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Abstract

Large numbers of statistically significant associations between sentinel SNPs and case-control

status have been replicated by genome-wide association studies. Nevertheless, few underlying

molecular mechanisms of complex disease are currently known. We investigated whether variation

in binding of a transcription factor, the vitamin D receptor (VDR) whose activating ligand vitamin

D has been proposed as a modifiable factor in multiple disorders, could explain any of these

associations. VDR modifies gene expression by binding DNA as a heterodimer with the Retinoid

X receptor (RXR).

We identified 43,332 genetic variants significantly associated with altered VDR binding affinity

(VDR-BVs) using a high-resolution (ChIP-exo) genome-wide analysis of 27 HapMap lympho-

blastoid cell lines. VDR-BVs are enriched in consensus RXR::VDR binding motifs, yet most fell

outside of these motifs, implying that genetic variation often affects binding affinity only indir-

ectly. Finally, we compared 341 VDR-BVs replicating by position in multiple individuals against

background sets of variants lying within VDR-binding regions that had been matched in allele

frequency and were independent with respect to linkage disequilibrium. In this stringent test, these

replicated VDR-BVs were significantly (q < 0.1) and substantially (> 2-fold) enriched in genomic

intervals associated with autoimmune and other diseases, including inflammatory bowel disease,

Crohn’s disease and rheumatoid arthritis. The approach’s validity is underscored by RXR::VDR

motif sequence being predictive of binding strength and being evolutionarily constrained.

Our findings are consistent with altered RXR::VDR binding contributing to immunity-related

diseases. Replicated VDR-BVs associated with these disorders could represent causal disease risk

alleles whose effect may be modifiable by vitamin D levels.
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Introduction

Genetic variants can alter transcription factor (TF) binding, chromatin status and gene expression

[1, 2, 3] and can be explanatory of disease susceptibility variation. Rather than residing in protein-

coding sequence, the majority (approximately 93%) of disease- or trait-associated variants lie in

non-coding sequence [4]. Furthermore, non-coding variants in regulatory elements explain 8-fold

more heritability of complex traits than protein-coding variants [5]. If we are to better understand the

mechanistic bases to complex disease (and their interaction with environmental factors) then we will

need to understand how sequence differences in TF binding sites (TFBSs) across multiple genotypes

contribute to disease susceptibility. Variations in TF affinities will then need to be cross-referenced not

just with the sentinel variant from genome-wide association studies (GWASs), which has a very low

probability (∼5%) of being causal and is on average 14 kb from the true causal variant [6], but also with

all other variants with which it lies in strong linkage disequilibrium (LD). True causal variants will be

enriched in cis-regulatory elements, especially in enhancers and, to a lesser extent, in gene promoters

[6]. These elements are often active in only a few cell types [7] and at limited developmental time

points [8], which provides an opportunity for relating genetic variation — via molecular observations

(TF binding differences) — to cellular or organ-based aetiologies.

Understanding complex disease will also need the determination of how functional genetic variants

interact with environmental factors. One such factor is Vitamin D, a class of fat-soluble secosteroids

that enhance intestinal absorption of dietary minerals, which are synthesised in the skin upon exposure

to sunlight. Many observational studies have yielded associations between low serum concentrations

of 25-hydroxyvitamin D [25(OH)D] and the risks of developing diverse diseases [9, 10]. However,

Mendelian randomisation studies, for example on susceptibility to multiple sclerosis [11] and all cause

mortality [12] have indicated a causal role for this hormone. Identifying a molecular basis to these

statistical associations would also indicate a direct causal role for vitamin D levels in these diseases.

Vitamin D signalling occurs principally following the binding of calcitriol, the active form of vitamin D,

to its cognate nuclear vitamin D receptor (VDR) which binds DNA in a heterodimer with the Retinoid

X receptor (RXR [13]). We previously have shown that VDR binding in lymphoblastoid cell lines

(LCLs) occurs at 2,776 locations and preferentially (>2-fold) within intervals genetically associated
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with diseases, such as Crohn’s disease and Multiple Sclerosis [14]. On one hand, these enrichments

could indicate a direct modifying effect of VDR-binding on disease risk. On the other hand, they could,

more trivially, reflect a general association between regulatory regions and disease-associated genomic

intervals. These enrichments of VDR binding within these intervals also are not informative of whether

altered VDR binding to DNA functional elements explains genetic contributions to disease risk. If this

is the case, we then also wish to determine whether it is a gain or loss of VDR binding that causally

increases disease risk.

In this study, we inferred VDR-binding sites using ChIP-exo (chromatin immunoprecipitation

combined with lambda exonuclease digestion followed by high-throughput sequencing [15, 16]) from

each of 27 LCL samples using 3 complementary approaches. The first ‘peak-calling’ method models

the variation in read density. The second and third approaches predict VDR-binding sites using genetic

variation to explain differences in VDR-binding affinity, either by quantitative trait loci association

testing (‘QTL’) across all samples or by allele-specific binding (‘ASB’) analysis of allelic imbalance

based on read depth at sites with heterozygous single nucleotide variants. Sequence variants were

identified that both alter VDR binding and have been statistically associated by GWAS with altered

risk for particular diseases (or are in strong LD with such variants). These are excellent candidates for

sequence variants that, through their alteration of VDR binding, directly alter disease susceptibility. We

considered whether VDR-binding events have consequences on fitness, and thus when lost or gained

either provide protection from or confer additional risk of disease. Compared against a background

of all VDR-binding sites, we found that human variants associated with variable VDR-binding are

enriched (by up to 2-fold) in genomic intervals previously associated with particular traits, including

some autoimmune diseases.

