct innate effector immune 

response and phagocytosis and tissue remodelling, releasing a range of inflammatory effector CK in a 

TLR-dependent manner following pro-inflammatory LPS stimulation. Within the context of 

pregnancy, functional changes in monocytes from pregnant women are now demonstrated, including 

increased production of oxygen free radicals(235) and decreased phagocytosis(385). The shift in 

peripheral monocyte subsets observed here appears consistent with the theory that pregnancy is a pro-

inflammatory condition, as increased numbers of combined non-classical/intermediate monocytes 

have been associated with several inflammatory diseases and  malignancy (378). 

   Conversely, non-classical monocytes appear poorly phagocytic and do not generate reactive oxygen 

species. They do display ‘inflammatory’ characteristics upon activation, and properties for antigen 

presentation (408), demonstrating infiltration into resting and inflamed tissue where they may initiate 

the inflammatory response (424). Intermediate monocytes display both phagocytic and inflammatory 
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function, with higher levels of MHC II for antigen presentation, and receptors relevant to 

angiogenesis(374).  

   Here we consider decidual tissue macrophages utilising the same gating strategy as monocytes to 

compare CD14 and CD16 surface expression, and intracellular CD68. In the first trimester a 

CD14++CD16- subset (~63%) analogous in appearance to the classical monocytes was most 

prevalent, with only 8.6% CD14+CD16++ and 23% CD14++CD16+ frequencies measured. 

Circulating monocytes are considered tissue macrophage precursors which extravasate from the blood 

and develop into resident macrophages(393). Our findings indicate this arises from the first trimester. 

However, since pre-pregnancy endometrial macrophages are also shown to be important in 

breakdown, repair, and regeneration of endometrium during the menstrual cycle (425), the extent to 

which first trimester subsets reflect classical monocyte recruitment remains unclear, with further 

follow up studies required.   

   In the third trimester a stark shift was observed, with ~84% of cells CD14++CD16+ and more akin 

to an intermediate monocyte phenotype. The observed increase in CD16 and lower CD14 expression 

is commonly defined when comparing macrophages to peripheral monocyte subsets (426). 

Inflammation is present at the materno-fetal interface and results in resident macrophage activation, 

which increases the production of CK, chemokines, and other inflammatory mediators, as well as 

monocyte recruitment. A gestational shift has also previously been observed, when comparing second 

and third trimester decidua subsets (427).  

   Consistent with the first trimester, intracellular CD68 expression in the decidua CD14++CD16+ 

subsets was higher than for the CD14++CD16- subsets. As a recognised macrophage marker, CD68 

was not expressed in the classical CD14++CD16- monocyte subsets in either the maternal or cord 

blood. Importantly, CD68, which binds to tissue- specific lectins or selectins, is highly expressed by 

tissue macrophages. It is also a member of the scavenger receptor family, which classically function 

to clear cellular debris, promote phagocytosis, and mediate the recruitment and activation of 

macrophages. Since CD68 immuno-reactivity has been detected in other cell types, including DCs, 
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NK cell and endothelial cells, a strict exclusion gating strategy was applied to define our monocyte / 

macrophage population (428).  

6.3.3 Decidual macrophages positively express a range of recognised ‘M1’ and ‘M2’ 

markers 

   To elucidate the potential role of circulating monocyte and tissue macrophage subsets in pregnancy, 

protein expression of a range of recognised markers was assessed. This was performed using whole 

blood and decidua to avoid surface protein alterations, which may arise as a result of the CD14+ bead 

isolation procedure. Although important to note that DCs are CD14+CD16-, these cells represent only 

1-2% of all CD45+ cells within the decidua, thus were not considered significant contaminants (369).   

   To date, studies exploring the characteristics and functional responses of cord monocytes have been 

relatively limited. Overall, cord and maternal classical subset surface expression appeared relatively 

analogous between the two sites, with no significant differences measured. This is consistent with 

Sohlberg et al, who assessed CD153, HLA-DR, CD80 and CD86 using a similar classification (429). 

However, it is recognised that the haemopoietic and immune function of activated cord blood 

leukocytes comparative to maternal leukocytes appears developmentally immature with reduced 

effector functions (430). This may account for the lower expression of HLA-DR, CD163 and CD86 

measured, albeit not significant.  Overall, both maternal and cord CD14++CD16- subsets positively 

expressed a range of recognised classical markers, including TLR-2, CD86, and HLA-DR.   

   Considering the tissue resident macrophage population, the same markers were applied. Our 

findings confirm decidua macrophages do not conform to the simple bipolar classification, with 

positive expression of a range of M1 and M2-associated genes. Comparison of first trimester 

CD14++CD16- decidua and maternal subsets revealed significantly lower TLR-4, TLR-2 and CD86 

expression in those from decidua. This appears consistent with a dampened pro-inflammatory 

phenotype at the materno-fetal interface (431). Gustafsson et al identified in first trimester 

macrophages that few upregulated decidua genes were signature of classically activated M1 

macrophage phenotype, whilst several corresponded to markers of alternatively activated 
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macrophages, such as CD209 (431). Another previous microarray analysis comparing decidua 

macrophages and maternal monocytes failed to categorise subsets according to traditional ‘M1’ and 

‘M2’ classification system however, with first trimester decidual macrophages producing both 

inflammatory and anti-inflammatory CKs including TNF-α, IL-10 and TGF-β (390). Here, CD209, 

HLA-DR and CD163 were strongly expressed in decidua subsets, whilst CD86, TLR-4, and dectin 

were low. Overall, this is consistent with previous reports, in which CD14+ decidual macrophages 

expressed high CD209, HLA-DR, and CD68, with low CD80, CD83 and CD86 (431). Traditionally 

CD209 and CD163 are considered M2 markers, generally associated with an alternative macrophage 

activation profile. Upregulation of CD209 in decidua has previously been characterised, and appears 

an early pregnancy event potentially induced by the invading trophoblast / pregnancy specific factors 

since this is not expressed by cells in the endometrium (432). CD163, a member of the scavenger 

receptor family and recognised tissue resident marker has been reported to exert an anti-inflammatory 

function (433).  Consistent with these findings, mixed leukocyte reaction studies have been used to 

demonstrate a suppression of mitogen-induced proliferation of decidual macrophages comparative to 

their peripheral blood counterparts, indicating a functional suppressive phenotype is favourable for 

maintenance of the semi-allogeneic fetus (434). During the peri-implantation period, decidual 

macrophages appear skewed towards an M1 phenotype after which they transition in response to EVT 

invasion of the uterine stroma (435).Overall, M2 macrophages then appear predominant, with typical 

M2-associated markers, including CD206, and CD209, low co-stimulatory CD86, and high IL-10 

reported previously (390). This balance may explain how tissue macrophages exert such heterogenic 

roles, including host defence, immune regulation, tissue development, angiogenesis, and tissue 

remodelling and repair (393, 431).  

