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Vitamin D is one of the oldest hormones.1 Early in evolution as unicellular organisms
evolved and took advantage of the sun’s energy for photosynthesis of sugars, they
also began to photosynthesize vitamin D.1 A phytoplankton species that has existed
in the Sargasso sea (Atlantic Ocean) for more than 500 million years unchanged
was found to have more than 1% of its total dry weight as provitamin D2 (ergosterol).
When this organism was cultured and exposed to simulated sunlight it produced
vitamin D2.2 As life forms evolved in the ocean, which has a high calcium content,
and ventured onto land where calcium was stored in the soil, they needed to develop
a method to efficiently absorb calcium from the plants and roots that they ate. It is
likely that these organisms when exposed to sunlight produced vitamin D in their
skin, which was critical for them to be able to absorb their dietary calcium efficiently.
Vitamin D has evolved over millions of years to play and essential role in vertebrate
evolution not only for bone health but for their overall health and well being.
SOURCES OF VITAMIN D

Humans have always depended on the sun for their vitamin D requirement.1,3 Thus the
major source of vitamin D for children and adults is exposure of the skin to sunlight.3

Adults in a bathing suit exposed to an amount of sunlight that causes a slight pinkness
to the skin 24 hours later (1MED) is equivalent to ingesting about 20,000 IU of vitamin
D.3 There are few foods that naturally contain vitamin D. Because vitamin D is fat-
soluble it is found in oily fish, including salmon, mackerel, and herring. Fish that
have little fat in their flesh concentrate their fat in their liver, which is why cod liver
oil and oil from other nonoily fish are good sources of vitamin D. Yeast and mushrooms
make huge quantities of ergosterol and when exposed to sunlight or ultraviolet irradi-
ation are excellent sources of vitamin D. In the United States and Canada, milk and
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several other dairy products are fortified with vitamin D. Some orange juices are also
fortified with calcium and vitamin D.4

HISTORICAL PERSPECTIVE ON EXTRASKELETAL EFFECTS OF VITAMIN D

At the turn of the twentieth century it was estimated that more than 90% of children in
the industrialized cities of northern Europe and 80% of children living in the north-
eastern United States had skeletal evidence of rickets.5,6 Besides the obvious defor-
mities associated with rickets, it was noted that these children had severe muscle
weakness, poor tooth eruption with dental caries, and were plagued by upper respi-
ratory tract infections.5,7 In the early 1900s Finsen observed that exposure to sunlight
was effective in treating several skin disorders, including lupus vulgaris, which is
caused by a tuberculosis infection of the skin. His remarkable observations resulted
in him receiving the Nobel prize in 1903. In 1915 Hoffman compared cancer mortality
in cities according to latitude, and demonstrated that cancer mortality increased with
increasing distance from the equator (Table 1).8 In 1941 Apperly9 reported that people
who lived in the Northeast were more likely to die of cancer than people who lived in
the South. In the 1980s it was reported that there was a latitudinal association with
colorectal cancer risk.10

In the 1970s it was appreciated that vitamin D (D represents D2 or D3) that came
from the diet or was synthesized in the skin required a hydroxylation in the liver to
form the major circulating form of vitamin D, 25-hydroxyvitamin D (25(OH)D).11

25(OH)D is metabolized in the kidneys to its active form 1,25-dihydroxyvitamin D
(1,25(OH)2D).3 Because 1,25(OH)2D is fat-soluble it was assumed that it functioned
by interacting with a nuclear vitamin D receptor (VDR) to up- and down-regulate genes
responsible for calcium and bone metabolism.3,11–13 It was quickly demonstrated that
kidneys, small intestine, and osteoblasts had a VDR and that several genes, including
calbindin9k, epithelial calcium channel, and receptor activator of nuclear factor-kB
(RANKL) were up-regulated to control calcium and phosphorus absorption in the small
intestine as well as calcium and phosphorus metabolism in the kidneys, and to
enhance bone calcium mobilization from the skeleton.3,12,13

When radiolabeled 1,25(OH)2D3 was given to vitamin D–deficient rats it had been
assumed that it would concentrate only in the organs that were responsible for
calcium and bone metabolism that had a VDR. However, when other tissues in the
body were recovered to serve as a negative control it was found that nuclei in essen-
tially every tissue and organ in the body were able to concentrate and localize
Table 1
Mortality from cancer in cities according to latitude measured between 1908 and 1912