Results

ChIP-exo yields finely resolved VDR binding peaks genome-wide

Calcitriol–stimulated lymphoblastoid cells for 30 HapMap samples were grown and prepared for

ChIP essentially as described previously [14] with modifications for ChIP-exo [15, 16] (Methods;

Supplementary Table 1). In total, 27 samples successfully passed quality checking (Supplementary
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Material). Unlike for data from the more traditional ChIP-seq approach, analysis of ChIP-exo data

has yet to become standardised. We thus undertook an in-depth study using contrasting approaches to

modelling the ChIP-exo data background, to handling duplicate reads, to performing cross-correlation

analyses and to calling peaks; these approaches are discussed in detail in the Supplementary Material

(see also Supplementary Figures 1 and 2, Supplementary Tables 2–9).

VDR peaks were both highly reproducible between samples, with 15,509 intervals containing

peaks called in at least 3 samples (CPo3 peak set) (Figure 1A and B; Supplementary Figures 3 and

4), and highly concordant with our previously published VDR ChIP-seq data for calcitriol-stimulated

LCLs (CPo3 : 76.3%; Figure 1C; Supplementary Table 11) [14] (Supplementary Material). For peaks

identified in both experiments, binding intervals were considerably better resolved (typically > 5-fold)

using ChIP-exo (Supplementary Figure 2A, pairwise Kruskal-Wallis Test, p < 0.001).

As expected, VDR binding peaks occurred preferentially at protein coding transcriptional start sites

(TSS) (Figure 1D) and within regions of open chromatin (at LCL DNase 1 hypersensitivity sites, DHS),

especially for those observed repeatedly (Supplementary Figures 5 and 6). VDR binding peaks were

significantly concentrated within proposed functional elements, specifically regions of high regulatory

factor binding (HOT regions [17] and clustered TF binding sites from ENCODE), active promoters,

enhancers and insulators (Figure 1E; Supplementary Figure 7) and previously reported GWAS disease

loci, principally for autoimmune disorders (Supplementary Figure 8). Notably, this latter observation

could reflect a causal effect in which VDR-binding influences disease susceptibility and/or with gene

loci being correlated non-causally with both disease susceptibility intervals and VDR binding sites.

VDR binding motifs occur preferentially in enhancers

De novo motif analyses of peaks within ChIP-exo VDR binding intervals revealed motifs strongly

resembling those for the RXR::VDR DR3 heterodimer [18, 19] (Figure 2A; Supplementary Material,

Supplementary Figure 9A and Supplementary Table 12). For example, 9,899 (63.8% of the CPo3 set)

instances of this DR3 heterodimer motif occurred in binding sites (PScanChIP [20], score > 0.7). 874

instances of the monomeric VDR motif were also identified in these peak intervals (Supplementary

Figures 9B; PScanChIP score = 1) which are known to have limited affinity for functional dimeric

nuclear hormone receptor complexes [18]. The heterodimeric DR3 motif was strongly over-represented
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(Supplementary Table 12) both locally (in the peak sequences, compared to neighbouring regions)

and globally (in the peak regions, compared to LCL DHS sites [20]) and was significantly centrally

enriched in the binding regions (Figure 2A).

VDR binding sites could be separated into functionally distinct classes based on the presence of

RXR::VDR DR3-like motifs. Class I sites contain strong DR3-like motifs (top 20% of the PScanChIP

score distribution, 3,094 regions, Supplementary Figure 10A) and tend to be located away from

genes’ transcriptional start sites (TSSs) and yet close to genes involved in immune response processes

(Figure 2B,C). Class I VDR binding sites show greatest significance of proximity to genomic regions

associated with cancer and autoimmune diseases (Figure 2C). We compare these to Class II sites

which contain only weak or no DR3-like motifs (bottom 20% of PScanChip scores, 3,102 regions,

Supplementary Figure 10A) (Figure 2B,D). Class I binding events occur preferentially in strong or

weak enhancers defined by ENCODE, rather than in promoters (Supplementary Figure 10B and 10C).

Thousands of variants explain differential VDR binding

We next used the QTL and ASB methods to explain differences in VDR binding affinity (Supplementary

Material). The QTL analysis used Bayesian regression modelling of variants underlying binding peaks

[21, 22] (Supplementary Material, Supplementary Tables 13 and 14, Supplementary Figures 12 to

15). The ASB analysis of allelic imbalance is based on read depth at heterozygous single-nucleotide

variants [23] and uses sample-specific maternal and paternal reference maps, which we corrected for

unannotated copy number variation and from which we excluded variants in ENCODE blacklisted

repeat regions [24]. The two methods’ variants associated with differences in VDR binding (VDR-

Binding Variants, VDR-BVs) were annotated and prioritised based on the guidelines proposed by [25]

and related algorithms (Funseq2, [26]).

We report a total of 43,332 VDR-BVs. Of these, only 6.6% - 10.5% (2,867 or 4,447) lie within

(or ‘hit’) RXR::VDR consensus motifs (Pscanchip score > 0.7 or > 0.5, respectively). This could

be explained, in part, by variants that alter DNA-binding affinity either for other subunits of a larger

multi-molecular complex (‘collaborative binding’ [27]) or for factors that inhibit RXR::VDR binding.