 

6.3.4 Decidual macrophages demonstrate differential transcript expression and 

responsivity of the vitamin D metabolic system  

   To our knowledge, this is the first time the vitamin D metabolic system has been characterised in 

purified CD14+ decidua-derived subsets and compared to paired cord and maternal blood subsets. As 
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anticipated, maternal and cord blood CD14+ subsets demonstrate the capacity to detect and control 

1,25(OH)2D3 via regulation of CYP24A1. Specifically, when there is sufficient local 1,25(OH)2D3, 

CYP24A1 expression is enhanced. In response to LPS stimulation a marked shift towards 

1,25(OH)2D3 production and maintenance was evident. Consistent with this, both cord and maternal 

monocytes express VDR, and upregulate its expression in response to LPS. Pinzone et al, who used 

monocytes from healthy volunteers, found LPS (100ng/mL) significantly upregulated CYP27B1. As 

shown here, LPS had no effect on CYP24A1, but decreased VDR expression in the first 24h (436); the 

reason for this discrepancy is unclear. Within the context of M. Tb, TLR activation similarly induced 

VDR expression in human monocytes and macrophages (437). Overall, our findings appear consistent 

with previous reports.  

   Albeit decidua-derived macrophages also express the vitamin D metabolic apparatus, a unique 

responsivity to both 1,25(OH)2D3 and LPS was clearly evident.  Within the decidua, macrophages 

express constitutively higher CYP27B1 and CYP24A1 than those circulating peripherally. However, 

neither LPS nor 1,25(OH)2D3 affected expression. In healthy human alveolar macrophages CYP27B1 

expression appears highly dependent upon prior stimulation, such as by LPS. However, alveolar 

macrophages obtained from patients with sarcoidosis demonstrate 1,25(OH)2D3 synthesis without 

prior stimulation (405). High constitutive CYP27B1 expression in the decidua may similarly reflect 

prior macrophage priming within the pro-inflammatory CK milieu at the materno-fetal interface. 

CYP24A1 expression was similarly constitutively higher at baseline, with only modest upregulation 

measured in response to 1,25(OH)2D3. Previously we have shown that within the decidua 

1,25(OH)2D3 concentrations are markedly higher than the fetal placenta (104). High exposure to 

1,25(OH)2D3 concentrations  in the decidua may have already induced increased CYP24A1 

expression at baseline, with no further negative feedback therefore evident.  However, whether this 

represents an alternative splice variant of CYP24 which encodes a dominant negative-acting protein 

which is catalytically inactive and permits accumulation of decidua 1,25(OH)2D3 was not ascertained 

(438).      
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   VDR expression remained low across the 4 culture assays compared to maternal and cord subsets, 

with no effect of 1,25(OH)2D3 or LPS measured. This may reflect a paracrine role for locally-

generated 1,25(OH)2D3 upon neighbouring  VDR-expressing cells, such as T cells. Previous reports 

within the context of T cells have shown addition of inactive 25(OH)D3 is only sufficient to alter T 

cell responses in the co-presence of bystander APCs(330). Mechanistically, CYP27B1 is induced in 

DCs upon maturation with LPS or T cell contact resulting in the generation and release of 

1,25(OH)2D3, which subsequently affects T cell responses. It is also possible the decidua resident 

subsets are more mature. For many years, the key action of vitamin D upon macrophages was 

considered its ability to stimulate differentiation of precursor monocytes to mature phagocytic 

macrophages, as supported by the differential expression of VDR and CYP27B1 at different stages of  

differentiation (439).   

   The recognised vitamin D target cathelicidin antimicrobial peptide transcript was upregulated in 

both cord and maternal subsets following treatment with 1,25(OH)2D3 (41). Conversely, upregulation 

of cathelicidin in response to 1,25(OH)2D3 or LPS was not evident in CD14+ decidua subsets, with 

relative expression lower comparative to both peripheral CD14+ subsets. Within the decidua a 

differential role for vitamin D is apparent, which may be less concerned with innate immunity (440). 

Within the placental trophoblast and decidua, cathelicidin expression has been measured previously 

(441, 442). Here Lim et al found treatment of fetal membranes and myometrium with cathelicidin’ s 

active component LL-37 significantly induced pro-inflammatory CK IL-6 and TNF-α, and 

chemokines IL-8 and MCP-1, and induced pro-labour mediators (442). As our samples were from 

pregnant women undergoing ELCS (not in labour) delivery, lower cathelicidin expression may reflect 

a pro-tolerogenic materno-fetal environment.  

   IFN-γ expression was relatively low in maternal and cord CD14+ subsets, whilst decidua CD14+ 

expression was high at baseline, with only modest receptivity to LPS.  In murine models, IFN-γ is 

vital for normal placentation. Specifically, IFN-γ null mice exhibit inappropriate decidualisation and 

spiral artery modifications, and significant fetal loss (333). Treatment with IFN-γ restores normal 
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decidual and arterial morphology(333).  The marked induction of IFN-γ in the decidua subsets may 

suggest an important role in the third trimester also. 

   In contrast to the cord, maternal monocytes demonstrated ~5-fold greater upregulation of IFN-γ in 

response to LPS. We anticipate this may simply reflect the relative immaturity of cord subsets, with 

this enhanced maternal response to LPS reflecting more efficient generation of a pro-inflammatory 

M1 phenotype.  Interestingly, both maternal and decidua CD14+ subsets showed partial IFN-γ 

suppression in the co-presence of 1,25(OH)2D3, however as this was not significant the validity of 

this response is not yet certain. Traditionally, both monocyte and macrophages are considered targets 

rather than producers of IFN-γ (443). However, more recent studies have suggested macrophages 

secrete IFN-γ in response to various stimuli with roles in the early phase of host response against 

infectious agents(444). Within the placenta, a role for VDR-dependent 1,25(OH)2D3 mediated 

inhibition of pro-inflammatory CKs, including IFN-γ, IL-6 and TNF-α has been reported (332).   

   IL-6 and TNF-α, both recognised innate immune markers in peripheral monocytes (411), were 

markedly upregulated in both cord and maternal CD14+ subsets in response to LPS-stimulation. 

Notably, the decidua-derived CD14+ subsets demonstrated constitutively higher expression. In 

response to LPS+1,25(OH)2D3 co-treatment, expression decreased at all 3 sites, albeit not significant. 

Previous reports have in range of cell types (445, 446), including monocytes (402, 436, 447) reported 

1,25(OH)2D3-mediated IL-6 downregulation. However, the influence of 1,25(OH)2D3 upon 

monocytes/macrophages appears dependent upon the degree of maturation, and stimulus employed 

(448). This is anticipated an immunomodulatory mechanism to control expression of innate pro-

inflammatory mediators (448). Within first trimester decidua, IL-6 is postulated to be involved in 

tissue remodelling and placentation, whilst in the third trimester its function appears relatively 

unclear. Significantly higher decidual concentrations have been measured within the context of 

clinical chorioamnionitis and PET (449, 450).  