Number of Cities Latitude Deaths from Cancer Rate (per 100,000)

35 60N–50N 119374 105.7

48 50N–40N 121216 92.4

24 40N–30N 37451 78.1

7 30N–10N 5696 42.3

4 10N–10S 1056 40.9

7 10S–30S 3040 37.7

5 30S–40S 11048 89.8

Modified from Hoffman FL. The mortality of cancer throughout the world. Appendix E. Prudential
Press; 1915.
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3H-1,25(OH)2D3, including the skin, colon, brain, and pancreas, among many other
organs.14 Within a decade a multitude of laboratories demonstrated the presence of
a VDR in essentially every tissue and cell in the body including skin, colon, brain,
pancreas, and breast as well as activated T and B lymphocytes, monocytes, and
macrophages.2,13

The first insight into the noncalcium, nonskeletal effects of vitamin D was reported in
the early 1980s, when it was observed that mouse and human leukemia cells had
a VDR and when they were exposed to 1,25(OH)2D3 their proliferative activity was
reduced, and the leukemic cells differentiated into normal-appearing macrophages.15

This observation was quickly followed by reports that a variety of cancer cell lines
developed from melanoma, colon cancer and prostate cancer had a VDR, and
when these cell lines were incubated with 1,25(OH)2D3 their cellular proliferation
was reduced and they showed signs of differentiation.16–19

In the 1980s the first reports for extrarenal synthesis of 1,25(OH)2D came from
observations that patients with sarcoidosis or tuberculosis who had hypercalcemia
had inappropriately normal or elevated levels of 1,25(OH)2D3. Initially it was believed
that this was due to a unregulated synthesis of 1,25(OH)2D by the kidneys.3,20 When
it was reported that a sarcoid patient who developed nephritis and lost all kidney func-
tion remained hypercalcemic with an elevated blood level of 1,25(OH)2D, it was sug-
gested that there was a nonrenal source for this metabolite.20 This result was quickly
followed by the observation that macrophages converted 25(OH)D3 to 1,25(OH)2D3.21

Within a decade several investigators began reporting that cultured cells from the skin,
colon, prostate, breast, lung, and brain all had the enzymatic machinery to produce
1,25(OH)2D3.3,13,16–18,22–25
CANCER PREVENTION

Epidemiologic studies over the past decade have confirmed the observations of
Garland and colleagues25 Hanchette and Schwartz,26 who reported that adults who
lived at higher latitudes were more likely to develop and die of colorectal and prostate
cancer. Other observations revealed that living at higher latitudes increased the risk of
dying of ovarian,27 breast,28 lung,29 and esophageal cancer30 among many others.
Compelling retrospective and prospective epidemiologic studies have demonstrated
that when 25(OH)D levels are less than 20 ng/mL there is a 30% to 50% increased risk
of developing and dying of colorectal, prostate, breast, pancreatic, and esophageal
cancer, among others (Fig. 1).10,29,31–33 Men who had the most exposure to sunlight
had a 3- to 5-year reprieve from developing prostate cancer compared with men
who worked indoors.34 When 972 women in Canada who had a history of breast
cancer were asked about their sun exposure history as teenagers and young adults
and compared their sun exposure to 1135 women matched for age and location
who did not have breast cancer, it was revealed that the women with breast cancer
had much less sun exposure as teenagers and young adults compared with women
with no history of breast cancer. It was estimated that women who had had the
most sun exposure during their teens and 20s reduced their risk of developing breast
cancer by 69%, and young and middle-aged women who had the most sun exposure
reduced their risk by 51%.35 Women older than 45 years received no benefit in
reducing their risk for breast cancer by being exposed to more sunlight.