Consequently, we next considered whether sequence variation in motifs for potential binding

cofactors of RXR::VDR could explain the remaining > 90% of binding variation. We found that
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position weight matrices for 26 additional TFs (Supplementary Tables 15 and 16) were significantly

enriched (p < 0.1) (i) relative to both open chromatin genome-wide and chromosomally adjacent

regions (< 150bp), and/or (ii) at the peak summits within VDR-BV intervals (Pscanchip score > 0.5

or 0.7; Supplementary Methods). Virtually all (84.1-88.3%) of binding variation could be explained by

VDR-BVs lying within a RXR::VDR consensus motif, or within one or more of these 26 additional

motifs (Pscanchip score > 0.7 or > 0.5). These are upper-bound values because of the inaccuracy of

motif prediction and because not all variants lying in motifs will alter binding affinity.

Functional annotation of VDR-BVs

To begin to understand whether VDR-BVs could contribute to particular human diseases, we first

considered their enrichment in particular genomic annotations. For this, we were interested in whether

these variably-bound sites are enriched relative to a background of all VDR binding regions genome-

wide so that we account for the non-uniform chromosomal distribution of binding sites. We chose

for our null expectation all variants that were tested for differential binding within replicated (CPo3)

VDR binding peaks (Supplementary Material). Relative to this stringent background, VDR-BVs are

20%-40% enriched within enhancers but not in promoters (Figure 3A). These patterns of enrichment are

reinforced when we stringently select only the most significant VDR-BVs (VDR-sBVs, Supplementary

Figure 16A; AlleleSeq FDR ≤ 0.01; 6,715 VDR-BVs) or the 357 recurrent VDR-BVs that are called

at the same position in multiple samples (VDR-rBVs, Supplementary Figure 16D). We conclude that

VDR-BVs are not uniformly distributed among all VDR binding genomic intervals, and are especially

frequent in enhancer regions manifested in LCLs.

VDR-BVs occurred 60% more frequently in RXR::VDR motifs within replicated (CPo3) VDR

binding peaks and 120% more frequently in strong (class I) RXR::VDR motifs in the same regions

(Figure 3B). Again, these enrichments strengthened substantially for VDR-sBVs or VDR-rBVs (Sup-

plementary Figure 16B and 16E, respectively).

We then considered whether VDR-BVs are significantly enriched within LCL expression QTLs

(eQTLs) relative to 1000 Genomes variants under VDR ChIP-exo pileups tested for VDR binding

variation potential (Supplementary Material). In addition, these background variants were matched

by derived allele frequency and LD-dependence confounders (Methods). We also took care to only
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consider variants that do not share strong linkage disequilibrium (32,183 VDR-BVs, 5,808 VDR-sBVs

and 341 VDR-rBVs.)

VDR-BVs were enriched with dsQTLs (1.4-fold) and eQTLs (1.1-1.2-fold; Figure 3C) particularly

for the more stringent VDR-BV subsets (Supplementary Figures 16C and 16F). The enrichment in

eQTLs was confirmed using an independent eQTL resource (GEUVADIS LCL eQTLs [28]; Supple-

mentary Material).

Complex trait-associated variants influence VDR binding

To investigate whether susceptibility to specific diseases could be influenced by VDR-BVs, we

considered their locations relative to GWAS variants significantly associated with 472 diverse diseases

or traits from 688 studies in the largest catalogue available (GRASP v2.0 [29]) with at least 5 associated

genome-wide significant SNPs (p < 5× 10−8) (Supplementary Material). All traits available in these

catalogues were considered so as not to bias subsequent findings. Again, we employed stringent

procedures, matching variants for allele frequency and LD-dependence and discarding VDR-BVs in

the MHC region as well as again comparing against a background of all VDR-binding regions (“Test

3”, p. 34 of the Supplementary Material).

VDR-BVs were significantly and up to 2-fold enriched within LD intervals associated with 17

diseases or traits (Figure 4). It is notable that these are not drawn randomly from all 472 traits

considered, but are mostly immune- or inflammatory-related disorders, such as sarcoidosis, Graves’

disease, Crohn’s disease, irritable bowel syndrome and type I diabetes (Figure 4A). The most enriched

trait is Alzheimer’s disease, for which 25-hydroxyvitamin D level is a proposed causal risk factor [30].

For the 341 VDR-rBVs, intervals from six disorders contained more VDR-rBVs than expected

from sets of DAF-matched LD-accounted regions that bind VDR (Figure 4B). We emphasise that this

represents a highly stringent analysis that accounts for all known confounding effects, namely potential

biases from called VDR-binding sites, population stratification and physical linkage.

Functional impact of genetic variation on loss or gain of VDR binding

This evidence is consistent with altered RXR::VDR binding contributing to immunity-related diseases.

Nevertheless, because variants in TFBS often fail to alter binding affinity and/or have no measurable

8

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/080143doi: bioRxiv preprint first posted online Oct. 12, 2016; 

http://dx.doi.org/10.1101/080143


effect on gene expression levels [31, 32], we needed to demonstrate that VDR-BVs are functional,

specifically that they influence gene expression and have been negatively selected over evolution [33].