   1,25(OH)2D3 has also recently been shown to suppress LPS-induced TNF-α in THP-1 cells and 

human primary monocytes (451). In human peritoneal macrophages, incubation with 1,25(OH)2D3 

prior to stimulation with LPS inhibited TNF-α expression at both an mRNA and protein level (452).  
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Peripherally this may similarly be anticipated to support an immuno-modulatory role.  TNF-α has 

previously been shown to be constitutively produced in the decidua and its secretion by decidual cell 

suspensions has been shown to be enhanced by LPS.  There is also some evidence that third trimester 

macrophages increase production of TNF-α in response to infection, thereby contributing to an 

intrauterine inflammatory reaction and risk of preterm labour(453).  

6.3.5 Whole transcriptome analysis of third trimester paired cord, maternal and 

decidua monocyte and macrophage subsets 

   Our principal objective was to compare vitamin D effects upon peripheral materno-fetal blood 

monocytes and decidua-derived macrophage populations utilising a non-biased whole transcriptomic 

approach. To optimise monocyte / macrophage purity, FACS technology was utilised, with a method 

adapted from Mukherjee et  al (408) which sequentially excluded neutrophils, NK cells, B cells and T 

cells from analysis prior to FACS. Given the lack of evidence as to how 1,25(OH)2D3 may function 

within the decidua, detailed analysis of the whole CD14+ monocyte/ macrophage  population was 

decided most informative, particularly given the stark differences in the relative subset frequencies 

measured between decidua and peripheral blood. 

   Pro-inflammatory LPS was utilised, as a well-recognised monocyte and macrophage activator (454). 

Based upon our initial studies we anticipated activation with LPS would enhance the potential 

transcriptomic comparisons between the three groups. Previous studies using DNA microarrays have 

revealed greater transcript differentially expressed following LPS activation in cord monocytes, with 

significant transcriptomic variations compared to adult peripheral blood monocyte subsets (371). 

Albeit our analysis suggested some evidence of differential responsivity to LPS in maternal and cord 

monocytes, with 219 (2.8%) transcripts differentially expressed, this was not explored further here.  

   Notably decidua subsets appear highly distinct from matched peripheral fetal and maternal subsets. 

This is clearly highlighted by PCA analysis, in which LPS treated decidua-derived macrophages were 

consistently the major source of variance compared to both LPS-treated maternal and cord monocytes. 

Overall 31.8% and 30.3% of cord and maternal transcripts respectively were differentially expressed 
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comparative to the decidua following LPS stimulation. In both, approximately twice as many 

transcripts were downregulated in the decidua. Comparing these genes, a significant degree of overlap 

was observed with 63% and 54% differentially expressed transcripts shared between the maternal LPS 

vs. decidua LPS and cord LPS vs decidua LPS groups respectively.  Consistent with this, whole 

transcriptomic analysis of monocyte to macrophage differentiation and polarised activation recently 

demonstrated monocyte maturation to be associated with significant global transcriptome 

modifications (455). Specifically, monocyte-to-macrophage differentiation involved modulation of 

genes involved in cell cycle activation, metabolic activities, lipid metabolism, and G protein-coupled 

receptor and chemokine signalling(455). Previous microarray analysis of CD14+ blood and 

endometrial monocyte and macrophage subsets in pregnant cows suggested a common mononuclear 

lineage, but with highly diverse functions. Overall, 13,422 genes expressed in both cell types, with 

450 genes exclusively expressed by endometrial CD14+ cells and 1,386 genes expressed exclusively 

by blood CD14+. A preponderance of genes implicated in cell signalling, migration and cell motility 

in the blood monocytes was measured, whilst genes with key roles in immune regulation, tissue 

remodelling, angiogenesis, and apoptosis were measured in the endometrial macrophages (456). 

Previous microarray–based comparison of paired unstimulated CD14+ maternal, cord and placental 

fetal trophoblast-derived Höfbauer cells reported a close resemblance in the molecular signature of 

monocytes from maternal blood and the placenta. Overall, 73% transcriptome homology was 

identified, with quantitative rather than qualitative differences measured.  Consistent with our data, 

cord and maternal transcript expression was comparatively highly analogous. The placental CD14+ 

cells were consistent with a tissue resident subset reflecting clusters of both classic-M1 and adaptive-

M2 subtypes, with over-representation of chemokines, pro inflammatory CK and pro-regulatory CK. 

By contrast the maternal monocytes strongly expressed genes related to leucocyte adhesion and 

chemotaxis, antigen presentation and pathogen recognition and response (457). These findings 

support our primary hypothesis, that within the decidua a unique immune cell population exists, 

which is disparate to circulating peripheral maternal and those of fetal origin (i.e. fetal cord blood and 

placental trophoblast)(457). 
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6.3.6 Differential regulation of third trimester maternal blood, cord blood and decidua 

monocyte and macrophage subsets by 1,25(OH)2D3 

   Previous studies delineating the non-classical effects of vitamin D upon immune cell function have 

demonstrated a greater functional responsivity of both innate and adaptive subsets within the context 

of immune cell activation (56, 330). This is mediated in part by increased expression of VDR in 

activated immune cells(353), which was here measured in both the cord and maternal subsets. The 

high number of differentially expressed 1,25(OH)2D3 targets measured in the decidua macrophages 

was perhaps not anticipated given the relatively lower VDR expression measured. However it is 

recently understood that the VDR transcriptome demonstrates significant diversity, being both cell 

type and time dependent(458). Classically 1,25(OH)2D3 mediated transcript activation and 

suppression of target genes arises via VDR binding, dimerization with RXR and subsequent complex 

formation with VDRE in the promotor regions of select target genes, such as CYP24A1, BGLAP61 

and CA2. ChIP-sequencing has uncovered many of the molecular processes governing vitamin D-

mediated transcription, leading to the identification of novel regions within the genome to which 

vitamin D-induced VDR/RXR binds. Co-repressors and coactivators are then recruited to promote 

gene expression (458). However, only a limited number of genes contain VDREs in their promoter 

regions and are under the direct transcriptional control of 1,25(OH)2D3. Indirect modulation of 

signalling cascades or unknown non-genomic mechanisms also appear at play. This may account for 

the broad spectrum of functional transcript targets for vitamin D identified (459). Present models of 

vitamin D signalling indicate that 1,25(OH)2D3-mediated primary target gene activation via VDR 

binding to its genomic sites occurs within 2–3h.  The majority of non-genomic secondary target genes 

demonstrate a significant transcriptional response 4h post 1,25(OH)2D3 exposure. By selecting a 24h 

time-point both primary and secondary vitamin D target genes should have been detected in our study. 

Albeit not possible to discern between these early and late targets, both the primary and secondary 

effects of vitamin D were of interest (199, 460).    

   Overall, only 2 shared transcripts, CA2 and EFL1, were upregulated by vitamin D in all 3 subsets.  