The Women’s Health Initiative reported that 1000 mg calcium and 400 IU vitamin
D/d did not decrease the risk of developing colorectal cancer, raising questions about
the benefits of vitamin D in reducing the risk of this deadly cancer.36 The study results,
however, came into question because most of the women admitted that they were not



Fig. 1. Dose-response gradient for colorectal cancer according to serum 25(OH)D concentra-
tion, of 5 studies combined. The 5 points are the odds ratios for each quintile of 25(OH)D
based on the combined data from the 5 studies. (From Gorham ED, Garland CF, Garland
FC, et al. Optimal Vitamin D Status for Colorectal Cancer Prevention: A Quantitative Meta
Analysis. Am J Prev Med 2007;32(3):210–6; with permission.)
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taking their calcium and vitamin D more than 40% of the time during the study. More
importantly, a review of the data revealed that women who had a blood level of
25(OH)D less than 12 ng/mL at the start of the study and followed for 8 years on
suboptimal doses of vitamin D compared with women who had an initial blood level
of 25(OH)D of 24 ng/mL had a 253% increased risk of developing colorectal cancer.37

Pooled data of 1761 women found the highest vitamin D consumption correlated with
a 50% lower risk of breast cancer (they had on average a blood level of 48 ng/mL).31

Lappe and colleagues38 reported that 1179 postmenopausal women who received
1500 mg of calcium a day with 1100 IU of vitamin D3 a day and followed for 4 years
reduced their risk of developing all cancers by more than 60%. When women during
the first year were removed from the analysis because of the likelihood that these
women had a small undetectable cancer at the initiation of the trial, there was
a dramatic 77% reduced risk of developing cancer when taking 1100 IU of vitamin
D3 a day along with calcium supplementation compared with the group that received
either calcium or placebo (Fig. 2). In the Physician Health Study, men who had the
highest levels of 25(OH)D had a lower risk of developing several cancers, including
colorectal, esophageal, pancreatic, and leukemia.33 It has also been suggested that
one possible cause for the health disparity in blacks who are at a higher risk for devel-
oping and dying of cancer is due to their high incidence of vitamin D deficiency, which
not only could increase their risk of developing deadly cancers but also might make
the cancers more aggressive and more difficult to treat.39,40

Nagpal and colleagues41 reported that 1,25(OH)2D3 through its transcriptional
activity was capable of regulating directly or indirectly at least 200 genes. Among
these genes are those that control proliferation, differentiation, apoptosis, and angio-
genesis (Fig. 3).3,41 1,25(OH)2D3 increased the expression of cell cycle inhibitors and
decreased activators of cyclin-cyclin dependent kinase complexes, in addition to



Fig. 2. Kaplan-Meier survival curves (ie, free of cancer) for the 3 treatment groups randomly
assigned in the cohort of women who were free of cancer at 1 year after intervention (n 5

1085). Sample sizes are 266 for the placebo group, 416 for the calcium-only (Ca-only) group,
and 403 for the calcium plus vitamin D (Ca1D) group. The survival at the end of study for
the Ca 1 D group is significantly higher than that for the placebo group, by logistic regres-
sion. (Copyright Robert P. Heaney, 2006. Used with permission.)
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increasing levels of cyclin-dependent kinase inhibitors Cip/Kip proteins P21 and P27,
which are known to keep the cell cycle in the G1/S phase, thus preventing DNA
synthesis and cellular growth (Fig. 4). In addition, 1,25(OH)2D3 increased the expres-
sion of the cell adhesion molecule E-cadherin and inhibited the expression of
b-catenin.42,43
Fig. 3. Vitamin D maintains cellular growth by controlling several genes that control cellular
proliferation and differentiation. 25-hydroxyvitamin D (25(OH)D) is converted to 1,25-dihy-
droxyvitamin D (1,25(OH)2D) in a wide variety of nonrenal cells, including cells in the colon
and prostate. 1,25(OH)2D interacts with the vitamin D receptor (VDR) and regulates a variety
of genes that control apoptosis, proliferation, and differentiation. (Courtesy of Michael F.
Holick, PhD, MD; Copyright ª 2009.)