As expected if they are enriched in functional variants, we found that 50%-100% more VDR-BVs than

random samples lie near (< 10kb) genes that are differentially expressed, in LCLs, upon addition of

calcitriol [14] (p < 10−4, Supplementary Methods).

Also, as expected if as a class they are functional, replicated VDR-binding peaks exhibit variable

cross-species conservation [34] across RXR::VDR motif positions (Supplementary Figure 17A and

B). This signature of uneven selection across the DR3 motif is evident for class I VDR binding sites

(Supplementary Figure 17C and D; Kruskal Wallis test, p = 1.9×10−11 and post-hoc pairwise Kruskal

Wallis comparisons), but not in class II sites (Kruskal Wallis test, p = 0.14) consistent with the DR3

heterodimer-binding motif regulating transcription.

Next we assessed the impact on VDR binding affinity of VDR-BVs with respect to their location

within the consensus DR3-type motif (JASPAR database, Figure 5), the transcriptionally active binding

site motif for the RXR::VDR heterodimer [35, 36, 37]. Mapping of allele-specific ChIP-exo reads

to multiply replicated VDR binding regions (CPo3 peaks) was highly predictive of whether variants

substantially alter (‘break’) functional motifs. For 89% of observations, the change in the strength

of the VDR binding motif correctly predicts the direction of VDR binding affinity change (Figure

5A), a proportion that rises to 100% in class I VDR binding sites (Supplementary Figure 18A). Motif

breaks do not favour 5’ RXR over 3’ VDR hexamers (Figure 5A, Wilcoxon rank sum test, p = 0.71),

but especially impacts conserved G and C nucleotides (positions 2, 5, 11 and 14), and a T nucleotide

(position 13). Notably fewer events occur at the near-essential T nucleotides at positions 4 and

12. Interestingly, in class I sites there are no VDR-BVs disrupting the T nucleotide at position 12

(Supplementary Figures 18A) which could reflect either low mutation rates (mutational ‘cold spots’) or

strong purifying selection against deleterious nucleotide substitutions at these binding sites [38].

To distinguish these possibilities we next compared the population frequencies of alleles associated

with either historical Loss Of Binding (LOB) or Gain of Binding (GOB) affinity to VDR (Methods).

LOB VDR-BVs cause significantly stronger effects when within either 5’ or 3’ hexamer than within

the DR3 spacer sequence (Wilcoxon rank sum test, p < 0.01); GOB variants: p = 0.11. VDR-BVs

affecting one of the most highly conserved motif positions (position 13) always result in motif-breaking
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LOB effect (Figure 5C and D; Supplementary Figure 18C and D).

We next found that RXR::VDR motif sequences have been under constraint during recent evolution,

within the extant human population. We did so by comparing the frequencies of derived alleles (Derived

Allele Frequency [DAF] test) for LOB or GOB VDR-BVs in either Northern and Western European

(CEU) or Yoruban (YRI) populations. In absence of demographic confounders, stronger purifying

selection is implied by an excess of low population frequency variants in one set of variants over

another [39].

We detected significant increases in DAF distribution for GOB over LOB VDR-BVs, both for

CEU (Figure 6C, top-left panel) and YRI (Figure 6C, bottom-left panel) cohorts. Class I binding site

VDR-BVs exhibited significant differences in GOB versus LOB DAF distributions (Supplementary

Figure 19; p < 0.05 for both CEU and YRI). By contrast, variants in RXR::VDR hexamers not assigned

as VDR-BVs showed no significant difference in GOB versus LOB DAF distributions (Figure 6C,

top-right and bottom-right panels). Significant differences between GOB and LOB DAFs were attained

even when observing the RXR and VDR motif hexamers separately, and in both sub-populations

(p < 0.012). Consequently, LOB variants are under substantially stronger purifying selection than are

GOB variants. This is an important finding because it indicates that reduced binding of VDR at these

genomic positions, and presumably reduced vitamin D levels, are commonly deleterious.

Discussion

We have demonstrated how genetic variation alters the binding affinity of the vitamin D receptor

(VDR), a member of the nuclear receptor family of transcription factors. Genetic variants significantly

associated with immune and inflammatory disease were found to disrupt VDR binding and to be

located preferentially within enhancer regions (Figure 3), in line with a recent analysis of causal

immune disease-related variants [6]. The study benefited from the ∼5-fold greater spatial resolution

and signal-to-noise ratios provided by the ChIP-exo assay.

In its best studied model of allosteric modulation, the RXR::VDR heterodimer binds to DNA and en-

hances transcription via response elements that typically consist of two hexameric ((A/G)G(T/G)TCA)

half-sites, with RXR and VDR DNA binding domains occupying the upstream and downstream half-
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site, respectively [40]. This DR3 motif, which we previously identified using ChIP-seq data from two

calcitriol-activated CEU LCLs [14], was also the predominant VDR binding interface in calcitriol-

activated LCLs in the present ChIP-exo study. We identified strong enrichment of VDR binding within

enhancers, with stronger enrichments associated with the more stringent subsets of VDR-BVs (Figures

1 and 3). Whilst VDR binding occurs preferentially within promoters, these interactions are only rarely

associated with RXR::VDR DR3 motifs, and may be mediated by additional DNA-binding co-factors,

including CTCF, and might reflect unproductive binding to open chromatin. In contrast, those VDR

binding sites containing strong instances of the RXR::VDR DR3 motif were particularly enriched in

enhancers, and also near to genes involved in immunity processes and related diseases (Figure 2). VDR

thus is expected to exert substantial effect on the biology of the immune system as a sequence-specific

enhancer regulator.