The finding that 1,25(OH)2D3 upregulated CA2 is consistent with previous reports in mononuclear 
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bone marrow cells, in which vitamin D promoted differentiation towards an osteoclast phenotype and 

subsequent bone resorption activity (461, 462). Monocytes and macrophages also express CA2, albeit 

at low levels comparative to the osteoclast lineage (461). CA2 encodes carbonic anhydrase, which is 

involved in the reversible hydration of carbon dioxide and is widely distributed across human tissue 

sites, with important roles in gas transport, acid/base regulation and key biosynthetic reactions 

including gluconeogenesis, lipogenesis, and tumorigenesis (463). Importantly, the uterine 

endometrium also expresses CA2, with its enzymatic activity doubling during the luteal phase of the 

menstrual cycle. Furthermore, in women suffering from recurrent pregnancy loss, higher frequencies 

of serum CA2 auto-antibodies have been measured (464). The underlying significance of this and the 

role of 1,25(OH)2D3-mediated CA2 up regulation in cord, maternal and decidua subsets is not yet 

clear, but warrants future investigation.  

   Considering EFL1, which encodes elongation factor 1 this is involved in the biogenesis of the 60S 

ribosomal subunit and translational activation of ribosomes. More recent ribosome studies also 

suggest a key role in tRNA and mRNA translocation (465). Importantly, defective late maturation of 

the 60S ribosomal subunit may impair translational control, with subsequent tumour progression. To 

our knowledge no previous studies delineating the effects of 1,25(OH)2D3 upon EFL1 are reported. 

How this upregulation may influence monocyte and macrophage function is not clear, but it is 

plausible this serves as a control during cell development and function in the context of immune 

stimulation.  

   In the cord and maternal subsets, 16 shared transcripts were identified. These were highly 

heterogenic, with roles in regulating genomic processing and cell processing, including cell 

proliferation, migration and apoptosis most prominent. As only a small number of transcripts were 

identified overall as significant for the maternal and cord subsets, the degree of overlap was marked. 

Conversely, for the decidua, other than CA2 and EFL1, only DIRC2 was shared with 1,25(OH)2D3-

treated cord subsets, with a similar trend also measured in the maternal subsets (fold-change 1.64, 

p>0.05).  
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   In the maternal blood, treatment with 1,25(OH)2D3 significantly altered 41 (0.53%) transcripts 

compared to LPS alone, primarily upregulating genes associated with cellular function (n=13; 31.7%), 

relating to cell migration, adhesion, apoptosis and intracellular trafficking; Importantly 9 (69.2%) of 

these were also significantly upregulated in the cord group, for which 40 (48.2%) of the total 83 

transcripts significantly differentially expressed in the vitamin D group related to cell processing, in 

particular regulation of monocyte apoptosis, trafficking, adhesion and proliferation.  

   Genomic processing was also a prominent vitamin D regulated group for both cord and maternal 

subsets, with 14 (16.9%) and 10 (24.3%) measured respectively.  Of these, 4 were shared; NRIP1, 

ZFP36L1, ASCC1 and EFL1, all of which are implicated in mediating gene translation, transcription 

and ribosomal processing (465, 466). In both a number of transcripts were also concerned with 

mRNA splicing and processing, and cell cycle regulation, including maternal LSM5, PRPF19, 

SNRPF, ANAPC10 and cord NCBP2, SIN3B transcripts. Together these results indicate that vitamin 

D, like other nuclear steroids, exerts important genomic actions upon monocyte subsets. A common 

anti-proliferative VDR function is associated with arrest at G0/G1 of the cell cycle, coupled with 

upregulation of a number of cell cycle inhibitors (467). This is highly relevant as chromatin 

modification, transcription, translation, RNA processing and post-translational modification provide 

the major checkpoints for a cell to regulate overall gene expression. These vitamin D mediated 

epigenomic changes may represent an initial step in the modulation of the monocyte transcriptome. 

Consistent with this, in THP-1 cells it has been shown using formaldehyde-assisted isolation of 

regulatory elements sequencing that the chromatin accessibility of approximately 9000 loci was 

significantly altered by 1,25(OH)2D3. Maximal chromatin opening was observed after 24h. These 

findings suggest that a large number of 1,25(OH)2D3-triggered epigenome-wide events precede and 

accompany the transcriptional activation of target genes (468, 469).  

   A number of transcripts were also involved in energy metabolism in both 1,25(OH)2D3-treated 

maternal (7; 17.0% ) and cord blood (10; 12.0%) monocytes. Regulation of a number of markers of 

both lipid and glucose metabolism, including maternal ACBD6, SDHAF1, DPP4, CA2 and cord 

APOBR, SAT1, B3GNT2, SCD, DPP4, CA2 and INSR, were regulated by vitamin D in both. DPP4, 
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which was upregulated by vitamin D in both is best known for its enzymatic ability to inactivate the 

incretin hormones. Within the context of type-2 diabetes, DPP4 inhibitors improve glucose 

metabolism via prolonged insulin release and trophic beta cell effects(459). However, beyond this a 

much broader functional role is now recognised. In epithelial cell lines, transfection with DPP4 

decreases cell migration and increases apoptosis. Similarly, in a range of cancer cell lines DPP4 

overexpression resulted in pronounced anti-tumorigenic effects, including inhibition of in vitro cell 

migration, growth, and increased apoptosis (459). Consistent with our data, DPP4 is upregulated in 

breast cancer tumour cells (alongside CA2) post exposure to 1,25(OH)2D3 (470). Upregulation in 

artery smooth muscle cells exposed to 1,25(OH)2D3 is also reported, with enhanced apoptosis 

prominent (471). It appears that the actions of vitamin D upon DPP4 are cell-type specific, as in type-

2 diabetes, downregulation is instead reported (472).Within the context of immune function, DPP4 is 

expressed on a range of innate and adaptive subsets, including monocytes. For T cells, a co-

stimulatory role with Th1 activation and proliferation is characterised (459), however a pro-regulatory 

role is also evident; within the context of antigen-induced arthritis DPP4-deficient mice demonstrate 

increased disease severity with evidence of dysregulated pro-inflammatory chemokine release (473). 

The effects of vitamin D upon DPP4 expression in immune cell subsets is to our knowledge yet to be 

characterised, but shall likely be pregnancy and monocyte specific.  

   Albeit only a small number of immune transcripts were regulated by vitamin D in the maternal and 

cord monocytes (3 maternal and 7 cord), overall our data indicates an immuno-regulatory role for 

vitamin D within the context of pregnancy. In the maternal subsets, CD276 was significantly 

downregulated in those treated with LPS and vitamin D comparative to LPS alone. This co-

stimulatory molecule participates in the regulation of T-cell mediated immune response, with 

expression markedly induced on monocytes by inflammatory CK (474). Importantly, this 

costimulatory molecule co-stimulates proliferation of CD4+ and CD8+ T cells, thereby enhancing the 

induction of cytotoxic T cells and selectively stimulating IFN-у production in the presence of T cell 

receptor signaling.  Consistent with this, IFN-induced protein with tetratricopeptide repeats (IFITs-5), 

which is involved in innate immune defense was also significantly downregulated by vitamin D (475).  
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   In the cord, THEMIS2 and KIAA1804, which are both negative regulators of TLR-4 mediated 

signaling were upregulated by vitamin D, which may suggest an overall suppression of this 

inflammatory pathway. In monocytes, 1,25(OH)2D3-medaited induction of hypo-responsiveness to 

pathogen-associated molecular pattern (PAMPs) by downregulating expression of TLR-2 and TLR-4 

on monocytes has previously been shown, which may limit inflammatory T cell responses (403). 