Fig. 4. Metabolism of 25-hydroxyvitamin D (25(OH)D) to 1,25-dihydroxyvitamin D
(1,25(OH)2D) for nonskeletal functions. When a monocyte/macrophage is stimulated
through its toll-like receptor 2/1 (TLR2/1) by an infective agent such as Mycobacterium
tuberculosis (TB), or its lipopolysaccharide (LPS), the signal up-regulates the expression of
vitamin D receptor (VDR) and the 25-hydroxyvitamin D1-hydroxylase (1-OHase). A
25(OH)D level greater than 30 ng/mL provides adequate substrate for the 1-OHase to
convert it to 1,25(OH)2D. 1,25(OH)2D returns to the nucleus where it increases the expression
of cathelicidin (CD), which is a peptide capable of promoting innate immunity and inducing
the destruction of infective agents such as TB. It is also likely that the 1,25(OH)2D produced
in the monocytes/macrophage is released to act locally on activated T (AT) and activated B
(AB) lymphocytes, which regulate cytokine and immunoglobulin synthesis, respectively.
When 25(OH)D levels are approximately 30 ng/mL, it reduces the risk of many common
cancers. It is believed that the local production of 1,25(OH)2D in the breast, colon, prostate,
and other cells regulates a variety of genes that control proliferation, including p21 and p27
as well as genes that inhibit angiogenesis and induced apoptosis. Once 1,25(OH)2D
completes the task of maintaining normal cellular proliferation and differentiation, it
induces the 25-hydroxyvitamin D24-hydroxylase (24-OHase). The 24-OHase enhances the
metabolism of 1,25(OH)2D to calcitroic acid, which is biologically inert. Thus, the local
production of 1,25(OH)2D does not enter the circulation and has no influence on calcium
metabolism. The parathyroid glands have 1-OHase activity and the local production of
1,25(OH)2D inhibits the expression and synthesis of parathyroid hormone (PTH). The produc-
tion of 1,25(OH)2D in the kidney enters the circulation, and is able to down-regulate renin
production in the kidney and to stimulate insulin secretion in the b-islet cells of the
pancreas. (Courtesy of Michael F. Holick, PhD, MD; Copyright ª 2007.)
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The recognition that many human cancer cell lines had a VDR prompted an inves-
tigation to determine whether 1,25(OH)2D3 could be used as a treatment for preleuke-
mia. In a double-blind placebo-controlled trial, patients with preleukemia who
received 1,25(OH)2D3 initially responded well.44 However, the trial proved to be unsuc-
cessful due to the observation that patients on 1,25(OH)2D3 not only developed hyper-
calcemia but ultimately went into blastic crisis.

There have been several thousand analogues of 1,25(OH)2D3 that have been made
and evaluated for their antiproliferative and calcemic activities.45,46 Many of these
analogues appeared to have great clinical promise in that they demonstrated 100 to
1000 times higher antiproliferative activity while having minimum calcemic activity.
In animal models, some of these analogues including those with 2 side arms known
as Gemini compounds, were shown to be effective in inhibiting MC-26 tumor cell
growth progression in mice, with minimum calcemic activity.47

It was observed that men with metastatic prostate cancer who received 2000 IU of
vitamin D3 a day for up to 21 months showed a more than 50% reduction in rise in their
prostate-specific antigen (PSA) levels compared with before receiving the vitamin
D3.48 Men with prostate cancer who received daily 1,25(OH)2D3 had a significant
decrease in the rise of their PSA levels compared with men who were on placebo.49

This prompted a phase 2 clinical trial in which a single oral dose of 45 mg of
1,25(OH)2D3 was given once a week. The study was halted as a result of hypercal-
cemia and increased death rate in men who were taking 1,25(OH)2D3.50

Cancer cells have developed several strategies to decrease the effectiveness of
1,25(OH)2D3 from keeping cell growth in check. A human prostate cancer cell line,
DU-145, is able to resist the antiproliferative activity of 1,25(OH)2D3 by increasing
the expression of the 25-hydroxyvitamin D24-hydroxylase (24-OHase).51,52 This
enzyme hydroxylates the side arm on carbons 24 and 23, causing a cleavage of the
carbon bond at carbon 23 that results in the formation of a water-soluble carboxylic
acid metabolite, calcitroic acid.53

Another clever strategy that malignant cells have developed to mitigate the antipro-
liferative activity of 1,25(OH)2D3 is to increase the expression of the transcriptional
factor Snail.42 Snail is a zinc finger transcription factor that is involved in cell move-
ment, and exists in both invertebrates and vertebrates. Snail-1 induces epithelial-to-
mesenchymal transition and was found to not only inhibit the expression of VDR but
also E-cadherin. Palmer and colleagues42 observed that a human colon cancer cell
line, SW-480–ADH, transfected with the Snail gene prevented the antiproliferative
and prodifferentiating activity of 1,25(OH)2D3 (Fig. 5).
PSORIASIS