Most remarkably, we found variants weakening or strengthening the RXR::VDR PWM score to be

highly predictive of the loss or gain of VDR binding affinity (Figure 5). Furthermore, the VDR-bound

RXR::VDR motif shows evidence of levels of sequence conservation across vertebrate evolution that

mirror its information content, and loss of VDR-binding variants over modern human evolution has

occurred under stronger purifying selection than gain of binding variants (Figure 6). Together these

results imply that VDR-binding and thus presumably vitamin D levels, have in general been protective

of disease.

Our study will have underestimated the true extent of regulatory variation at VDR binding sites.

This is because the asymmetric binding analysis [23] by definition can only test variants which are

heterozygous for a given LCL sample: therefore, true positive VDR-BVs will be unobserved if all LCL

samples we considered are homozygous. Similarly, not all of the required three biallelic genotypes will

have been present in these samples for the regression-on-genotype analysis [22, 21]. Consequently, a

larger scale study would be expected to show improved power to detect VDR-BVs.

At least 90% of VDR-BVs lay outside of RXR::VDR DR3 motifs. The majority of variable binding

could occur, as with other TFs [41], at weak or non-canonical binding motifs, or its affinity may alter

because of genetic disruption to a cofactor binding site [42]. Another explanation is that VDR-BVs

commonly exert their effect by altering the DNA conformation of regions flanking the core binding site

[43]. Nevertheless, our de novo motif discovery identified several proteins as potential RXR::VDR
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cofactors, whose altered DNA-binding affinity could influence VDR binding. Over-representation

of motifs in VDR peaks has been observed before, for example in a recent study of VDR binding in

monocytes and monocyte-derived inflammatory and tolerogenic dendritic cells [44]. Direct interaction

between VDR and CREB1 has been reported previously [45] as have functional interactions between

vitamin D/VDR and oestrogen metabolism and MYC proteins [46, 47]. Co-occurrence of GABPA and

ESRRB motifs with VDR-binding sites had been reported previously [48]. ZNF423 is not known to

bind VDR yet it might do so indirectly because it physically associates with its heterodimer partner,

RXRα [49].

Our finding that VDR-BVs are significantly enriched within eQTLs (Figure 3C) is intriguing

because the eQTLs were inferred from LCLs not treated with calcitriol, and implied that these

enhancers’ activities may not be entirely vitamin D-dependent in these cells. Nevertheless, there was

no clear concordance or discordance between the direction of change of VDR binding at VDR-BVs

(in calcitriol-treated LCLs) with the direction of change of gene expression in calcitriol-minus human

LCLs reported for the GEUVADIS eQTL variants (data not shown). This, and the lack of enrichment

of the DR3 motif in the VDR binding sites for the basal (unstimulated) state in LCLs [14] indicate that

a calcitriol-activated LCLs’ study at a similar scale to those employing unstimulated LCLs [28] will be

required to fully resolve this issue.

Our most important results derived from a conservative analysis of a stringent set of replicated

binding variants (Figure 4B). From this, we report a significant excess of VDR-rBVs coincident or

in strong LD with genome-wide significant GWAS tag variants for six disorders, including three that

are autoimmune disorders (inflammatory bowel disease, Crohn’s disease and rheumatoid arthritis)

whilst a fourth, endometriosis, is frequently comorbid with autoimmune disorders [50]. Deficiency of

serum 25(OH)D levels is associated with cardiovascular disease risk factors in adults [10], while the

association between vitamin D levels and coronary artery disease, as for many disorders, is debated

[51]. These results associate a molecular phenomenon, the genetic disruption of nuclear receptor

binding, with a narrow set of immune-related syndromes and diseases.

Based on the combined functional, evolutionary and GWAS-based evidence, we propose that

VDR-BVs represent good targets for subsequent experimental validation using, for example, genome

editing in cells. It is also expected that only a small minority of genes bound by VDR will be altered in
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expression. A large-scale expression QTL study in calcitriol-activated LCLs will thus be required to

further narrow down the set of candidate disease genes whose regulatory elements are variably bound

by VDR and which are differentially expressed across the human population.

We have provided the first quantitative association-based analysis to explain the genetic effect

on binding affinity variation for a nuclear receptor, and to propose a mechanistic model for disease

susceptibility. Our results support the hypothesis that DNA variants altering transcription factor binding

at enhancers contribute to complex disease aetiology and suggest that altered VDR binding, and by

inference variable vitamin D levels, explain, in part, altered autoimmune and other complex disease

risk.