Oncostatin M, a CK and growth regulator that inhibits the proliferation of a number of tumour cell 

lines and regulates the production of pro-inflammatory CK, such as IL-6, was also upregulated by 

vitamin D.  Furthermore, CD40, a well-documented receptor on APCs which is critical for mediating 

a broad variety of immune and inflammatory responses was significantly downregulated(476). 

Finally, IFITIM3, an IFN-induced antiviral protein, which inhibits the entry of viruses to the host cell 

cytoplasm(477), was again downregulated by vitamin D.  Inconsistent with our data, within the 

context of normal healthy adults and cancer, monocytes/ macrophages have been shown to be enhance 

cellular cytotoxicity and phagocytosis following exposure to 1,25(OH)2D3(478, 479). This includes 

1,25(OH)2D3-mediated antibacterial defense, with induction of phagocytosis and antimicrobial 

peptides evident. This may have been anticipated here given our previous finding that vitamin D 

markedly induced cathelicidin mRNA expression in unstimulated CD14+ monocytes. However, 

interestingly this was not observed in the co-presence of LPS stimulation. The reason for this is not 

certain, but may be pregnancy specific, and warrants further study.  

   Previous reports of immune effects upon vitamin D upon peripheral monocytes have otherwise been 

relatively heterogenic with a range of pro-regulatory anti-inflammatory actions also described (480, 

481). Rigby et al, using healthy adult monocytic cells found vitamin D to decrease monocyte function 

as an APC. Specifically, vitamin D pre-treatment induced a defect in accessory T cell function and 

proliferation. However, these effects were only significantly altered by 1,25(OH)2D3 at >24h, with 

decreased T cell proliferation observed only at 40h (482). Previous microarray analysis of 

1,25(OH)2D3-regulated gene expression in THP-1 cells showed that 46 genes were differentially 

expressed after 2.5h, 288 at 4h and 1204 at 24h. Furthermore, combined 1,25(OH)2D3 (100nM) and 

glucocorticoid treatment of PBMCs at different time points (8 and 24h) similarly revealed time-
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dependent variations in transcriptional responses to 1,25(OH)2D3, with enrichment of genes 

associated with immunomodulation and immune defense occurring only after 24h (341).  

   Given the range of metabolic and pro-regulatory immune targets identified, it is interesting to 

consider their combined role in relation to monocyte function ‘immuno-metabolism’. It has long been 

known that macrophage function and metabolism are connected. For instance, glutamine and L-

arginine metabolism has been recognised to be involved in macrophage functions like nitric oxide 

production, microbicidal activity, and phagocytosis(483). For example, circulating fatty acids activate 

TLR-4 signalling in adipocytes and macrophages.  Moreover, mice lacking TLR-4 are protected from 

the ability of systemic lipid infusion to (a) suppress insulin signaling in muscle and (b) reduce insulin-

mediated changes in systemic glucose metabolism. These data suggest the innate immune system 

participates in the regulation of energy balance and insulin resistance in response to changes in the 

nutritional environment. Here we show LPS mediated transcript expression is altered by vitamin D, 

with a number of metabolic markers related to glucose metabolism differentially expressed (484).  

   Unlike the cord and maternal subsets for which most transcripts were upregulated by 1,25(OH)2D3, 

in the decidua both up (45.3%) and downregulation (54.7%) of transcripts was evident. Notably, 

despite relatively lower VDR expression, the number of differentially expressed targets was increased 

comparative to both peripheral monocyte subsets. To our knowledge, this is the first study comparing 

the relative responsivity of paired monocyte and macrophages subsets to vitamin D. Whether 

increased VDR sensitivity is a common feature of tissue resident or decidua specific macrophage 

subsets is not known. There is evidence to suggest VDR activity is highly cell-specific with 

significant variability in its downstream signalling effects, with possible explanations including 

differing tissue specific N-terminal VDR variant expression, post transcriptional epigenetic 

modifications to VDR,  or alternative chromatin modifications (467).   

   Considering those decidual macrophage targets identified, vitamin D primarily targeted genes 

related to genomic processing. A predominance of transcripts positively implicated in protein 

synthesis was measured, in particular those related to transcription activation, RNA transport, histone 

modification and cell-cycle progression, including SETSIP, RGPD3, ZNF432, HIST1H4K and PKN2. 
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It has been suggested that signals propagated in the utero-placental environment may contribute to 

amplification of inflammation at the maternal-fetal interface through activation and reprogramming of 

maternal monocytes(457). Albeit not ascertainable from our data alone, we anticipate these genomic 

modifications may in part reflect monocyte-to-macrophage differentiation given vitamin D is already 

implicated in this process outside the decidua (104). This process evokes significant transcriptome 

changes, including alteration of cell cycle genes, metabolic activities, lipid metabolism,  and 

chemokine signalling (455). Previous reports similarly describe significant alterations in genomic 

targets during macrophage differentiation, including over-representation of cell cycle and cell 

division-associated proteins (455).   

   A high preponderance of transcripts relating to cell processing, in particular vesicle mediated 

transport (KLC4, USP6NL, INPP5E, SYS1, CTAGE5 and TMED1), intracellular trafficking (BBS10, 

ARFIP1, SYS1, BRK1, DIRC2, VPS36, NXT2, TOMM20, GGA3 and TANGO6), migration and 

adhesion (S100A12, DOCK1, CDK18, PKN2 and VAV2), cell growth / proliferation (OVCA2, 

PSMD10, FRMD6, ZFYVE28, LAMTOR4, PSMD10, PPP1R37, and FAM72A) and apoptosis 

(OVCA2, SGMS1, MAP3K7, PPP1R37, PTRH2, RABGGTA, FRMD6, ATG101, CAMKK2 and 

WIPI2) regulation were identified for the decidua macrophages. Given the heterogenic effects upon 

transcript expression, how vitamin D may influence overall function is difficult to ascertain without 

further validation studies.   