In the 1980s it was appreciated that keratinocytes in the skin was not only the major
source for 7-dehydrocholesterol, which could be converted to vitamin D3 when
exposed to sunlight, but also that this cell had a VDR and was able to convert
25(OH)D to 1,25(OH)2D3.2,43,53 Studies revealed that incubating keratinocytes with
1,25(OH)2D3 resulted in marked decrease in DNA synthesis and proliferation, and
a marked increase in markers of differentiation, including transglutaminase
activity.43,54

It was reasoned that because 1,25(OH)2D3 was such a potent inhibitor of keratino-
cyte proliferation in vitro, it could be used for the treatment of the nonmalignant hyper-
proliferative disease psoriasis (Fig. 6). Topically applied 1,25(OH)2D3 was found to be
both safe and effective for treating psoriasis.55 Topically applied 1,25(OH)2D3 resulted
in marked reduction in the thickness of plaques, scaling, and erythema. Several



Fig. 5. (A, top) Micrographs of SNAIL-HA and mock-infected cells. Arrows indicate the
phenotypic change induced by SNAIL. Bar, 50 mm. (A, bottom) Immunostaining of ectopic
SNAIL expression using an antibody to HA. Bar, 10 mm. (B, left) normalized SNAIL. VDR
and E-cadherin mRNA levels were measured by real-time reverse transcription-polymerase
chain reaction. (B, right) Protein expression was estimated by Western blot. Numbers refer
to fold increase over untreated mock-infected cells. (C) SNAIL inhibits the induction of L1-
NCAM and filamin by 1,25(OH)2D3. Wild-type (left) but not mutant (right) SNAIL proteins
inhibit VDR transcriptional activity (4XVDRE-tk-luciferase). (From Palmer HG, Larriba MJ,
Garcia JM, et al. The transcription factor SNAIL represses vitamin D receptor expression
and responsiveness in human colon cancer. Nat Med 2004;10:917–9; with permission.)
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Fig. 6. (Top panel) A 28-year-old man with a more than 20-year history of psoriasis. The
psoriatic lesions on the patient’s right forearm were treated with placebo Vaseline and
the psoriatic lesions on the left forearm were treated with Vaseline containing 1,25-dihy-
droxyvitamin D3 (1,25(OH)2D3). (Bottom panel) Photomicrographs of biopsies from the right
forearm and left forearm. (Courtesy of Michael F. Holick, PhD, MD; Copyright ª 2009.)
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analogues of 1,25(OH)2D3, including calcipotriene, 1,24-dihydroxyvitamin D3, and 22-
oxo-1,25(OH)2D3, were also evaluated for their antiproliferative activity in cultured ker-
atinocytes.56,57 These substances were all found to inhibit keratinocyte proliferation
and induced maturation; along with 1,25(OH)2D3, they were consequently developed
as a first-line therapy for the treatment of psoriasis.

VITAMIN D AND AUTOIMMUNE DISEASES

Living at a latitude above 35� for the first 10 years increases the risk of developing
multiple sclerosis (MS) by 100% no matter where one lives thereafter.58,59 A similar
observation has been made for type I diabetes. There was a 10- to 15-fold increased
risk of developing type 1 diabetes if living in far northern or southern regions of the
globe compared with living near the equator.60

Epidemiologic evidence suggests that both men and women who have the highest
blood levels of 25(OH)D had the lowest risk for developing MS.61 In the Nurses’ Health
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Study it was observed that women who had the highest intake of vitamin D had a 42%
reduced risk of developing MS.62 A similar observation was made in that the women
who had the highest intake of vitamin D and had a reduced risk of developing rheuma-
toid arthritis by 41%.63

In the 1960s children in Finland during their first year of life were recommended to
take 2000 IU of vitamin D a day. A follow-up study 31 years later revealed that those
children who took 2000 IU of vitamin D a day during their first year of life reduced their
risk of developing type 1 diabetes by 88%.64 Those children who had evidence of
vitamin D deficiency had a 2.4-fold increased risk of developing type 1 diabetes.
Wheezing disorders and asthma have been linked to vitamin D deficiency in utero.
Children born from mothers who were vitamin D deficient had a 60% increased risk
of having wheezing disorders during their first few years of life.65,66