Materials and Methods

VDR ChIP-exo Sample Preparation

Calcitriol stimulated lymphoblastoid cell lines (LCLs) were grown and prepared for ChIP as described

previously with some modifications [52] and adapted for ChIP-exo [15, 16]. LCLs are known to be

a good model of primary B-cells [53] and we chose lines from HapMap, a unique resource whose

genomes have already been sequenced. Briefly, cells were incubated in phenol red free RPMI-1640,

10% charcoal stripped FBS, 2mM glutamine-L, penicillin with streptomycin solution (100 U/mL +

100 microG/mL) medium at 37C and 5% CO2. Cells were harvested after stimulation for 36 hours

with 0.1 µM calcitriol (Sigma) and crosslinked using a 1% formaldehyde buffer for 15 minutes at room

temperature and quenched with 0.125 M glycine. Cells were lysed and chromatin sheared by sonication

into fragments of ∼200-1000 bp. VDR-bound genomic DNA regions were isolated using a rabbit

polyclonal antibody against VDR (Santa Cruz Biotechnology, sc-1008). Immunoprecipitated chromatin

was then processed enzymatically on magnetic beads. Samples were polished, A-tailed, ligated to

sequencing library adaptors and then digested with lambda exonuclease to remove nucleotides from 5’

ends of double stranded DNA. Single-stranded DNA was eluted and converted to double-stranded DNA

by primer annealing and extension. A second sequencing adaptor was ligated to exonuclease treated

ends, PCR amplified, gel purified and sequenced. Libraries were prepared for Illumina as described in

[16].
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Data Processing and Peak Calling

Full data processing steps are presented in the Supplementary Material. Briefly, we mapped the

ChIP-exo sequence reads (Peconics Inc., USA; single-end 40bp) against the hg19 build of the human

reference genome [54] using BWA (v. 0.7.4, [55]) followed by Stampy (v 1.0.21 [56]). We filtered

the reads to retain only uniquely mapping reads with MAPQ > 20 and removed reads mapping to

empirical blacklist regions identified by the ENCODE consortium [24].

For peak calling, we first computed strand cross-correlation profiles [57] of read start densities

to obtain consensus estimates of the ChIP-exo digested fragment sizes, which we corrected for the

presence of phantom peaks [58] using a mappability-corrected approach to cross-correlation inference

(MaSC, [59]). We used the cross-correlation based estimates for the digested fragment size as a MACS2

(version 2.0.10, [60]) input parameter to obtain peak calls. Separately, to increase sensitivity, we called

peaks using GPS/GEM (v. 2.4.1, [61]) with recommended ChIP-exo options --smooth 3 --mrc

20. We then pooled, for each sample, the two sets of peak calls (Supplementary Material). Finally,

we used DiffBind [62] to manipulate the per-sample merged peaksets and to obtain consensus peakset

(CPo3 , CPo10 , CPo20) based on an overlap threshold. To do this, we normalised the read numbers

using DiffBind’s embedded EdgeR routines, based on the Trimmed Means of M’s (TMM) algorithm

[63].

Interval Overlap Enrichment Analysis

We used the Genomic Association Tester [64] to perform the randomization-based interval enrichment

analyses. All analyses were based on 10,000 randomisations over the chosen background, and

backgrounds differed depending on the specific analysis performed. All analyses accounted for

genome-wide patterns of GC content variability and, where relevant, for uniquely mappable regions

(40bp reads). For the enrichment analysis of VDR-BVs in GWAS intervals and QTLs, we used an

in-house bootstrapping pipeline to perform LD-filtering (to retain only LD-independent foreground and

background variants) and DAF matching. Further details on annotations, background and analytical

design are provided in the Supplementary Material.
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Motif Discovery

Full motif analysis steps are documented in the Supplementary Material. Briefly, we carried out de

novo motif analysis using multiple parallel approaches: MEME-ChIP [65] from the MEME suite [66],

XXmotif [67] and PScanChIP [20] from the Weeder/MoDtools suite [68]. For the MEME-ChIP and

XXmotif analyses, we used the peak intervals in CPo10 and extracted the sequence underlying each

interval ±150bp from a repeat-masked version of the hg19 reference [54]. For the PScanChIP analysis

we used as the input the full set of CPo3 binding regions with Jaspar PWM descriptors, to which we

added the best heterodimeric RXR::VDR PWM found by XXmotif and the best monomeric VDR PWM

found by DREME (MEME-ChIP package). The global background chosen for the analysis consisted of

built-in PScanChIP DNase I digital genomic footprinting data for the LCL CEPH individual NA12865.

For the motif analysis at the 43,332 VDR-BVs we used PScanChIP [20] with Jaspar PWM descriptors

and a mixed background of promoters and LCL DNase cut sites.

Differential Binding Analyses

We performed both allele-specific (VDR-ASB) and regression on genotype (VDR-QTL) differential

binding analyses. Both methods start from analyses of read counts. For the VDR-QTL analysis, reads

were normalised and covariant-corrected as detailed in the Supplementary material.

For the VDR-ASB tests, we utilised the sequence composition of ChIP-exo sequence reads

overlapping heterozygous SNPs to determine the sequences originating from each allele separately

[69, 70, 23] and to identify allele-specific binding events showing significant difference in the number

of mapped reads between parental alleles. We employed a modified version of the AlleleSeq pipeline

[23] to carry out the VDR-ASB analysis. Briefly, we tested for significant allelic imbalance among all

read pile-ups intersecting a variant showing heterozygous genotype, given a null hypothesis of 50%

paternal versus 50% maternal reads. We followed [23] in controlling for two major sources of bias

typically encountered when running an allele-specific analysis of short read data: a bias due to mapping

to the reference hg19 genome [71] and a bias due to unannotated copy number variants skewing the

read counts for some of the SNPs being tested [72]. In addition, we corrected for a third source of

potential erroneous ASB SNP calls by removing any significant allelic imbalance hypothesis falling

under repeat regions contained in the ENCODE blacklist data [24].
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For the VDR-QTL tests, we analysed all 27 LCL samples simultaneously. We grouped the samples

based on the genotypes of the underlying variant, and carried out QTL association testing between

the variant’s genotype (under the assumption of an additive genetic model [73]) and the phenotype

at that location (the VDR binding affinity based on the quantile-normalised ChIP-exo peak size at

that location). We used an in-house pipeline based on SNPs and indels imputed with IMPUTE2 [74]

and Bayesian regression modelling based on SNPTEST [21] and BIMBAM [22]. Bayesian methods

for analysing SNP associations are now an established tool in GWAS analysis [75, 76, 77] and show

advantages over the use of p-values in power and interpretation [73] though they require tighter initial

modelling assumptions when compared to frequentist methods. For details on the underlying model

and priors we refer the reader to the Supplementary document.