   Our data indicates vitamin D promotes autophagy, which contributes to anti-aging, antimicrobial 

defence, and tumour suppression, playing a key role in overall tissue homeostasis(485). Macrophages 

have previously been implicated in phagocytosis and apoptotic cell and trophoblast cell debris 

clearance, via the secretion of extracellular matrix proteins and CK. This supports cross-gestation 

effects upon decidualisation and tissue remodelling, with regulation of placental cell invasion, and 

angiogenesis reported. It is also suggested this apoptotic cell clearance induces an 

immunosuppressive, anti-inflammatory macrophage phenotype (486). This is consistent with a pro-

apoptotic role for vitamin D as described in breast-derived mammary cells, in which 1,25(OH)2D3 

modulated autophagy in a VDR-dependent manner. Interestingly, this autophagy-related gene 
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expression signature, was absent in those cells with cancer (487). Autophagy can be induced by a 

range of factors, including cellular stress and hypoxia, and represents a key host defence strategy to 

remove the harmful stimuli via lysosomal degradation. Importantly, in our data-set WIPI2 transcript 

was upregulated in response to vitamin D. This encodes an early component of the autophagy 

machinery, which is involved in formation of mature degradative phagosomes. Autophagy Related 

101, which conversely stabilises ATG13 thereby protecting it from proteasomal degradation and 

autophagy initiation was downregulated by vitamin D(485).   

   As eluded to, vitamin D mediated modulation of genes involved in cellular metabolism was a 

prominent feature of the decidua macrophages.  This included targets relating to glycogen storage, the 

mitochondrial respiratory electron chain, fatty acid breakdown, and phospholipid biosynthesis. This 

included upregulation of FDX1, a recognised vitamin D target which is an electron mediator involved 

in multiple physiological processes, including electron donation to cytochrome P450 enzymes, 

thereby driving vitamin D metabolism (488). Macrophage metabolism is connected to their phenotype 

and function, and that metabolism is controlled by cues derived from tissue microenvironment(483). 

As illustrated in Figure 6.18, increased expression of genes relating to glucose metabolism, lipid, 

cholesterol and fatty acid metabolism, and triglycerides synthesis mark macrophage differentiation 

and activation (457). Further delineation of these processes is certainly important, as dysregulated 

macrophage metabolism is associated with metabolic disease. In mice, deletion of macrophage VDR 

is shown to induce insulin resistance by promoting M2 macrophage accumulation in the liver as well 

as increasing CK secretion and hepatic glucose production. Reversal with bone marrow transplant of 

VDR-expressing cells improved insulin sensitivity, suppressed atherosclerosis, and decreased foam 

cell formation (489). It is of certain interest whether dysregulated monocyte / macrophage function is 

implicated in the underlying pathogenesis of gestational diabetes(490). Furthermore, as 

hyperglycaemia manifests as placental-mediated disorder, which is associated with inflammation and 

oxidative stress, aberrant macrophage metabolism and function may help drive this process(491).  
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Figure 6.18 Orchestration of Metabolism by Macrophages. Italicized words indicate macrophage-

mediated functions related to metabolic activities. Red; associated diseases, blue; associated 

biological processes, and the inset; selected metabolic features of polarised M1 and M2 macrophages. 

Elselvier permission approved. (483). 

   Finally, consistent with the cord and maternal monocytes, several immune transcripts were altered 

by vitamin D at 24h in decidual macrophages. Overall, these were consistent with a potential 

immuno-regulatory role for vitamin D. In particular, NRROS, which plays a critical role in 

desensitizing TLR signaling through inhibition of TLR-mediated NF-kappa-B activation and CK 

production(492) was upregulated by vitamin D. This arises via inhibition of reactive oxygen species 

production by phagocytes during inflammatory response. SPG21, which is implicated in suppression 

of T cell activation(493), was also significantly upregulated. Recent reports determining the 

functional role of mid-term and term macrophages found neither could stimulate allogeneic umbilical 

cord blood T cells to express the activation marker CD69. In addition, lymphocyte proliferation was 

impaired in both, indicating decidual macrophages have an impaired capacity to induce T cell 
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activation and proliferation during pregnancy (427). Moving forward, experiments assessing how 

vitamin D affects decidual macrophage-mediated effects upon T cells are of certain interest. We 

postulate altered antigen presentation, with enhanced T regulatory cell induction may be observed.  

   Data from the current study show for the first time that decidual macrophage subsets are an 

important target for 1,25(OH)2D3, with effects distinct to those measured in cord and maternal blood 

monocyte subsets. Overall it appeared decidual macrophages are more responsive to vitamin D 

despite their lower VDR expression, with roles in cell processing, metabolism, RNA processing and 

immune function identified.  The implications of vitamin D deficiency during pregnancy may have an 

important impact upon macrophage function in the third trimester. Further studies are required to 

better understand the functional implications of this.  

6.3.7 Study limitations 

   Through the above studies the potential effects of vitamin D upon third trimester monocyte and 

macrophage subsets have been assessed. It is important to highlight all women recruited underwent 

ELCS, and as such were not in active labour. This is important as in women spontaneously delivering 

at term an increased macrophage tissue density is reported comparative to those delivered at term who 

did not labour. Furthermore, with the initiation of parturition, decidua expression of anti-inflammatory 

mediators decreases with a concomitant upregulation of surge in pro-inflammatory mediators. Given 

the recognised plasticity of decidua macrophages, it is likely the phenotype, and potential functional 

responsivity to vitamin D may differ between our cohort and those obtained from women with 

spontaneous labour. As such, the conclusions drawn here do not relate to the process of parturition 

(422). This warrants future study however, as decidua macrophages are closely implicated in this 

process(494).   

   As alluded to in Section 6.2.6, the purity of the CD14+ subsets obtained using a positive is 

enrichment methodology in which monocytes are labelled with antibodies for CD14 receptors ranged 

from 71.6% to 93.1%. At all three sites, CD3-positive T cells were the main contaminant. This is 

particularly important when assessing the qRT-PCR data, certainly with regards to the CD14+ 
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decidua subsets, for which transcript analysis of the vitamin D metabolic system has not been 

previously reported.  

   Although some studies of cell populations were performed on whole blood, thus avoiding the need 

for potentially cell-activating isolation procedures, for most of the studies performed, isolation of a 

pure population of cells was essential. The potential effects of different isolation procedures upon 

both monocyte and macrophage phenotype and function are now recognised. A systematic 

comparative analysis of four monocyte isolation/ enrichment procedures: positive selection, negative 

selection, adherence, and RosetteSep techniques reported variable monocyte purities of 98.5%, 

97.0%, 67.3%, and 64.2% respectively. Importantly, positive selection yielded the highest results for 

monocyte isolation. Furthermore, following positive-selection procedures, abundant CD14 expression 

was still detected, indicating the functional condition of these cells remained intact including their 

phagocytic properties (495).  

   For the RNA-seq analyses, FACS was utilised due to its superior accuracy in cell isolation. In 

preparation for this, detailed knowledge of surface receptor expression on each of the 3 subsets was 

required. To limit any potential confounding factors which may alter cell surface expression this was 

assessed using whole PBMC populations. From this a specific monocyte/ macrophage multi-antibody 

panel was designed, which effectively excluded all other major innate and adaptive CD45+ immune 

cell subsets. As reported here, the purity utilising this method was greatly enhanced, as unlike the 

MACS enrichment procedure, flow sorting permitted detailed analysis of each individual cell.  