Although the mechanism by which enhancing vitamin D status reduces risk of devel-
oping autoimmune diseases is not fully understood, it is known that when resting T and
B lymphocytes are stimulated, one of the first genes that is turned on is the gene for
the VDR. Activated T and B lymphocytes have a VDR and 1,25(OH)2D3 is a potent
regulator of both T- and B-cell activity. 1,25(OH)2D3 suppresses proliferation and
immunoglobulin synthesis,43,67 and has a multitude of effects on T-lymphocyte func-
tion and activity. 1,25(OH)2D3 inhibits T-cell proliferation, in particular T-helper (Th1)
cells capable of producing interferon (IFN)-g and interleukin (IL)-2. These actions in
turn prevent further antigen presentation to and recruitment of T lymphocytes. In addi-
tion, 1,25(OH)2D3 enhances the production of IL-4, IL-5, and IL-10, shifting the balance
from Th1 to Th2 cell phenotype.43,68 In addition to its effects on activated T lympho-
cytes, 1,25(OH)2D3 regulates dendritic cell activity, which plays a key role in antigen
presentation. These cells have a VDR, and respond to the antiproliferative and immu-
nomodulatory activities of 1,25(OH)2D3. It is also recognized that 1,25(OH)2D3 inhibits
the formation of Th17 cells, which are now considered to play an important role in
autoimmunity.43,69

It is curious that whereas most tissues and cells in the body are capable of
producing 1,25(OH)2D3, lymphocytes do not express the 1-OHase. Instead, activated
macrophages produce 1,25(OH)2D3 not only for the regulation of cathelicidin produc-
tion70,71 but also to act in a paracrine fashion to interact with the VDR in activated T
and B lymphocytes, in order to modulate their immune functions (see Fig. 4).3

It has been suggested that the potent immunomodulatory activity of 1,25(OH)2D3

will lead to an increased risk of autoimmune diseases.72 However, what these inves-
tigators do not appreciate is that vitamin D is a modulator, not an inhibitor, of the
immune system and that it plays a central role in maintaining a healthy immune
system. Several animal models have been used to demonstrate that 1,25(OH)2D3 is
very effective in either preventing or significantly reducing the progression of autoim-
mune encephalitis in models of MS, type 1 diabetes, and Crohn disease,73,74 all of
which support the epidemiologic evidence that vitamin D is important for immune
health.
INNATE IMMUNITY

In the mid-1800s it was recognized that cod liver oil was effective in treating tubercu-
losis (TB). In the early 1900s solariums were developed, in part to treat patients with
TB, and Finsen demonstrated that exposure of the skin to sunlight was an effective
therapy for treating Mycobacterium infections of the skin. More recent studies have
associated vitamin D deficiency with increased risk of not only developing TB but
also other infectious diseases, including otitis media,75 upper respiratory tract



Fig. 7. Adjusted relative risk of incident type 2 DM in the Nurses’ Health Study by calcium
and vitamin D intake. (From Holick, MF. Diabetes and the Vitamin D Connection. Current
Diabetes Reports 2008;8:393–8; with permission.)
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infections,76 and influenza infection.77 It has been hypothesized that there is a seasonal
stimulus for influenza infection; it usually appears in mid to end of winter, a time when
the 25(OH)D levels are at the nadir.77 Postmenopausal women who took 2000 IU of
vitamin D a day for 1 year reduced their risk of upper respiratory tract infections by
90%.78 Children and adults who had the highest blood levels of 25(OH)D had the
lowest risk of developing upper respiratory tract infections throughout the year.76
Fig. 8. Major Causes of vitamin D deficiency and potential health consequences. (Courtesy
of Michael F. Holick, PhD, MD; Copyright ª 2007.)
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Although it was well known that activated T and B lymphocytes had a VDR and that
1,25(OH)2D3 was a potent modulator of the immune response, it was unclear how this
activity could reduce risk of infectious diseases. It was also known that circulating
monocytes and macrophages have a VDR and also can produce 1,25(OH)2D3.3,43,79