Variant Annotation

We annotated all variants associated with differences in VDR binding and obtained by pooling the

VDR-QTL and the VDR-ASB variants (VDR-Binding Variants, VDR-BVs) according to the guidelines

in [25] and using a customised version of the Funseq2 suite of algorithms [26]. We added additional

VDR-centric information to Funseq2: VDR CPo3 binding regions, motif intervals from the PScan-

ChIP analysis for the VDR:RXR Jaspar DR3 motif and for the DREME VDR monomer, and VDR

dimer/monomer PWM information. Gene annotation used Funseq2’s default (Gencode, v. 16) and the

HOT annotation in Funseq was filtered to only retain LCL HOT information. We ran Funseq using the

-m 2 -nc options so that all annotation referred to the ancestral allele of the variant.

Availability of data and material

Sequencing data from this study have been submitted to the Gene Expression Omnibus archive (GEO;

http://www.ncbi.nlm.nih.gov/geo; accession number GSE73254).
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Figures

Figure 1: ChIP-exo peaks are reproducible among samples and with previous ChIP-seq results,
and are enriched in promoters and enhancers. A: Numbers of overlapping ChIP-exo peaks across
27 LCL samples (log scale). Highlighted rows indicate numbers of peaks called in at least three (CPo3),
ten (CPo10) or twenty (CPo20) samples. B: Normalised peak read depths [63, 62, 78] (Supplementary
Material) are concordant between samples. VDR ChIP-exo peak binding affinity heatmap, showing
pair-wise binding affinity correlation among all 27 sample pairs. (Inset) histogram of correlation
counts. C: 50-fold enriched overlap between CPo3 peaks and the consensus ChIP-seq peakset from
[14] (enrichment test: GAT [64], Supplementary Material). D: Meta-gene profile of VDR binding
reads. The panel shows a meta-profile of read pile-up for the pooled 27 LCL samples, averaged over
gene bodies (Ensembl v. 75, protein coding genes). E: Enrichment of VDR binding sites in the CPo3

consensus with ENCODE chromatin states (chromHMM [79]) from LCL NA12878, TF-dense regions
(HOT [17] and ENCODE clustered TF binding sites) and DNase I hypersensitive areas (ENCODE).
Asterisk denotes significance at 1% False Discovery Rate (FDR) threshold (enrichment test: GAT [64],
Supplementary Material).

Figure 2: VDR binding intervals are immune-associated or are housekeeping-associated tending
to be either present far from, or adjacent to, transcriptional start sites, respectively. A: The most
highly ranking motif cluster ensuing from a de novo motif analysis of the VDR CPo3 consensus
intervals using MEME-ChIP [65], including a CentriMO [80] analysis of enrichment with respect to
VDR peak centres. B-D: GREAT analyses [81] for subsets of VDR peaks from the CPo3 consensus
set containing either a strong-to-perfect (class I) or weak-to-non-existent (class II) instance of the
RXR::VDR heterodimer motif. B: Distributions of distances between known TSS sites (UCSC hg19,
Feb 2009) and VDR binding locations for classes I or II, or all, VDR peaks. C,D: Enrichment for Gene
Ontology Biological Process and Disease Ontology terms for class I (C) or class II (D) RXR::VDR
containing sites, respectively. For C and D, bars map to fold change whereas Hinton plots map to
− log10 of the enrichment significance p-value.
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Figure 3: VDR-BVs are enriched at enhancers, in RXR::VDR DR3-type motifs, and in LCL
eQTLs. Genomic association testing of VDR-BVs with functional annotation. A: Enrichment of
VDR-BVs within ENCODE chromatin state segmentation tracks for LCL NA12878, TF-dense regions
(HOT [17] and ENCODE clustered TF binding sites) and DNase hypersensitive areas (ENCODE). B:
Enrichment of VDR-BVs in VDR consensus motif intervals present in VDR CPo3 binding regions. C:
Enrichment of VDR-BVs at DNase-QTLs and eQTLs from the Pritchard resource and CEU/YRI LCL
eQTLs from the GEUVADIS resource. Significant enrichments are indicated using blue histogram bars
(f.c. = fold change of observed versus expected overlaps; FDR = q < 0.1; numbers in a box close to
each bar indicate ‘observed [expected]’ overlap counts; grey bars indicate lack of significance). For
panel A, enrichments shown are above-and-beyond the previously observed (Figure 1E) enrichments of
VDR CPo3 peaks in the same functional annotation classes (relative to a background of 20,330 1000
Genomes SNPs in CPo3 VDR binding regions). For panel B, enrichments are relative to a background
of 114,155 1000 Genomes variants lying under VDR ChIP-exo read pileups (≥ 5 reads) which had
been tested as potential VDR binding affinity modifiers. This background was further corrected for
the analyses in panel C, were only LD-independent foreground VDR-BVs were tested and 10,000
DAF-matched random background sets were extracted with replacement from the main set of 114,155
background variants.