   FACS as a method does however pose certain limitations that require recognition. Firstly, during the 

FACS process, cells undergo a number of traumatic effects which may induce apoptosis, including the 

field pulse applied to deflect cells interest, expulsion of the cells into collection tubes and prolonged 

sorting times(496). To optimise cell viability, samples were processed immediately following 

collection, with tissue handling limited to a minimum requirement. At the point of FACS, a PI dead 

discrimination dye was utilised to accurately identify and exclude all non-viable cells from the 

purified cell population. Following collection, cells were immediately transferred to complete culture 

medium, to limit potential cell death post the sorting procedure. What remains unclear however is the 
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frequency of cells that became pre-apoptotic or senescent during the cell preparation protocol (496), 

and to what extent their phenotype and function may have been altered.  

   Another important limiting factor of the FACS method for both blood and tissue samples was total 

target cell recovery. This negatively dictated the total assays and culture conditions which could be 

performed simultaneously.  One solution may have been to pool donor samples; however this would 

have certainly been deleterious for the final RNA-seq output data and analysis given the intra-

participant variability observed in the PCA.  

   While RNA-seq is a powerful tool for defining global changes in gene expression for specific cell 

types and treatments, there is the potential for functional over-interpretation. The general limitations 

of this method have been discussed already in Chapter 5, Section 5.3.7. For this data, the total post-

alignment coverage was reduced relative to the first trimester project, with the mean total reads per 

sample ~12155275. This may in part account for the lower number of differentially expressed genes 

than was anticipated based upon the current literature for monocyte THP-1 cells and vitamin D (340). 

Determining the required coverage for an RNA-Seq experiment is a complex task as different 

transcripts are expressed at different levels, meaning that more reads will be captured from highly 

expressed genes while fewer reads will be captured by genes expressed at low levels. Furthermore, 

albeit the cost of sequencing continues to fall, the feasibility of RNA-seq remains partly dictated by 

costs. For example, to detect a rare transcript or variant, considerable depth is required. 

   Clearly further follow up studies are required to validate the biological impact of specific 

1,25(OH)2D3-target genes in both monocyte and macrophage subsets in pregnancy.   
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7 Final Discussion 

   Vitamin D deficiency is highly prevalent in pregnant women, and is associated with a range of non-

classical adverse pregnancy outcomes, including PET (116). Based upon current definitions, our study 

confirms the prevalence of low serum vitamin D in pregnancy, with overall 78.4% of pregnant women 

‘deficient’ and 94.3% ‘insufficient’ in this West Midlands cohort (109). The definition of normal 

‘vitamin D status’ has generated much debate, with what constitutes optimal or adequate vitamin D 

status remaining the subject of intense discussion. Utilising a novel LC MS-MS protocol we provide 

the most comprehensive analysis to date of vitamin D in pregnant women, with the data presented 

strongly supporting a change in how we assess vitamin D status in normal pregnancy. Measurement 

of 25(OH)D3 alone appears to be too simplistic as a marker of pregnancy health outcomes - no 

significant alteration in serum 25(OH)D3 concentrations were observed, including analysis of free and 

bioavailable 25(OH)D3.  

    Uniquely, we performed a comprehensive metabolite analysis utilising paired maternal serum, 

placental, decidua tissue and urine samples, establishing the relationship between circulating and 

tissue-specific levels of vitamin D metabolites in both normal pregnancy and PET. We demonstrate 

that normal human pregnancy is associated with significant changes in vitamin D physiology; with a 

marked increase in the generation of circulating active 1,25(OH)2D3 and catabolic 24,25(OH)2D3 

most prominent. Furthermore, in contrast to previous reports describing decreased serum 25(OH)D3 

in PET (116, 159), vitamin D-deficiency was observed for most of the women in the current study, 

despite this being a predominantly white Caucasian cohort. We show that in PET dysregulation of 

vitamin D metabolism is clearly evident, with significant alterations in circulating serum and placental 

metabolites measured. Significant alterations in circulating 1,25(OH)2D3, 3-epi-25(OH)D3 and 

24,25(OH)2D3 in different pregnancy settings strongly suggests that alternative vitamin D metabolic 

pathways are an important feature of pregnancy. We anticipate this may be more pronounced in non-

Caucasian groups, and certainly warrants further consideration alongside future functional studies 

determining the physiological activity of these metabolites.   
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   In normal pregnancy, increased placental accumulation of 25(OH)D3 occurs with advancing 

gestational age, despite no apparent change in serum DBP (104).  This raises important questions 

concerning the transport of vitamin D metabolites from mother to fetus. Importantly, in PET, 

placental accumulation of 25(OH)D3 appears  impaired at the materno-fetal interface. This may 

reflect aberrant spiral artery development and placental blood flow, both of which are associated with 

malplacentation (497) and may alter uptake of 25(OH)D3, either in its free/unbound form of when 

bound to its carrier protein DBP. Data from the current study also clearly suggest dysregulation of 

placental 25(OH)D3 metabolism ensues, as placental concentrations of 24,25(OH)2D3 and 3-epi-

25(OH)D3 were higher in PET tissue, indicating that the pregnancy disorder was associated with 

enhanced catabolism of 25(OH)D3. Future work delineating whether aberrant vitamin D placental 

uptake and metabolism is also reflected in the fetus is required since this was not assessed.  

   What remains unclear from the above studies is whether dysregulation of vitamin D metabolism 

precedes PET onset and whether metabolite analysis beyond serum 25(OH)D3 offers a potential 

predictive biomarker for PET and other adverse events in pregnancy. Utilising a sub-cohort of the 

Ireland SCOPE study, we successfully quantified a range of vitamin D metabolites in early second 

trimester pregnant women’s serum and urine, prior to development of PET and directly compared the 

resulting data to matched data for normotensive pregnant women and non-pregnant controls. 

Importantly, serum analysis alone did not reveal a significant alteration in vitamin D metabolite 

concentrations. Marked alterations in the association between 25(OH)D3 with  3-epi-25(OH)D3 and 

24,25(OH)2D3 was however clearly evident in the PET group, suggesting aberrant metabolism may 

arise early in the pathogenesis of PET. Dysregulated metabolism of vitamin D was also evident in 

these PET samples, with a trend towards 1,25(OH)2D3 production again prominent in the sub-clinical 

disease stage. Moving forward, a prospective study significantly powered to establish whether the 

degree of dysregulation is associated with disease severity and/ or adverse materno-fetal outcomes is 

now warranted.     

   Development of a novel LC MS-MS methodology to measure urinary vitamin D metabolites also 

enabled comparison with circulating serum levels of vitamin D metabolites.  This strategy provided, 
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for the first time, insight into possible reference ranges for urinary vitamin D metabolites in 

pregnancy. In particular, lower urinary 25(OH)D3 and 24,25(OH)2D3 excretion was identified as a 

potential early indicator for a predisposition towards developing PET.  Further studies are now 

warranted to validate these findings given the potential clinical applications of this study for the 

assessment of vitamin D metabolism in conditions related to vitamin D deficiency. Since urinalysis is 

routinely performed in the UK antenatally as a screening test for the detection of PET and proteinuria 

(498), the value of urinary vitamin D analysis is of certain interest.  