Innate immunity is associated with the activation of toll-like receptors (TLRs), not
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only on monocytes and macrophages but also in other barrier cells of the intestine,
gingiva, bladder, lungs, and epidermis.43 Activation of TLRs results in the production
of antimicrobial peptides and reactive oxygen species, which in turn kill infective
agents. When a macrophage ingests a mycobacterium the lipopolysaccharide on its
cell wall interacts with the TLR2/1 receptor, resulting in the expression of VDR and
1-OHase.70 The macrophage now has the capability of producing 1,25(OH)2D3, which
can in turn interact with its VDR to stimulate the production of the antimicrobial peptide
cathelicidin. It has been demonstrated that monocytes infected with Mycobacterium
and incubated in blood from an African American who had a 25(OH)D level of 8 ng/
mL resulted in the death of the monocyte. When monocytes were exposed to the
same mycobacterium but now incubated in blood that had added to it 25(OH)D to
raise the level to 28 ng/mL, the monocyte was able to mount an effective response
by enhancing cathelicidin production, resulting in the death of the mycobacterium.
These results provide a mechanism by which vitamin D plays a crucial role in reducing
the risk of infectious diseases.
CARDIOVASCULAR HEALTH

Adults who are vitamin D deficient have a 50% higher risk of developing a myocardial
infarction.80 Furthermore, patients who had a myocardial infarction and were vitamin D
deficient were more likely to die from the event.81 In 1979 Rostand82 reported that
living at higher latitudes increased the risk of hypertension. Studies have suggested
that increasing vitamin D intake reduces the risk of hypertension. Exposure of patients
to vitamin D producing simulated sunlight 3 times a week for 3 months on a tanning
bed increased circulating levels of 25(OH)D by 180% and reduced systolic and dia-
stolic blood pressure by 6 mm Hg, whereas hypertensive patients exposed to a tanning
bed that only emitted ultraviolet A radiation and did not experience any increase in the
blood level of 25(OH)D and had no change in their blood pressure.83
Fig. 9. (A) Mean serum 25-hydroxyvitamin D (25(OH)D) levels in all patients: includes
patients treated with 50,000 IU vitamin D2 every 2 weeks (maintenance therapy, N 5 81),
including those patients with vitamin D insufficiency who were initially treated with 8
weeks of 50,000 IU vitamin D2 weekly before maintenance therapy (N 5 39). Error bars
represent standard error of the mean; mean result over 5 years is shown. Time 0 is initiation
of treatment, results shown as mean values averaged for 6-month intervals. When mean
25(OH)D in each 6-month group was compared with mean initial 25(OH)D, P<.001 up until
month 43; P<.001 when all remaining values after month 43 were compared with mean
initial 25(OH)D. (B) Mean serum 25(OH)D levels in patients receiving maintenance therapy
only: levels for 37 patients who were vitamin D insufficient (25(OH)D levels <30 ng/mL)
and 5 patients who were vitamin D sufficient (25(OH)D levels R30 ng/mL) who were treated
with maintenance therapy of 50,000 IU vitamin D2 every 2 weeks. Error bars represent stan-
dard error of the mean; mean result over 5 years is shown. Time 0 is initiation of treatment,
results shown as mean values averaged for 6-month intervals. When mean 25(OH)D in each
6-month group were compared with mean initial 25(OH)D, P<.001 up until month 37;
P<.001 when all remaining values after month 43 were compared with mean initial
25(OH)D. (C) Serum calcium levels: results for all 81 patients who were treated with
50,000 IU of vitamin D2. Error bars represent standard error of the mean. Time 0 is initiation
of treatment, results shown as mean values averaged for 6-month intervals. Normal serum
calcium: 8.5 to 10.2 mg/dL. (From Pietras SM, Obayan BK, Cai MH, et al. Vitamin D2 treat-
ment for vitamin D deficiency and insufficiency for up to 6 years. Arch Intern Med
2009;169:1806–8; with permission. Copyright ª 2009 American Medical Association. All
rights reserved.)
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1,25(OH)2D3 is a potent down-regulator of renin production, a hormone that is
responsible for regulating blood pressure.84 Vascular smooth muscle and cardio-
myocytes have a VDR, and it has been estimated that 200 genes that regulate cardio-
vascular health may be influenced by 1,25(OH)2D3.85,86 In addition to these
cardioprotective effects 1,25(OH)2D3 has anti-inflammatory activity, and reduces C-
reactive protein (CRP) and IL-10 production.85,86 In addition, 1,25(OH)2D3 suppressed
foam cell formation by reducing acetylated or oxidized low-density lipoprotein choles-
terol uptake in macrophages obtained from diabetes patients.87