Figure 4: VDR-BVs are enriched in GWAS LD blocks for autoimmune, inflammatory and other
diseases. A-B: Traits and diseases showing enrichment of VDR-BVs (A) or VDR-rBVs (B). Dis-
eases/trait associations were acquired from the GRASP catalog v2.0 [29]. Statistical association was
computed between VDR-BVs and strong-LD (Supplementary Material) intervals around genome-wide
significant (p < 5× 10−8) disease tag-SNPs from the GRASP catalog. All available GRASP diseases
and traits represented by at least 5 SNPs were analysed and those showing significant enrichment of
VDR binding beyond a 1% FDR threshold were retained; disease associations supported by only 1
VDR-BV were discarded (full data are presented in the Supplementary Material). The sizes of black
squares indicate the statistical significance of enrichments.
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Figure 5: Genetic variation modulating VDR binding affinity in LCLs within the canonical
RXR::VDR heterodimeric binding motif. Genome-wide quantification of the effect of genetic
variation on VDR binding, based on the analysis of VDR-BVs in CPo3 binding peaks which hit
the canonical RXR::VDR DR3 heterodimeric consensus motif (motif shown in panel B, JASPAR
database, [19]). A: Distribution across the RXR::VDR motif of VDR-BVs which cause significant
motif disruption (significance assessed via FunSeq2 using TFMPvalue [82], with default threshold
p < 4× 10−8) and quantification of the concordance between directionality of VDR PWM disruption
and directionality of resulting VDR binding affinity variation. 102/115 (89%) VDR-BVs in CPo3

VDR peaks that significantly break the RXR::VDR motif predict the direction of VDR binding affinity
change. C,D: Genome-wide quantification of the phenotypic effect of all VDR-BVs intersecting the
RXR::VDR motif (including those which do not generate a motif break at the above significance
level). The vertical axis (Magnitude of VDR binding affinity change) indicates the fold change of read
depth of the ancestral versus the derived allele (panel C) or derived versus the ancestral allele (panel
D). C: Impact on VDR binding affinity of Loss of Binding (LOB, orange dots) VDR-BVs and Loss
of Binding VDR-BVs which test for significant RXR::VDR motif break (red dots). D: Impact on
VDR binding affinity of Gain of Binding (GOB) VDR-BVs (blue dots). Nucleotide position has a
significant influence on LOB (Kruskal-Wallis rank sum test, χ2(14) = 33.385, p < 0.01) but not on
GOB (χ2(12) = 17.68, p = 0.12) phenotype magnitude. C,D: Grey dots indicate impact on binding
affinity of those 1000 Genomes variants carried by the LCL samples which do not test for significant
asymmetric binding (AlleleSeq [23], FDR threshold = 0.1) and are not, therefore, VDR-BVs.

Figure 6: Evolutionary conservation of VDR-BVs at RXR::VDR consensus motifs. The diagrams
show distributions of the Derived Allele Frequency (DAF) for variants in RXR::VDR consensus motifs
within reproducible CPo3 binding peaks. DAF values are separated by ethnicity (panels A and C: CEU;
panels B and D: YRI); variants are separated by their effect on VDR binding affinity (panels A and B:
VDR-BVs; panels C and D: 1000 Genomes variants carried by the LCL samples which do not test
for significant asymmetric binding and are not, therefore, VDR-BVs). Within each of the four panels,
variants are split in two groups, based on their effect on VDR binding affinity direction (whether GOB
or LOB). For all quadrants, only DAFs for variants hitting hexamer positions (i.e. hitting either the
RXR recognition element at positions 1-6 or the VDR recognition element at positions 10-15) in the
RXR::VDR motif are shown. An asterisk indicates significance (non parametric Wilcoxon rank sum
tests, α = 0.05). Panel A: Wilcoxon rank sum test, p = 2.8× 10−4. Panel B: Wilcoxon rank sum test,
p = 4.6× 10−5. Panels C and D: p = 0.55 and p = 0.14 respectively. ns = not significant.
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Abbreviations

ASB Asymmetric Binding Analysis

ChIP Chromatin Immuno Precipitation

dsQTL DNase I sensitivity Quantitative Trait Locus

DAF Derived Allele Frequency

DHS DNase I Hypersensitive Site

eQTL expression Quantitative Trait Locus

ENCODE Encyclopedia of DNA Elements

FDR False Discovery Rate

GOB Gain of Binding

GWAS Genome Wide Association Study

HOT High-Occupancy Target

LCL Lymphoblastoid Cell Line

LOB Loss of Binding

MHC Major Histocompatibility Complex

PCR Polymerase Chain Reaction

PWM Positional Weight Matrix

QTL Quantitative Trait Locus

RXR Retinoid X Receptor

SNP Single Nucleotide Polymorphism

TF Transcription Factor
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TFBS Transcription Factor Binding Site

TSS Transcriptional Start Site

TTS Transcriptional Termination Site

VDR Vitamin D Receptor

VDR-BV VDR Binding Variant

VDR-rBV VDR reproducible Binding Variant

VDR-sBV VDR stringent Binding Variant

25(OH)D 25-hydroxyvitamin D
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