   The principal aim of this PhD was to delineate the potential extra-skeletal effects of vitamin D in 

pregnancy. Initial data by our group highlighted tissue accumulation of 25(OH)D3 and 1,25(OH)2D3 

in decidua early in pregnancy to be significant, albeit the determinants of these levels remained 

unclear. Furthermore, there is much current interest in the potent immunomodulatory effects of 

vitamin D and the potential impact this may have on pregnancy, with previous studies suggesting a 

local decidual intracrine vitamin D system specifically in certain immune cell subsets (207). 

Specifically, these studies suggested localised 1,25(OH)2D3 production as a mechanism for 

maintaining antibacterial activity, with decidual macrophages considered a likely target, promoting 

antibacterial responses in a cathelicidin-mediated manner (306).  To our knowledge this is the first 

study delineating the effects of vitamin D upon individual decidua-derived immune cell subsets. Here, 

we provides novel evidence that isolated 1st trimester decidua uNK cells and 3rd trimester 

macrophages represent key targets for vitamin D with highly receptive vitamin D metabolic systems, 

particularly within the context of immune challenge. Furthermore, our data clearly indicate both 

decidua-derived uNK and macrophages are highly distinct from their peripheral blood counterparts 

with regards to their functional responsivity to vitamin D, with non-classical actions extending far 

beyond simply immuno-regulation at the materno-fetal interface. This may be anticipated given both 

decidual cell types demonstrate a highly unique tissue phenotype compared to their paired peripheral 

counterparts, including fetal cord blood-derived monocyte subsets, as supported by subsequent 

detailed pathway analysis. Importantly, we recommend peripheral immune cells are an inappropriate 

model for analysis of their tissue-resident counterparts, including both decidual NK and macrophages. 
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To delineate the effects of vitamin D directly at the decidua interface, tissue-derived immune cell 

based studies are crucial. 

   Given both the broad range of extra-skeletal vitamin D actions reported and the novel nature of this 

study, a non-targeted RNA-seq analysis was performed to assess whole transcriptome effects of 

vitamin D upon both activated NK and monocyte/ macrophage subsets in an unbiased fashion. Our 

data provides the first cellular and molecular evidence of the ability of 1,25(OH)2D3 to target decidual 

uNK and macrophages with actions targeting whole decidual immune cell function.     

   Crucially, both first trimester uNK and pNKs express a functional vitamin D metabolic signaling 

system, and convert  inactive 25(OH)D3 to  active 1,25(OH)2D3. This is mediated in part by increased 

VDR expression in activated immune cells (353), with this response more pronounced in uNK. 

Considering the role of vitamin D, in uNK a significant enrichment of genes involved in cell 

metabolism, migration, adhesion and apoptosis was measured, with ~40% associated with cell 

survival, proliferation, invasion, adhesion, angiogenesis, and trafficking. Furthermore, in uNK 

1,25(OH)2D3 treatment caused significant up-regulation of several key genes with recognised roles in 

placentation, tissue invasion and angiogenesis. Follow up studies are now warranted to confirm the 

biological impact of specific 1,25(OH)2D3-target genes in uNK given their essential role in fetal 

implantation, placentation and vascular remodeling (267, 268, 499). We anticipate dysregulation of 

vitamin D metabolism within the context of PET may have a significant impact upon decidual uNK 

function during early implantation. Validation of this would more reliably inform future vitamin D 

supplementation trials. Based upon the data presented in Chapters 4 and 5, we strongly suggest these 

studies should evaluate the effect of pre-conceptual vitamin D supplementation in pregnancy, as 

opposed to antenatal treatment, to be truly informative.  

   For decidual macrophages, despite demonstrating lower expression of VDR, expression of metabolic 

enzymes CYP27B1 and CYP24A1 was constitutively higher relative to other circulating populations. 

This may in part be conducive to paracrine effects upon proximal bystander cells, such as fetal 

trophoblast or maternal stromal cells.  RNA-seq also revealed an increased responsivity of isolated 

LPS-stimulated decidua macrophages to 1,25(OH)2D3 despite their relatively lower VDR. Consistent 
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with uNK, a broad range of vitamin D –mediated effects upon transcript expression were identified, in 

particular relating to genomic processing, metabolism, lipogenesis and cell processing. It appears the 

effects of vitamin D upon decidual macrophages extend far beyond previously reported effects on 

cathelicidin-mediated anti-microbial function. Outside the decidua this also appears evident; within 

the context of diabetes, deletion of macrophage VDR in mice is shown to induce insulin resistance 

and promote atherosclerosis formation (500). Furthermore, in type 2 diabetic patients 1,25(OH)2D3 is 

found to suppress macrophage migration, reversing atherogenic cholesterol metabolism (501). 

Considering the range of macrophage-related functions recognised, including antigen presentation, 

phagocytosis and secretion of cytokines, chemokines, angiogenic growth factors and proteases, we 

anticipate the potential scope of vitamin D functions to be far-reaching in human decidua (393, 502).      

   Our understanding of this is however reliant upon ongoing studies delineating the exact functional 

role of third trimester decidua macrophages in normal and pathological pregnancy, as at present this 

remains unclear (393). Alongside this, further studies investigating how vitamin D alters LPS-

mediated monocyte and macrophage function will be important, particularly given the association 

between aberrant LPS exposure and adverse fetal outcome, including PET, SGA and preterm birth 

(503, 504). Given this and the significant dysregulation of placental vitamin D metabolism evidenced 

in Chapter 4, we speculate altered immune cell function may be highly relevant within the context of 

malplacentation. Future studies exploring how isolated uNKs and macrophages from pregnancies 

complicated by PET differ in phenotype and their responsivity to vitamin D are now justified.   
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9  Appendices 

9.1.1 SCOPE exclusion criteria 

   Predetermined high risk of PET; an SGA baby; or spontaneous preterm birth due to underlying 

medical conditions including chronic hypertension requiring antihypertensive drugs, diabetes, renal 

disease, systemic lupus erythematosus, antiphospholipid syndrome, sickle cell disease, HIV, previous 

cervical knife cone biopsy, ≥ 3 terminations of a pregnancy, ≥3 miscarriages, or current ruptured 

membranes; known major fetal anomaly or abnormal karyotype; or an intervention that could modify 

pregnancy outcome (such as aspirin use or cervical cerclage)(79).   

 

9.1.2 Effect of maternal serum 25(OH)D3 and 3-epi-25(OH)D3 upon fetal cord 

concentrations at delivery 

 

Appendix Figure 9.0 Correlation between maternal blood and cord blood 25(OH)D3 (nmol/L) 

and 3-epi-25(OH)D3 (nmol/L) (n=3).  
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