This finding may help explain the observation of an 80% reduction in development
of peripheral vascular disease when the 25(OH)D was above 25 ng/mL.88

TYPE 2 DIABETES

b-Islet cells in the pancreas have a VDR, and 1,25(OH)2D3 stimulates insulin produc-
tion.60,89 In addition, it has been reported that improvement in vitamin D status in
type 2 diabetic patients improves insulin resistance.60,89 Men and women who had
an intake of calcium of greater than 1000 mg a day and more than 800 IU of vitamin
D a day had a relative risk of reduction in developing type 2 diabetes of 33%
(Fig. 7).90 It has also been observed that there is an inverse relationship between blood
levels of 25(OH)D and risk of type 2 diabetes, with a 75% reduction in whites and 83%
reduction in Mexican Americans.91

SUMMARY

Vitamin D deficiency is the most common nutritional deficiency and likely the most
common medical condition in the world.3 There is a multitude of causes of vitamin
D deficiency (Fig. 8), but the major cause has been the lack of appreciation that the
body requires 5- to 10-fold higher intakes than is currently recommended by the Insti-
tute of Medicine and other health agencies.92 It is likely that our hunter gatherer fore-
fathers being exposed to sunlight on a daily basis were making several thousand IU of
vitamin D a day. The fact that 100 IU of vitamin D prevented overt signs of rickets led to
the false security that ingesting twice this amount was more than adequate to satisfy
the body’s vitamin D requirement.93 Although this may be true for preventing overt
skeletal deformities associated with rickets, there is now overwhelming and compel-
ling scientific and epidemiologic data suggesting that the human body requires a blood
level of 25(OH)D above 30 ng/mL for maximum health.94 The likely reason is that
essentially every tissue and cell in the body has a VDR and thus, to have enough
vitamin D to satisfy all of these cellular requirements, the blood level of 25(OH)D needs
to be above 30 ng/mL. It has been estimated that for every 100 IU of vitamin D
ingested that the blood level of 25(OH)D increases by 1 ng/mL.95,96 Thus to theoreti-
cally achieve a blood level above 30 ng/mL requires the ingestion of 3000 IU of vitamin
D a day. There is evidence, however, that when the blood levels of 25(OH)D are less
than 15 ng/mL, the body is able to more efficiently use vitamin D to raise the blood
level to about 20 ng/mL.97 To raise the blood level of 25(OH)D above 20 ng/mL
requires the ingestion of 100 IU of vitamin D for every 1-ng increase; therefore to
increase the blood level to the minimum 30 ng/mL requires the ingestion of at least
1000 IU of vitamin D a day for adults.

There is a great need to significantly increase the recommended adequate intakes
of vitamin D. All neonates during the first year of life should take at least 400 IU/d of
vitamin D, and increasing it to 1000 IU/d may provide additional health benefits. Chil-
dren 1 year and older should take at least 400 IU/d of vitamin D as recently recommen-
ded by the American Academy of Pediatrics,98 but they should consider increasing
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intake up to 2000 IU/d derive maximum health benefits from vitamin D. Prepubertal
and teenage girls who received 2000 IU of vitamin D per day for a year showed
improvement in their musculoskeletal health with no untoward toxicity.99 All adults
should be taking 2000 IU of vitamin D per day. A recent study reported that adults
who took 50,000 IU of vitamin D once every 2 weeks, which is equivalent to taking
3000 IU of vitamin D a day, for up to 6 years was effective in maintaining blood levels
of 25(OH)D of between 40 and 60 ng/mL without any toxicity (Fig. 9).100

There is no downside to increasing either a child’s or adult’s vitamin D intake, with
the exception of acquired disorders such as granulomatous diseases including
sarcoidosis and tuberculosis, as well as some lymphomas with activated macro-
phages that produce 1,25(OH)2D3 in an unregulated fashion.3,79
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